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Abstract

This paper proposes a new learning mechanism for a fully convolutional neural network (CNN) to 

address speech enhancement in the time domain. The CNN takes as input the time frames of noisy 

utterance and outputs the time frames of the enhanced utterance. At the training time, we add an 

extra operation that converts the time domain to the frequency domain. This conversion 

corresponds to simple matrix multiplication, and is hence differentiable implying that a frequency 

domain loss can be used for training in the time domain. We use mean absolute error loss between 

the enhanced short-time Fourier transform (STFT) magnitude and the clean STFT magnitude to 

train the CNN. This way, the model can exploit the domain knowledge of converting a signal to 

the frequency domain for analysis. Moreover, this approach avoids the well-known invalid STFT 

problem since the proposed CNN operates in the time domain. Experimental results demonstrate 

that the proposed method substantially outperforms the other methods of speech enhancement. 

The proposed method is easy to implement and applicable to related speech processing tasks that 

require time-frequency masking or spectral mapping.
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I. Introduction

SPEECH enhancement is the task of removing or attenuating additive noise from a speech 

signal, and it is generally concerned with improving the intelligibility and quality of 

degraded speech. Speech enhancement is employed as a preprocessor in many applications 

such as robust automatic speech recognition, teleconferencing and hearing aids design. The 

purpose of monaural (single-channel) speech enhancement is to provide a versatile and cost-

efficient approach to the problem that utilizes recordings from only a single microphone. 
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Single-channel speech enhancement is considered a very challenging problem especially at 

low signal-to-noise ratios (SNRs). This study focuses on single-channel speech enhancement 

in the time domain.

Traditional monaural speech enhancement approaches include statistical enhancement 

methods [1] and computational auditory scene analysis [2]. In the last few years, supervised 

methods for speech enhancement using deep neural networks (DNNs) have become the 

mainstream [3]. Among the most popular deep learning methods are denoising autoencoders 

[4], feedforward neural networks [5], [6], and CNNs [7]–[9].

Most frequently employed methods for supervised speech enhancement use T-F masking or 

spectral mapping [3]. Both of these approaches reconstruct the speech signal in the time 

domain from the frequency domain using the phase of the noisy signal. It means that the 

learning machine learns a mapping in the frequency domain but the task of going from the 

frequency domain to the time domain is not subject to the learning process. Integrating the 

domain knowledge of going from the frequency domain to the time domain, or the other way 

around, could be helpful for the core task of speech enhancement. A similar approach of 

incorporating such domain knowledge inside the network is found to be useful in [10], 

which employs a time-domain loss for T-F masking. Recently in [11], the authors integrate a 

fixed number of steps of the iterative Multiple Input Spectrogram Inversion (MISI) 

algorithm [12] inside DNN, which is found to be helpful for the speaker separation task.

We design a fully convolutional neural network that takes as input the noisy speech signal in 

the time domain and outputs the enhanced speech signal in the time domain. One way to 

train this network is to minimize the mean squared error (MSE) or the MAE loss between 

the clean speech signal and the enhanced speech signal [8], [9]. However, our experiments 

show that, using a time domain loss, some of the phonetic information in the estimated 

speech is distorted probably because the underlying phones are difficult to distinguish from 

the background noise. Also, using a loss function in the time domain does not produce a 

good speech quality. So, we believe that it is important to use a frequency domain loss, 

which can discriminate speech sounds from nonspeech noises and produce speech with high 

quality.

Motivated by the above considerations, we propose to add an extra operation in the model at 

the training time that converts the estimated speech signal in the time domain to the 

frequency domain. The conversion from the time domain to the frequency domain is 

differentiable, so a loss in the frequency domain can be used to train a network in the time 

domain. We propose to use the MAE loss between the clean STFT magnitude and the 

estimated STFT magnitude.

The two approaches proposed in [10], [11] employ a DNN in the frequency domain and use 

a loss function in the time domain to train the DNN. However, these methods use the noisy 

phase to reconstruct a time domain signal, and may suffer from the well-known invalid 

STFT problem [13]. In our approach, a model is employed in the time domain and trained 

using a loss function in the frequency domain, so the generated signal is always a valid 

signal and we do not need to use the phase of the noisy signal. The neural network learns a 
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phase structure itself in the process of optimizing the proposed loss. We show in Section VI 

that the learned phase is better than the noisy phase.

