Table 1.
Polyphenol sources | Study model | Promoted symbionts/associated taxa | Inhibited potentially pathogenic bacteria | Polyphenol-gut transforming bacteria | Beneficial effects | References |
---|---|---|---|---|---|---|
Catechins | In vitro |
Lacticaseibacillus rhamnosus, Lactobacillus acidophilus. |
Escherichia coli, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium. |
Adlercreutzia equolifaciens subsp. celatus, Adlercreutzia equolifaciens subsp. equolifaciens, Eggerthella lenta, Lacticaseibacillus casei 01, Lacticaseibacillus plantarum IFPL935*, Slackia equolifaciens, Slackia isoflavoniconvertens. |
(87–91) | |
Animal | Akkermansia, Lactobacillus**. | Attenuated serum alanine aminotransferase and serum endotoxin levels in non-alcoholic induced steatohepatitis. | (92) | |||
Ellagic acid | In vitro |
Bacteroides fragilis, Clostridium perfringens, Enterocloster clostridioformis, Erysipelatoclostridium ramosum. |
Bifidobacterium pseudocatenulatum INIA P815*, Ellagibacter isourolithinifaciens, Gordonibacter pamelaeae, Gordonibacter urolithinfaciens. |
(93–96) | ||
Animal | Cancer chemoprevention in a buccal pouch hamster carcinogenesis model. Antioxidant effects and protection against cisplatin-induced nephrotoxicity in rats. |
(97, 98) | ||||
Ferulic acid | In vitro |
E. coli, S. Typhimurium. |
Bifidobacterium longum, L. plantarum, L. acidophilus, Lactobacillus helveticus, Lactobacillus johnsonni, Limosilactobacillus, reuteri, Limosilactobacillus, fermentum. |
(90, 99–101) | ||
Animal | Lactobacillus, Parabacteroides. | Improve cardiac function in mice with transverse aortic constriction. | (102) | |||
Gallic acid | In vitro |
L. acidophilus, L. rhamnosus. |
E. coli, S. Typhimurium. |
L. plantarum group, Lactobacillus gasseri*, F191, JCM 5343. |
(90, 103) | |
Animal | Bacteriodes | Prevotella | Improved glucose and insulin homeostasis in an ulcerative colitis model. Increased thermogenesis. Reduced body gain (without food intake changes). |
(104–107) | ||
Gallotannins | In vitro |
Bacillus cereus, Clostridium botulinum, Campylobacter jejuni, E. coli, L. monocytogenes, Staphylococcus aureus, S. Typhimurium. |
L. plantarum* ATCC 14917. | (90, 103) | ||
Human | Lactococcus lactis | Clostridium leptum | Decreased plasma endotoxins. Improved plasma pro-inflammatory cytokines and metabolic hormones in obese subjects. |
(108) | ||
Hesperidin | In vitro |
Lactobacillus sp. DSM 20059, Bifidobacterium bifidum NCFB 2235***. |
Enterococcus faecalis, E. coli, Salmonella enterica subsp. enterica serovar Typhi, S. aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa. |
Bifidobacterium animalis ssp. lactis BB12, Bifidobacterium breve* WC 0422, Bifidobacterium catenulatum ATCC 2753, B. pseudocatenulatum* WC 0400, WC 0401, WC 0403, WC 0407, WC 0408 Lacticaseibacillus paracasei, Levilactobacillus brevis ATCC 367, L. acidophilus LA-5. |
(109–113) | |
Animal |
Bacteroidaceae Bifidobacterium Lactobacillus/Enterococcus group |
Attenuation of intestinal inflammation, antioxidant protection, and improvement of intestinal permeability in a mouse model of dextran sulfate sodium-induced colitis. Improved lipid metabolism in a rat model of diet-induced obesity. |
(114–117) | |||
Quercetin | In vitro |
B. bifidum NCFB 2235***, Lactobacillus sp. DSM 20059. |
E. coli |
B. fragilis, C. perfringens, E. coli, Eubacterium ramulus, Flavonifractor plautii, L. acidophilus, Weissella confusa. |
(109, 112, 113, 118) | |
Animal |
Akkermansia***, Bacteroidetes**. |
Helicobacter**, Proteobacteria**. |
Decreased insulin resistance, reduced intrahepatic lipid accumulation, and restored intestinal barrier in mice with diet-induced non-alcoholic fatty liver disease. | (119) |
Strain-specific metabolization, some or most strains belonging to these species do not present this ability.
In the context of a high-fat diet.
Observed trend.