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Abstract

The generation of organismal form (i.e., morphogenesis) arises from forces produced at the 

cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we 

review how mechanisms of actin-based force generation are deployed during animal 

morphogenesis to sculpt organs and organisms. Furthermore, we discuss how cytoskeletal forces 

are coupled through cell adhesions to propagate across tissues, and cases where cytoskeletal force 

or adhesion is patterned across a tissue to direct shape changes. Together, our review highlights a 

conceptual framework to reflect our current understanding of animal morphogenesis and provides 

perspectives on future opportunities of study.

Introduction:

A fundamental goal of developmental biology is to determine how the cells of the embryo 

generate the exquisite structures of the adult body. This process, morphogenesis, or “the 

creation of ordered form”, has intrigued scientists for centuries because it represents the 

‘nuts and bolts’ mechanism of how our bodies, and the bodies of other animals, are 

constructed – how cells move to generate new structures, how embryonic tissues morph into 

organs. The more we learn about morphogenesis, the closer we come to knowing how our 

bodies are built, which is of vital importance for human health1. Congenital malformations 

resulting from defects in morphogenesis are the leading cause of infant mortality in the 

United States, and pose a significant risk for children of all ages2-5.

From its outset, the field of experimental embryology has been a quest to link the 

movements and shape changes of cells within the embryo to the generation of adult body 

form. Wilhelm His observed neural tube closure in the chick embryo and theorized that a 

mechanical process driven by the mitotic divisions and motility of the cells could be 

responsible for the folding of this tissue6. Wilhelm Roux expanded on this idea with his 

concept of ‘developmental mechanics’, in which he merged cellular descriptions of 

developmental processes with experimental manipulations to infer causal relationships and 

identify ‘active’ components of embryonic tissues7. The works of His and Roux, and the 

later thinking of D’arcy Thompson, marked a transition from the view that an external ‘vital 

force’ sculpted embryonic tissues, to the recognition that morphogenetic processes rely on 

quantifiable physical forces generated by embryonic cells8. While the underlying molecular 
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mechanism was unknowable in the 19th century, we now know that the actin cytoskeleton, a 

meshwork of filamentous actin (F-actin) and various accessory proteins, including the 

molecular motor non-muscle myosin type II (Myo-II), is a key force generating machine that 

powers cell movements9. Furthermore, we know that these mechanisms are evolutionarily 

conserved and shared by all animals (and likely beyond)9-11.

In this review, we examine mechanisms by which animal cells change their shape using the 

actin cytoskeleton, and how cell shape changes are coordinated to restructure tissues. 

Because tissue morphogenesis results from forces generated from the molecular to tissue 

scales, it can be broken down into several components, including: (1) the molecular 

mechanisms of force generation and how they act locally within the cell to produce shape 

changes, and (2) the physical mechanisms that connect or adhere the cells of a tissue. The 

nature and patterns of intercellular linkages in a tissue must also be considered, including (a) 

the mechanical integration of force generating machines and adhesion, and (b) the spatial 

and temporal organization of the force generating machines and how they connect across a 

tissue.

Lastly, other cytoskeletal components, such as microtubules and intermediate filaments, also 

contribute significantly to morphogenetic processes. The interaction between these 

cytoskeletal systems and the actomyosin cytoskeleton is an exciting and active area of 

research. However, our main focus here is on morphogenetic mechanisms which utilize the 

actin cytoskeleton, because this seems to be the predominant mode of force generation in 

animal morphogenesis9. For a detailed overview of microtubule-dependent mechanisms of 

morphogenesis and intermediate filaments, we recommend other excellent reviews12-14,16.

Cytoskeletal mechanisms of cell shape change:

Cells utilize a variety of mechanisms to generate the force necessary to change shape, but 

these transformations can be placed in a simple framework in which cells push or pull in 

order to expand or contract, respectively. These transformations can be organized in one or 

two dimensions, such as modifying the shape of a single cell edge/interface or of a cellular 

surface, or in three dimensions, such as changes to multiple cellular surfaces or a change in 

volume. Here, we will provide a brief overview of actin cytoskeletal force-generating 

mechanisms associated with pushing and pulling forces, and then discuss how these 

mechanisms are deployed in a few ‘case studies’ of tissue remodeling during development.