Other researchers have explored speech enhancement in the time domain using deep 

learning. In [9], authors explore CNNs for speech enhancement and claim that fully 

connected layers inside a DNN are not suitable for the time domain enhancement and 

instead propose to use a fully-convolutional neural network. Similar to our work, a time 

domain network has been proposed using a loss based on a short-term objective 

intelligibility metric [14]. In [8], authors propose a generative adversarial network [15] for 

speech enhancement in which the generator is an autoencoder based fully-convolutional 

network that is trained with the help of a discriminator. Recently, the Bayesian wavenet [16] 

has been explored for speech enhancement followed by [17], which makes the wavenet [18] 

faster and uses a discriminative approach rather than a generative approach. Very recently, a 

fully convolutional network is proposed for speaker separation in the time domain [19] and it 

is trained using a loss based on scale-invariant signal-to-noise ratio (SI-SNR).

The work presented in this paper is an extension of our preliminary work in [20]. Here, we 

present more extensive experiments, provide a justification for the observed behavior, and 

evaluate the proposed model in a speaker- and noise-independent way. The rest of the paper 

is organized as follows. In the next Section, we describe the method to compute a frequency 

domain loss for a CNN in the time domain. Section III explains the details about the model 

architecture. In Section IV, we briefly describe the invalid STFT problem. Experiments and 

comparisons are described in Sections V and VI. Section VII concludes the paper.

II. Frequency Domain Loss Function

Given a real-valued vector xt of size N in the time domain, we can convert it to the 

frequency domain by multiplying it with a complex-valued discrete Fourier transform (DFT) 

matrix D using the following equation

xf = Dxt (1)

where xf is the DFT of xt and D is of size N × N. Since xt is real-valued, the relation in (1) 

can be rewritten as

xf = (Dr + iDi)xt = Drxt + iDixt (2)

where Dr and Di are real-valued matrices formed by taking the element-wise real and 

imaginary part of D and i denotes the imaginary unit. This relation can be separated into two 

Equations involving only real-valued vectors as given in the following Equation.

xfr = Drxt
xfi = Dixt

(3)

Here, xfr and xfi are real-valued vectors formed by taking element-wise real and imaginary 

part of xf. A frequency domain loss can thus be defined using xfr and xfi. One such loss 

defined as the average of the MSE losses on the real and imaginary part of xf is:
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L(xf, xf) = 1
N ∑

n = 1

N
((xfr(n) − xfr(n))2

+ (xfi(n) − xfi(n))2)
(4)

where xf is an estimate of xf. x(n) denotes the nth component of x. It should be noted that 

this loss function has both magnitude and phase because it uses the real as well as the 

imaginary part. However, we find that using both the magnitude and the phase does not give 

as good performance as using only the magnitude. So, we use the following loss function 

defined using only the magnitudes.

L(xf, xf) = 1
N ∑

n = 1

N
∣ ( ∣ xfr(n) ∣ + ∣ xfi(n) ∣ )

− ( ∣ xfr(n) ∣ + ∣ xfi(n) ∣ ) ∣
(5)

This loss can also be described as the MAE loss between the estimated STFT magnitude and 

the clean STFT magnitude when the magnitude of a complex number is defined using the L1 

norm. We also compare the proposed loss function with an L2 loss defined as:

L(xf, xf) = 1
N ∑

n = 1

N
∣ xfr(n)2 + xfi(n)2 + α

− xfr(n)2 + xfi(n)2 + α ∣
(6)

Here, α is a small positive constant added to stabilize the training. Our use of the MAE loss 

is partly motivated by a recent observation that the MAE loss works better in terms of 

objective quality scores when a spectral mapping based DNN is trained [21]. In the present 

study we have confirmed that the MAE loss performs better than the MSE loss for objective 

intelligibility and quality.

Fig. 1 shows a schematic diagram for computing a frequency domain loss from enhanced 

time domain frames. The proposed model operates on the frame size of 2048 samples, 

meaning that it takes as input a frame of duration 128 ms with the sampling frequency of 16 

kHz, and outputs a frame of the same length. All the enhanced frames of an utterance at the 

network output are combined using the overlap-and-add (OLA) method to obtain the 

enhanced utterance. A frame shift of 256 samples is used for OLA. The enhanced utterance 

is then divided into frames of size 512. The obtained frames are multiplied by the Hamming 

window and then separately with two matrices Dr and Di, each of size 512 × 512 as defined 

in Equation (2). The matrix multiplication gives the real and imaginary part of the STFT. 

Next, the real and imaginary part of the STFT are combined to get the STFT magnitude. The 

computed STFT magnitude is compared with the clean STFT magnitude to obtain a 

frequency domain loss.
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III. Model Architecture

We use a fully convolutional neural network that is comprised of a series of convolutional 

and deconvolutional layers. We first describe the convolution and deconvolution operation 

and then the proposed model.

A. Convolution

Formally, a 1-D discrete convolution operator *, which convolves signal f with kernel k of 

size 2m + 1 and with stride r, is defined as

(f ∗ k)(p) = ∑
s + t = (r × p)

f(s)k(t) (7)

where p, s ∈ ℤ and t ∈ [ − m, m] ∩ ℤ. Here, ℤ denotes the set of integers. A strided 

convolution used in this work is a convolution meant to reduce the size at the output by 

sliding the kernel over the input signal with a step greater than one. For example, given an 

input of length 2N, a kernel of size 2m + 1 and zero padding of size m on both sides of the 

input, a convolution with stride 2 will produce an output of size N. Hence the input of size 

2N is effectively downsampled to an output of size N.

B. Deconvolution

A deconvolution layer [22], also known as transposed convolution, is a convolution meant to 

increase the size at the output. For a deconvolution with stride length r, r − 1 zeroes are first 

inserted between the consecutive samples of the input signal. Then it is zero padded on both 

sides with an appropriate amount so that the convolution with a kernel of size k and stride 1 

produces the output of desired size. For example, given an input of length N, kernel of size 

(2m + 1), and stride of 2, first, one zero will be inserted between the consecutive samples of 

the input, giving a signal of length 2N − 1. Then the signal will be zero-padded on left and 

right by m and m + 1 respectively to get the signal of length 2N + 2m. After this, a 

convolution with a filter of size 2m + 1 will produce an output of size 2N. Hence the input of 

size N is effectively upsampled to an output of size 2N.

C. Proposed Model

We use an autoencoder based fully convolutional neural network with skip connections first 

proposed for time domain speech enhancement in [8], which was adopted from U-Net [23]. 

The schematic diagram of the proposed model is shown in Fig. 2, which illustrates the 

processing of one frame. The first layer of the encoder is a convolutional layer that increases 

the number of channels from 1 to 64. Each of the next eight layers successively reduces the 

dimension of the input signal to half using convolutions with a stride of 2, while either 

doubling or maintaining the number of channels. The final output of the encoder is of size 8 

with 256 channels. The decoder mirrors the encoder, consisting of a series of eight 

deconvolutional layers [22] with a stride of 2 that double the dimension of its input making 

the number of channels the same as in the corresponding symmetric layer of the encoder. 

The output of each layer in the decoder is concatenated with the output from the 

corresponding symmetric layer of the encoder along the channel axis.

Pandey and Wang Page 5

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2021 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The skip connections are included because a signal can not be well reconstructed from the 

final output of the encoder as it has a much reduced dimension compared to the input and is 

a bottleneck. Furthermore, the skip connections help to provide gradients to the layers close 

to the input layer and avoid the vanishing gradient problem [24]. The final output layer is a 

simple convolutional layer which reduces the number of channels from 64 to 1. Each layer 

in the network uses the activation of parametric ReLU non-linearity [25] except for the 

output layer which uses the Tanh. A dropout [26] rate of 0.2 is applied at every 3 layers. To 

summarize, the dimensionality of the outputs from the successive layers in the proposed 

network is 2048 × 1 (input), 2048 × 64, 1024 × 64, 512 × 64, 256 × 128, 128 × 128, 64 × 

128, 32 × 256, 16 × 256, 8 × 256, 16 × 512, 32 × 512, 64 × 256, 128 × 256, 256 × 256, 512 

× 128, 1024 × 128, 2048 × 128, 2048 × 1 (output).

For the speaker- and noise-independent model trained on the WSJ0 SI-84 dataset [27] (see 

Section V-A), we use a deeper network that takes as input a frame of size 16384 samples. 

The model mentioned above gives good performance for this task but is not able to improve 

the state-of-the-art performance. For the enhancement task on this dataset, the importance of 

future and past context was first established in [28]. We also observe a considerable 

performance improvement when the context is increased by increasing the frame size. The 

dimensionality of the successive layers in the network used for this task is 16384 × 1 (input), 

16384 × 32, 8192 × 32, 4096 × 32, 2048 × 64, 1024 × 64, 512 × 64, 256 × 128, 128 × 128, 

64 × 128, 32 × 256, 16 × 256, 8 × 256, 16 × 512, 32 × 512, 64 × 256, 128 × 256, 256 × 256, 

512 × 128, 1024 × 128, 2048 × 128, 4096 × 64, 8192 × 64, 16384 × 64 (output).

IV. Invalid Short-Time Fourier Transform

The STFT of a signal is obtained by taking the DFT of overlapped frames of a signal. The 

overlap between consecutive frames causes the adjacent frames to have common samples at 

the boundary of frames. This correlation between adjacent frames appears in the frequency 

domain as well and results in a certain relationship between the STFT magnitude and the 

STFT phase. This relationship needs to be maintained to reconstruct the original signal in 

the time domain. In [13], the authors show that not all 2-dimensional complex-valued signals 

correspond to a valid STFT. A 2-dimensional complex-valued signal, X (m, k) is a valid 

STFT if and only if the following holds.