Molecular mechanisms of pushing and pulling:

Pushing forces are primarily generated by F-actin network polymerization. F-actin is a semi-

flexible polymer that forms from the controlled polymerization of monomeric actin subunits. 

Actin has an intrinsic polarity, such that monomers preferentially add to the growing (plus or 

barbed) end (Fig. 1A) (For a detailed review on mechanisms of actin polymerization and 

turnover; refer to15,17). When filament growth is oriented towards the plasma membrane, 

such as in the lamellipodium of a migrating cell, actin monomer addition can push the cell 

edge forward (Fig. 1B)15,18,19. This generates a modest pushing force at the molecular level, 

on the order of ~1 pN per polymerizing filament when measured in vitro (Table 1).
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The core mechanism for producing pulling forces is mediated by F-actin and Myo-II. In its 

active, phosphorylated state, Myo-II oligomerizes into a bipolar mini-filament that can bind 

to opposing actin filaments and “walk” along them in an ATP-dependent manner (Fig. 

1C)20-22. This myosin motor activity produces actomyosin contractility: movement of the 

myosin head domain slides F-actin filaments in opposing directions, shortening the total 

length of the actomyosin assembly (for details of actomyosin mechanics, see22-24). At the 

molecular level, a single myosin molecule generates a force on the order of several 

piconewtons (~3-5pN)25,26. In the cell, actomyosin networks can generate a pulling force 

that tugs on points of connection between the cytoskeleton and integral membrane proteins, 

such as those at cell junctions. Actomyosin assemblies can be organized in one dimension, 

such as in a bundle or fiber (e.g., stress fibers) that can shorten or bear stress27,28. It can also 

be organized in two dimensions (2D), as in the lamella of a migrating cell or the surface of 

an epithelial cell (i.e., apical, basal, lateral). On such 2D surfaces, actomyosin is organized 

as a meshwork that can draw the cell edges towards the cell center through contraction (Fig. 

1D)19,29-32.

At the scale of cells and tissues, single-molecule forces can compound significantly to 

produce larger forces, but the extent to which this happens depends on tissue context. For 

instance, the force of actin polymerization is compounded within a branched F-actin 

network composed of many growing filaments, such that forces can be more than three 

orders of magnitude greater than a single filament across an entire protruding cell surface 

(~1 nN μm−2)33-35. Similarly, contractility of a larger actomyosin network containing many 

Myo-II mini-filaments (dozens to hundreds) generates tension in the cell cortex that is 

approximately two orders of magnitude greater than the force generated by a single Myo-II 

mini-filament (~100 - 800 pN μm−2)36-40. This tension is largely dependent on actomyosin 

contractility, because inhibition of myosin activity decreases cortical tension, and increasing 

contractility or inhibiting Arp2/3-mediated F-actin polymerization increases tension38. 

Tissue-level tension can be an order of magnitude greater than cellular tension (thousands of 

pN per square micron)39-41, but levels of tension can vary greatly between tissues composed 

of different cell types, and between model organisms: tension measurements range over 

three orders of magnitude when comparing between species (~5 – 4000 pN μm−2; Table 1). 

Thus, it is clear that many hundreds or even thousands of motors work together to generate 

force in a given cell. However, because these force generating mechanisms (actin 

polymerization and actomyosin) are oriented and exist within a network with complex 

architecture, the relationship between force and motor number is not simple.