STFT(ISTFT(X(m, k))) = X(m, k) (8)

Here, ISTFT denotes inverse STFT, m frame number, and k is frequency index. An STFT 

obtained by taking the STFT of a real signal in the time domain is always a valid STFT. It 

means that given a real signal x(t) in the time domain, the following relations will always 

hold.

ISTFT(STFT(x(t))) = x(t)
STFT(ISTFT(STFT(x(t)))) = STFT(x(t)) (9)

The problem arises when the STFT magnitude of a given real or the STFT phase of the 

signal are altered separately. In such a case, the required relationship between the STFT 
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magnitude and STFT phase is not guaranteed, and Equation (6) may not hold. In the 

frequency domain speech enhancement, popular approaches are T-F masking and spectral 

mapping. Both of these methods require using the STFT phase of the noisy speech with 

enhanced STFT magnitude to reconstruct a time domain signal. The combination of the 

noisy phase with the enhanced magnitude of STFT is unlikely a valid STFT, as recently 

demonstrated in [29]. Invalid STFT causes unpleasant signal distortions. To deal with this 

problem, an iterative method has been proposed to get a signal in the time domain which 

produces the STFT magnitude close to the enhanced STFT magnitude while maintaining the 

valid STFT [13].

The proposed framework can be thought of as a supervised way of resolving the invalid 

STFT problem by a CNN, which produces a speech signal in the time domain but is trained 

with a loss function which minimizes the distance measured in terms of the STFT 

magnitudes.

The proposed model generates consecutive frames one by one and combines them using the 

OLA method as we find that OLA is better than a simple concatenation. Even though we use 

a loss function based on the magnitude of a valid STFT at the training time, this does not 

guarantee that generated consecutive frames will have matching samples at the boundary. 

But we use a frame size of 128 ms so that, even though the analysis window size is 32 ms, 

the validity of signal is guaranteed over the duration of 128 ms. The proposed model does 

not guarantee the whole utterance to be a valid signal. The simple concatenation of 

consecutive frames would give a valid signal, but it exhibits boundary discontinuity, giving 

worse objective scores than OLA. A different approach to generate a valid signal at the 

utterance level is to design a model that produces one sample at a time. But, such models 

based on deep learning are very slow and have not been established for speech enhancement. 

One such example is wavenet [18], which has been explored for denoising in [16] and [17]. 

The proposed model in [16] is very slow, and in [17], it operates at the frame level for 

efficiency and hence suffers from the same problem.

V. Experimental Settings

A. Datasets

In our first set of experiments, we evaluate and analyze the proposed framework on the 

TIMIT dataset [30] which consists of utterances from many male and female speakers. We 

use 2000 randomly chosen utterances from the TIMIT training set as the training utterances. 

The TIMIT core test set consisting of 192 utterances is used as the test set. We evaluate 

models for the noise-dependent and noise-independent case. Five noise-dependent models 

are trained on the following five noises: babble, factory1, oproom, engine, and speech-

shaped noise (SSN). A single noise-independent model is trained using the five noises 

mentioned above and evaluated on two untrained noises: factory2 and tank. All the noises 

except SSN are from the NOISEX [31] dataset. All noises are around 4 minutes long. The 

training set is created by mixing random cuts from the first half of noises at the SNRs of −5 

dB and 0 dB. The test set is created by adding random cuts from the second half of the 

noises at the SNRs of −5 dB, 0 dB, and 5 dB. Here, 5 dB is an untrained SNR condition that 
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is used to asses SNR generalization of the trained models. The datasets are similar to the 

ones used in [21], [32].

Further, we evaluate the proposed framework in a speaker-dependent way on the IEEE 

database[33]. This experiment is performed to evaluate if the proposed framework scales 

well for untrained noises after training using a large number of noises. The IEEE database 

consists of 720 utterances of a single male speaker. We create a large training set by mixing 

randomly selected 560 IEEE sentences with 10000 non-speech sounds from a sound-effect 

library (available at www.sound-ideas.com). The remaining 160 utterances are used as test 

utterances. The training set consists of 640000 noisy utterances. To create a training 

utterance an IEEE sentence is first randomly selected from the 560 training utterances. The 

selected utterance is then mixed at a fixed SNR of −2 dB with a random segment of a 

randomly selected noise. The total duration of the training noises is around 125 hours, and 

that of the training mixtures is around 380 hours. The test set is created by mixing the 

selected 160 test sentences with babble and cafeteria noise from the Auditec CD (available 

at http://www.auditec.com) at the SNRs of −5 dB, −2 dB, 0 dB and 5 dB. Here, −5 dB, 0 dB 

and 5 dB are untrained SNRs. The training and test set used in this experiment are similar to 

the ones used in [34], hence facilitating a direct comparison.