F-actin polymerization, depolymerization, and contraction happen continuously in cells, 

even when cells are not actively changing shape. Homeostatic levels of actomyosin 

contractility and actin polymerization and depolymerization (actin turnover) are part of the 

normal state of the actomyosin cortex24, and occur regularly in the cortical F-actin 

cytoskeleton of multiple cell states (epithelial and mesenchymal), independent of 

developmental signaling or mechanical cues from cell-cell or cell-ECM adhesion42,43. There 

is inherent antagonism between contractility and turnover – maintaining cytoskeletal 

network cohesion requires a certain amount of actin turnover to prevent Myo-II contractility 

from fragmenting the actomyosin network, however, actin turnover can dissipate stress 

generated through Myo-II contractility44-48. Shape change occurs when these processes are 
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up- or down-regulated locally outside of the range of this typical ‘resting state’ of normal 

cytoskeletal dynamics, such that a force imbalance results.

Actin-dependent force generation is evolutionarily ancient and broadly required across all 

animals and is also present in our unicellular eukaryotic relatives. Actins and myosins are 

not unique to animals; they are ancient, pan-eukaryotic protein families that are found in 

other multicellular eukaryotes, including plants49, and are particularly diverse in the 

Holozoa (animals plus our closes unicellular relatives)50. Actomyosin-based contractility 

mechanisms likely arose before the advent of animal multicellularity – they appear to 

underlie a collective contractile mechanism for colony morphogenesis in choanoflagellates, 

the unicellular protists most closely related to animals, suggesting they were present in our 

common ancestor11. The mechanisms for cell shape changes based on F-actin 

polymerization are also quite ancient. The Excavate protist, Naegleria, which shared a 

common ancestor with humans more than 1 billion years ago, exists predominantly in an 

amoeboid state that completely lacks a microtubule cytoskeleton, and relies on a branched 

actin network regulated by many of the same actin regulators found in our own cells for 

protrusive motility and phagocytosis51. If, as this evidence suggests, actin-based 

mechanisms of cell shape change are part of the common inheritance of animals, a key 

outstanding question is how the fantastic variation of forms seen between species are created 

from a conserved set of cytoskeletal effectors. It is perhaps the evolution of complexity in 

localizing these processes to different areas of the cell and their coordination between cells 

that has generated the vast complexity in tissue form from a common set of cytoskeletal 

components. In the next section, we will explain how localized contraction and expansion 

mediate morphogenesis. We will not explain the particulars of each individual system but 

focus on the broader geometrical framework for understanding how tissues change shape.

Localized contraction and expansion in epithelial morphogenesis:

Epithelial tissues are widespread in animals and have polarity52. Epithelial cells have 

multiple surfaces that can contract or expand, such as apical (lumen facing), basal (ECM 

facing), and lateral (between neighboring cells). Furthermore, epithelial cells can exhibit a 

vectorial polarity with respect to the epithelial plane, called planar cell polarity53. Because 

of the intrinsic polarity in the plasma membrane components and underlying actin cortex, 

proteins can be differentially localized and/or activated to induce distinct apical, basal, or 

lateral domain behaviors.

Collective contraction or expansion of apical or basal surfaces induces epithelial curvature. 

Apical and basal constriction converts epithelial cell shape from columnar to wedged, which 

changes local tissue curvature when happening in a population of cells (Figure 2, tissues). 

Apical constriction is implicated in mammalian intestinal crypt invagination54, vertebrate 

lens placode invagination55, Drosophila mesoderm and endoderm invagination56, and 

Drosophila salivary gland invagination57. Basal constriction induces the opposite curvature 

with respect to the apical-basal axis of an epithelium, generating the midbrain-hindbrain 

boundary folds in zebrafish58 and optic cup in zebrafish59. Expansion can also induce 

curvature. In the Drosophila wing disc, local basal cortex relaxation results in basal 

expansion that induces inward epithelial bending independently of apical constriction60. 
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Thus, like differential expansion of one metal on a bimetallic strip changing strip 

curvature61, apical or basal constriction/expansion changes epithelial curvature by changing 

the length of one surface relative to the other. For this mechanism to be effective, the apical 

and basal surfaces must be mechanically coupled through lateral edges. In addition to apical 

constriction, contractility along lateral edges is necessary for gastrulation in Drosophila, and 

in ascidians62,64,87.

Constriction or expansion of individual epithelial cell surfaces also changes tissue 

architecture (Figure 2, surfaces). For example, unbalanced apical contractility (i.e., a cell is 

more contractile than its neighbors) can induce basal epithelial cell extrusion, such as during 

C. elegans gastrulation29,63, Drosophila neuroblast ingression65,66, and Drosophila dorsal 

closure67. In cell culture, epithelial cell extrusion results when apical tension relaxes relative 

to neighboring cells, suggesting that the force imbalance is critical for a cell to leave the 

epithelium68. Consistent with the force balance argument, cell-autonomous actin-based 

protrusion causes apical emergence (i.e. the opposite of extrusion), as is seen as multiciliated 

cells are added to an epithelium in Xenopus 69,70. Thus, apical/basal contraction or 

expansion have distinct effects depending on whether they occur at the single cell or 

population level.

Lateral surfaces between two cells (i.e., bicellular junctions) can contract or expand leading 

to cell rearrangements. When these rearrangements are planar cell polarized they lead to 

convergence and extension movements that elongate tissues, such as in the vertebrate neural 

plate71,72 and the Drosophila germband73 (Figure 2, edges). Planar polarized Myo-II 

activation can contract junctions71,74-77,80 – elevating tension along distinct junctional 

interfaces in the Drosophila germband78,79. Mediolaterally polarized basolateral protrusive 

activity in the cells at junctional vertices cooperates with junctional contractility to shrink 

these edges81. When a bicellular junction contracts to create a 4-cell interface, expansion 

must occur to create a new bicellular junction orthogonal to the ‘old’ junction. In cell 

culture, Rac-mediated protrusions expand junctional interfaces82 and actin polymerization-

mediated pushing has been observed to counteract contractility and expand epithelial 

junctions in vivo83. In addition to pushing forces, contractile forces can promote junction 

growth by pulling at the poles of the new junction during Drosophila germ band 

extension84,85. Thus, convergence and extension movements illustrate how contractility and 

protrusive forces in a local cell neighborhood cooperate to elicit a complicated 

morphogenetic movement. Lateral edges can also contract along the apical-basal axis, which 

shortens cells and promotes tissue folding, as is in the Drosophila wing and leg discs60,86 

(Figure 2, edges).

Indeed, morphogenetic processes are often quite complex, with multiple changes happening 

simultaneously within the cell or in different regions of the embryo. Contraction and 

expansion can coincide in space or time, sometimes with synergistic effects. For example, 

constriction on one side of the epithelium is often associated with expansion of the other 

side. In Drosophila mesoderm invagination, basal expansion closely follows apical 

constriction and is associated with the invagination87. Additionally, inhibition of 

contractility in neighboring ectoderm cells is important for gastrulation, as it allows these 

cells to soften, stretch, and move in order to accommodate the cell shape changes associated 
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with mesoderm invagination88,89. During C. elegans gastrulation, cell ingression is assisted 

by neighboring cells pushing with Arp2/3-mediated actin protrusions90. Mitotic cell entry 

has also been shown to be associated with apical relaxation, which can promote apical 

constriction and invagination of neighboring contractile cells37,91. Thus, understanding 

morphogenetic events requires investigating both local properties of the tissue undergoing 

shape change, and the properties of the surrounding environment because both can 

contribute to movement.

Cell Adhesion:

The formation of robust mechanical contacts to other cells and to the extracellular 

environment enables cytoskeletal force transmission to power tissue shape changes. The two 

main adhesive structures involved in actomyosin force propagation are adherens junctions, 

which mediate cell-cell adhesion, and focal adhesions, which mediate cell-ECM adhesion 

(Figure 3). The core adhesion receptors in the adherens junction are cadherins, which are 

composed of extracellular calcium-dependent adhesion domain repeats that homotypically 

interact with cadherins on adjacent cells92. In mammalian embryos, loss-of-function 

mutations in cadherins disrupt cohesion and compaction of the early embryo, and result in 

failures in later morphogenetic events, including gastrulation, neurulation, and 

organogenesis93-95. The principal adhesion receptors in focal adhesions are integrins, which 

are heterodimers containing an α- and β-subunit, that interact with a variety of ECM 

components via their large extracellular domains96,97. In addition to serving as critical 

signaling centers that are important for cell survival and cell polarity, cell-ECM adhesions 

are also crucial for morphogenesis, such as during zebrafish optic cup morphogenesis and 

mouse neural tube closure98-100.