We also evaluate the proposed framework on the WSJ0 SI-84 dataset [27] that consists of 

7138 utterances from 83 speakers. A speaker- and noise-independent model is trained using 

a large training set. Seventy-seven speakers are selected to produce training utterances. The 

test set is created from the utterances of 6 speakers that are not included in the training set. 

The training and test mixtures are generated in the same manner as described in the previous 

paragraph. The only difference is that, in this experiment, 320000 utterances are generated at 

five SNRs of −5 dB, −4 dB, −3 dB, −2 dB, −1 dB. An utterance, a noise, and an SNR value 

are randomly selected first. Then the selected utterance is mixed with a random cut from the 

selected noise at the selected SNR. The SNRs used for evaluation are −5 dB, 0 dB and 5 dB. 

The training and the test set for this experiment are the same as in [35], again facilitating 

quantitative comparisons.

B. System Setup

As described in the last subsection, we perform training on three datasets: TIMIT, IEEE, and 

WSJ0 SI-84. All the utterances are resampled to 16 kHz. The noisy and the clean utterances 

are normalized to the value range [−1, 1], and frames are extracted from the normalized 

utterances. A frame size of 2048 samples (128 ms) is used for the experiments on the TMIT 

and IEEE databases. A frame size of 16384 samples is used, as mentioned in Section III, for 

the experiments on WSJ0 SI-84. The frame shift to generate training frames is half of the 

frame size for IEEE and WSJ0 and 256 samples for the experiments on TIMIT.

A filter size of 11 is used. All the weights in CNNs are initialized using the Xavier initializer 

with normally distributed random initialization [36]. The Adam optimizer [37] is used for 

SGD (stochastic gradient descent) based optimization with a batch size of 4 utterances. The 

shorter utterances in a batch are zero padded to match the size of the longest utterance. The 

loss value computed over the zero padded region is ignored for gradient computation. The 

learning rate is set to 0.0002.
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The major difference between the architecture of the generator in SEGAN [8] and the 

architecture of our model is that the input frame size to SEGAN is equal to 16384 samples 

whereas our input frame size is 2048 samples. The filter size in SEGAN is 31 as compared 

to 11 in our model. The total number of parameters in the SEGAN model is around 58 

million whereas our model has around 6.4 million parameters.

C. Baseline Models

To compare the noise-dependent and noise-independent models trained on the TIMIT 

dataset, we use three baseline models. First, we train a DNN model using the MAE loss to 

estimate the ideal ratio mask (IRM) [32]. This model is a 3-layered fully connected DNN 

that takes as input the noisy STFT magnitudes of five consecutive frames (centered at the 

current frame) concatenated together and outputs the IRM of the corresponding five frames 

together. Multiple predictions of the IRM are averaged. The second baseline is the SEGAN 

model [8]. In the method in [8], the generator of the generative adversarial network (GAN) 

[15] is trained using two loss functions; adversarial loss and MAE loss in the time domain. 

We train two versions of this model. The first is trained using both the loss functions, 

adversarial loss and the MAE loss as in the original paper. We call this model SEGAN. The 

second is trained using only the loss on time domain samples. We call this model SEGAN-T 

in our experiments.

The model trained on the IEEE dataset is compared with a five-layered DNN model 

proposed in [34] which uses the same dataset as in our work, and generates the training and 

test mixtures in the same manner. The input to their DNN is the concatenation of the power 

( 1
15) compressed cochleagram of 23 consecutive frames (centered at the current frame) of 

noisy speech. The output of the DNN is the IRM of 5 consecutive frames. Multiple 

predictions of the IRM are also averaged. Each hidden layer has 2048 units.

Our speaker- and noise-independent model trained on WSJ0 SI-84 dataset is compared with 

a recently proposed model [35]. This gated residual network (GRN) model is a 62-layer 

deep fully convolutional network with residual connections. It takes as input the spectrogram 

of the whole utterance at once and outputs the phase-sensitive mask (PSM) [38] of the whole 

utterance. The layers in this model are comprised of dilated convolutional layers having 

gated linear units with an exponentially increasing rate of dilation. This model has the state-

of-the-art performance for this speaker- and noise-independent enhancement task.

D. Evaluation Metrics and Comparisons

In our experiments, models are compared using short-term objective intelligibility (STOI) 

[39], perceptual evaluation of speech quality (PESQ) [40], and scale-invariant signal-to-

distortion ratio (SI-SDR) [41] scores, all of which represent the standard metrics for speech 

enhancement. STOI has a typical value range from 0 to 1, which can be roughly interpreted 

as percent correct. PESQ values range from −0.5 to 4.5.