There are physical constraints to the load-bearing capacity of adhesion molecules. Estimates 

of the maximum rupture forces of individual adhesion molecules are variable across the 

literature but are generally on the order of hundreds of piconewtons, compared to the ~5 pN 

generated by a single Myo-II mini-filament (Table 2). Adhesive strength varies between 

individual adhesion receptors, and therefore also varies between cell types expressing 

different complements of receptors. For example, the interaction between two E-cadherin 

molecules is, on average, an order of magnitude stronger than the N-cadherin:N-cadherin 

interaction (~200 vs. 40 pN)101. Similar differences exist between different combinations of 

α- and β-integrin subunits and ECM components (Table 2). Corresponding differences in 

adhesive capacity are seen between germ layers in the zebrafish embryo and could reflect 

either differences in adhesion proteins or different organization/concentration of the same 

adhesion protein (Table 3)102. These differences in adhesion strength are important, as they 

can alter the mechanical properties of a tissue103,104, and drive morphogenetic movements, 

such as cell sorting102,105. They also suggest that different tissues have inherently different 

tension-bearing capacities, which is useful to consider when comparing different 

morphogenetic processes.

Adhesions can mature or strengthen due to structural changes in adhesion receptors in 

response to force or due to prolonged physical contact. Many protein binding interactions 

exhibit a ‘slip bond’ behavior, in which bond lifetimes decrease under tension. In contrast, 

Clarke and Martin Page 6

Curr Biol. Author manuscript; available in PMC 2022 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many adhesion protein interactions are strengthened (i.e., become longer lived) under 

tension, a phenomenon called ‘catch bond’ behavior. The extracellular domains of E-

cadherin can bind in two distinct conformations, X-dimers or strand-swapped dimers. These 

conformations differ in their response to tensile force: X-dimers behave like catch bonds, 

whereas strand-swap dimers behave like slip bonds106. The catch bond effect of the X-dimer 

is activated at forces greater than ~20 pN, which would require the coordinated activity of 

multiple Myo-II motors connected to a single cadherin. This suggests that cadherin 

heterodimer conformation responds to local tensile forces generated by actomyosin within a 

tissue, switching from X-dimer catch bonds that grip strongly under load, progressing to 

form more robust strand-swap dimers that have a high affinity in the absence of force. 

Integrins also exhibit catch bond behavior that is dependent on Myo-II contractility, as well 

as the stiffness of the underlying ECM. When tension is applied across the α5β1 integrin 

heterodimer, the extracellular integrin headpiece shifts to an activated conformation that can 

bind fibronectin for longer durations107,108. In addition, integrin adhesion force increases 

with substrate stiffness, as increased stiffness allows for interaction of the integrin headpiece 

with an additional synergy site adjacent to the primary binding site in fibronectin107.

Organization of adhesive junctions:

The strength and stability of adhesion also depends on the organization of cell junctions. 

Studies at the nanometer scale have shown that both cell-cell109-111 and cell-matrix112 

adhesions are composed of smaller clusters of adhesion proteins, on the order of 50 – 100 

nm, that represent a modular unit of organization that may be a general feature of cell 

adhesion receptors (for in-depth reviews on cadherin and integrin clustering, see113,114). 