All the time domain models are compared for both the MAE loss and the MSE loss training. 

For the experiments on the TIMIT dataset, the first comparison is done between the baseline 

models and the proposed model trained using different loss functions. The proposed model 
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can be trained using a loss in the time domain or different types of loss in the frequency 

domain. For a frequency domain loss, two possible loss functions are a loss on both the real 

and the imaginary part of STFT and a loss on the STFT magnitude. We call our model 

autoencoder convolutional neural network (AECNN). The corresponding abbreviated names 

for our models trained using different loss functions are AECNN-T for using a loss on time 

domain samples, AECNN-RI for using a loss on both the real and the imaginary part of the 

STFT, and AECNN-SM for using a loss on STFT magnitudes. AECNN-SM1 denotes the 

loss defined on L1 norm and AECNN-SM2 denotes the loss defined on L2 norm of STFT 

coefficients.

Note that a model trained using a loss in the time domain or a loss on both the real and the 

imaginary part of the STFT utilizes phase information during training and hence training is 

supposed to learn both the magnitude and the phase. The model proposed in [42] also uses a 

loss on the real and imaginary part of the STFT but it operates in the frequency domain and 

thus is fundamentally different from our approach.

AECNN-SM trains a given model using a loss on STFT magnitudes, with no phase used at 

the training time. With the proposed time-domain enhancement, however, AECNN learns a 

phase structure itself. It is interesting to explore whether the learned phase is better than the 

mixture phase. We compare the learned phase with the mixture phase and the clean phase. 

First, we combine the STFT magnitude of the noisy utterance with two different kinds of 

phase: the learned phase and the clean phase. These are named MIX-SM and MIX-CLN 

respectively. Second, we combine the STFT magnitude predicted by the baseline IRM 

estimator with three kinds of phase: the noisy phase, the learned phase, and the clean phase. 

They are named IRM-MIX, IRM-SM, and IRM-CLN respectively. The STOI, PESQ and SI-

SDR scores are compared at the SNRs of −5, 0, and 5 dB.

VI. Results and Discussions

First, we present the results of noise-dependent models trained on the TIMIT dataset. Table I 

lists the average results over all the five noises at −5 dB, 0 dB, and 5 dB SNR. We divide our 

loss functions into two categories, those with phase, i.e., AECNN-T, SEGAN-T or AECNN-

RI, and those without phase, i.e., AECNN-SM1 and AECNN-SM2. We observe that the 

models trained with a loss with phase perform better using MSE whereas the models trained 

with a loss without phase perform better using MAE. The SEGAN-T, AECNN-T, and 

AECNN-RI, have better STOI and SI-SDR scores with MAE but significantly worse PESQ. 

AECNN-SM1 and AECNN-SM2 produce better scores with the MAE loss. AECNN-SM1 

and AECNN-SM2 have similar STOI and PESQ scores but AECNN-SM1 is consistently 

better in terms of SI-SDR.

Next, we observe that AECNN-T is significantly better than SEGAN-T and SEGAN, 

suggesting that the AECNN architecture is better than SEGAN for speech enhancement in 

the time domain. Additionally, the time domain models are much better than the baseline 

IRM based DNN model. The proposed AECNN-SM1 is significantly better in terms of 

STOI and PESQ compared to the AECNN-RI with MSE. AECNN-RI is marginally better in 

terms of SI-SDR. Note that the SI-SDR of AECNN-RI with MAE is better than AECNN-
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SM1, but its PESQ score is very low, implying that the AECNN-SM1 is better as it 

substantially improves PESQ while maintaining SI-SDR. In summary, the proposed 

AECNN-SM1 is the best in terms of STOI and PESQ, whereas AECNN-RI is the best for 

SI-SDR.

A similar performance profile is observed for the noise-independent models at the three 

SNRs as given in Table II. AECNN-SM1 and AECNN-SM2 are the best in terms of STOI 

and PESQ. AECNN-RI is the best for SI-SDR at 5 dB but AECNN-SM1 is better at 0 dB 

and −5 dB. Note that we compare AECNN-SM1-MAE with AECNN-RI-MSE. AECNN-

SM1 and AECNN-SM2 have similar STOI and PESQ scores but AECNN-SM1 is 

consitently better in terms of SI-SDR, making it the better enhancement approach.

For illustration, we plot spectrograms of a sample utterance in Fig. 3. We can observe that 

the DNN based IRM estimator does not appear to distort the speech signal by much but is 

not able to remove some of the noise as can be seen for low-frequency regions around 1.25s. 

AECNN-T reduces the noise more but still retains some noise as can be observed in the low-

frequency region around 2.5s. The enhanced spectrogram using the STFT magnitude loss 

looks closest to the clean spectrogram, and is better not only for noise reduction but also 

seems to introduce relatively negligible distortions compared to the clean spectrogram.

The frequency domain loss functions using the real and imaginary part of the STFT do not 

perform as well as a loss based on the STFT magnitude. One explanation for this 

observation is that the STFT magnitude exhibits clearer temporal structure than the real part 

or imaginary part. Also, it is non-negative, and likely easier to learn. As analyzed in [43], 

structure exists in the absolute of the real and the imaginary part of the STFT of a speech 

signal. Fig. 4 shows the signs and the absolute values of the real and imaginary parts of 

STFT for a sample utterance. To plot the absolute values, we first normalize the relevant data 

to the value range [10−8, 1] and then take their logarithm. We observe that the signs of real 

and imaginary parts are very noisy whereas there is a clear structure in their absolute values. 

This suggests that the real and the imaginary parts that are obtained by multiplying the signs 

and the absolute values would be unstructured. It further suggests that a model trained using 

a loss on the absolute values of the real or the imaginary part of STFT should perform better 

than a loss defined directly on the real and imaginary parts. To verify, we have trained 

models using a loss on the absolute value of the real and the imaginary part of the STFT. 

The PESQ scores for noise-dependent models trained on babble noise are plotted in Fig. 5. 

We can see that using the absolute values improves the PESQ score and makes the 

performance comparable to the AECNN-SM1 model. We obtain similar results for the other 

four noises and noise-independent models.

Next, we compare learned phase with noisy phase and clean phase. The noisy test utterances 

constructed from the TIMIT corpus are used to obtain two STFT magnitudes: noisy STFT 

magnitude and STFT magnitude enhanced by the baseline DNN estimator. The two 

magnitudes are combined with three kinds of phase: noisy phase, learned phase and clean 

phase, to reconstruct a signal in the time domain. STOI, PESQ and SI-SDR values are 

compared with their corresponding mixture values. These scores at 3 SNR conditions are 

plotted in Fig. 6. Note that the last column is for the factory2 noise which is enhanced using 
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the noise-independent model. In all the plots, the three lower lines are for the speech 

reconstructed from the noisy STFT magnitudes and upper three lines are for the speech 

reconstructed using the enhanced STFT magnitude. We observe that the results with the 

learned phase are consistently better than those with the mixture phase. This suggests that 

the learned phase is better than the noisy phase for both the noise-dependent and noise-

independent models. Using the clean phase all the scores are significantly better over the 

noisy phase. This performance gap is partly filled by using the learned phase. On the other 

hand, there is room for improvement if a neural network can learn to estimate a phase closer 

to the clean phase.

The proposed method is further evaluated on the IEEE dataset for speaker-dependent but 

noise-independent training on a large number of noises. The performance and comparison 

with the DNN baseline in STOI are given in Table III. The DNN model improves the STOI 

score by 16.6% at the −5 dB SNR, which is a difficult and untrained SNR condition. In this 

cndition the proposed framework improves the STOI score by 23.3%, which represents a 

substantial improvement. The STOI improvement over the baseline is 5.5% at −2 dB, 4% at 

0 dB and 1.6% at 5 dB.

The baseline DNN used here has 20.5 million parameters whereas our model has only 6.4 

million parameters. The DNN takes the acoustic features of 23 consecutive frames and 

outputs the IRM of 5 consecutive frames. It means that it uses information from 240 ms of 

speech and outputs 60 ms of speech. Our model operates on a speech of duration 128 ms and 

outputs a speech of duration 128 ms.

Finally, we evaluate the proposed method for noise- and speaker-independent speech 

enhancement trained on a large training set created from the WSJ0 SI-84 dataset. The 

evaluation results for untrained speakers on untrained babble and cafeteria are given in Table 

IV. Again, the proposed framework produces substantially better STOI and PESQ scores 

than the baseline GRN which is 62-layer deep and operates on a whole utterance. It means 

that the past and future context are maximal for the baseline model. Our model operates on a 

frame of duration 1024 ms. For this difficult task, the past and future contexts are very 

important, as analyzed in [34]. We can increase the context in our model by increasing the 

size of the input frame, but we find that the performance does not improve further by 

increasing the frame size. One explanation for our better performance is that the GRN model 

uses the mixture phase whereas our model learns the phase itself, which we have shown is 

better than the mixture phase.

VII. Concluding Remarks

In this paper, we have proposed a novel approach to train a fully convolutional neural 

network for speech enhancement in the time domain. The key idea is to use a frequency 

domain loss to train the CNN. We have investigated different types of loss function in the 

frequency domain. Our main observation is that frequency domain loss is better than a time 

domain loss. Using a frequency domain loss helps to improve objective quality and 

intelligibility. The highest improvement is obtained using an MAE loss computed on STFT 

magnitudes defined using L1 norm. The best SI-SDR score is achieved using a loss on the 
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real and imaginary part of STFT. We have evaluated our method for speech enhancement in 

speaker-dependent but noise-independent, and speaker- and noise-independent scenarios. In 

all the cases, the proposed method substantially outperforms the current state-of-the-art 

methods.

Other frequency domain losses do not perform as well as an STFT magnitude loss. This 

might be due to better structure in the STFT magnitude. We also observe that there is clear 

structure in the absolute of the real and imaginary part of the STFT. Training a model with a 

loss on the absolute value of the real and imaginary part of the STFT gives comparable 

performance to the STFT magnitude based loss.

We have also tried to make the real and imaginary part of STFT bounded or squashed with a 

Tanh or sigmoidal function, but not much improvement is obtained. Also, one might think 

that the logarithm of STFT magnitude should perform better, but that is not what we 

observe, probably because of a log operation involved in the training process. We also find 

that the performance of the proposed framework drops significantly when input and output 

lengths are reduced to one frame from four frames. Future research needs to develop 

methods for real-time implementation with comparable performance.

Although trained with a loss on only the STFT magnitudes, the proposed framework learns a 

phase structure itself as it generates a signal in the time domain. We find that learned phase 

is better than mixture phase but not as good as clean phase. A future research direction is to 

explore ways to train a deep model to improve phase estimation.
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Fig. 1. 
Block diagram showing the steps involved in computing a frequency domain loss from the 

time domain frames at the output of network. L denotes the number of frames of size 2048, 

and N the length of the enhanced utterance obtained after overlap-and-add. M is the number 

of frames of size 512. Dr and Di represent the real and the imaginary part of the DFT matrix, 

respectively.
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Fig. 2. 
A schematic diagram illustrating the architecture of the proposed model. The numbers 

represent the output dimension after each layer where M × N denotes a signal with 

dimension M and number of channels equal to N. Note that the number of channels in the 

decoder is double of that in the encoder because of the concatenation of the incoming 

connection from the symmetric layer of the encoder. Arrows denote skip connections.
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Fig. 3. 
Spectrogram of a sample utterance mixed with babble noise at −5 dB SNR, and its enhanced 

spectrograms using different models. (a) Noisy spectrogram. (b) Spectrogram enhanced 

using a DNN based IRM estimator. (c) Spectrogram enhanced using AECNN trained with a 

time domain loss. (d) Spectrogram enhanced using AECNN trained with an STFT 

magnitude loss. (e) Clean spectrogram.
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Fig. 4. 
STFT structure. Plots of the sign of real and imaginary part of STFT of a sample utterance 

are shown in (a) and (b). In these plots, black and white dots denote −1 and 1 respectively. 

The signs of the real and imaginary parts of STFT are very noisy. Plots (c) and (d) show the 

structure of the absolute of the real and imaginary part of STFT of the same utterance.
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Fig. 5. 
PESQ comparisons of real-valued and absolute-valued loss functions. (a) PESQ scores of the 

models trained on the real part and the absolute of the real part of STFT. (b) PESQ scores of 

the models trained on the imaginary part and the absolute of the imaginary part of STFT.
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Fig. 6. 
STOI, PESQ, and SI-SDR comparisons between learned phase, noisy phase, and clean 

phase.
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TABLE III

Performance Comparison Between the Baseline DNN and the Proposed Framework for Noise-Independent 

Models Trained on the IEEE Dataset. The Scores Denote the Percent Improvement in STOI Over Mixture

Babble Cafeteria

DNN AECNN-SM1 DNN AECNN-SM1

5 dB 12 13.6 13.3 14.4

0 dB 17.1 21.1 18.1 21.1

−2 dB 18 23.5 18.7 22.5

5 dB 16.6 23.3 17.5 21.5
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TABLE IV

Comparison Between the Baseline GRN and the Proposed Method for Speaker- and Noise-Independent Model 

Trained on the WSJ0 S1-84 Dataset and Tested on Untrained Speakers. The Scores Denote the Improvement 

Over Mixture

STOI PESQ

GRN AECNN-SM1 GRN AECNN-SM1

Babble
−5 dB 17.3 22.6 0.43 0.61

−2 dB 17 21.9 0.59 0.84

Cafeteria
−5 dB 17.8 22.5 0.67 0.77

−2 dB 17.7 21.9 0.77 0.93
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