Receptor clustering stabilizes junctions and can increase the force bearing capacity of 

adhesions115. While clustering is not necessary to establish adhesions, it locally increases 

adhesion receptor density, and, thereby, promotes adhesion formation116. Both cadherin and 

integrin heterodimer cluster formation are driven by multiple factors, including ligand 

binding, extracellular domain cis-interactions, and cytoplasmic interactions with cytoskeletal 

linking proteins like α-Catenin and Talin115,117-120. Integrin clusters have up to a 6-fold 

increase in tension threshold compared to individual integrin heterodimers117, and clustered 

E-cadherin also has a more robust mechanical connection to the actin cytoskeleton that can 

resist higher tensile forces115. Interestingly, not all adhesion molecules within an adhesion 

cluster are loaded equally – in a focal adhesion cluster, there is heterogeneity of force 

loading on integrin heterodimers, with a majority experiencing only weak forces (~1-10pN), 

and a subpopulation experiencing more substantial loads121. Similarly, within a cadherin 

cluster, only a subset of cadherins (~50%) have adhesive trans interactions and can 

propagate force between cells122. This implies that most adhesion receptors are experiencing 

approximately single-molecule levels of force, but more additive forces are channeled 

through a subset of adhesion molecules within a cluster.

Super-resolution microscopy has also demonstrated that in addition to the two-dimensional 

organization of adhesion complexes into clusters, there is stratification relative to the plasma 

membrane. This stratification has been thoroughly demonstrated in integrin 

adhesions123-125, and more recently for cadherin adhesions126. Together, these data suggest 

a general model for the organization of actin-linked adhesion complexes (Figure 3): (1) an 
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extracellular adhesion layer, which has cis interactions governing cluster formation, and a 

mechanosensitive element that promotes stronger adhesions under force; (2) a membrane-

proximal signaling layer, that also contributes to clustering, activation of adhesion, and 

regulation of turnover; (3) a force transduction and cytoskeletal adaptor layer, that contains a 

second mechanosensitive element to meter interactions with F-actin; and (4) an F-actin 

regulatory layer that contains a variety of actin-binding proteins that modulate the state of 

the cytoskeleton (bundling, polymerization, nucleation, etc.). Importantly, while layers 1 and 

2 contain components that are distinct between cell-cell and cell-ECM adhesions, the layers 

3 and 4 are partially shared by both, with many proteins (Vinculin in layer 3, and Zyxin, 

VASP, α-Actinin, etc. in layer 4) localizing to adherens junctions and focal 

adhesions123,126,129.

Coupling of force generation to adhesions:

Robust mechanical connections between adhesions and the cytoskeleton are essential for 

morphogenesis127,128,130. When adhesion is compromised, the point of failure is often not 

breakage of extracellular adhesions, but instead rupture of the connection between adhesion 

complexes and the actin cortex102. This link is comprised of a ‘core’ set of adaptor proteins 

capable of bridging the cytoplasmic tails of adhesion receptors and F-actin. For cadherin, 

these adaptor proteins are α- and β-Catenin131, and for integrin, a major adaptor protein is 

Talin132. Each of these linking proteins are broadly conserved133-135, and inhibition or 

mutation of them produce severe defects in adhesion96,131. In both adherens junctions and 

focal adhesions, there is a larger repertoire of interacting ‘adhesome’ proteins that play 

redundant, modulatory, or supporting roles in facilitating linkage, on the order of 125 

adhesome proteins for cadherins, and 200 for integrins136-138. Characterizing the 

composition, organization, and force dependence of the network of proteins mediating 

cytoskeletal linkage to adhesions will continue to be an exciting area of research with 

implications for morphogenesis.

The linkage between the cytoskeleton and the adhesions is dynamic and can be actively 

regulated during development. A general model that has emerged is the concept of a 

molecular clutch, in which junctional adaptor proteins operate in an analogous manner to the 

clutch of a mechanical engine – when the clutch is ‘engaged’, pushing or pulling forces 

generated by the actin cytoskeleton are physically coupled to cell adhesions, resulting in 

force propagation to neighboring cells or the ECM139,140. This mechanical ‘clutch’ model 

for the regulated coupling between an adhesive complex and the actin cytoskeleton 

originated from detailed study of focal adhesions and actin filament movement, where it was 

shown that variable traction stress relates to the lamellipodial actin retrograde flow141,142. 

However, a regulated attachment between the actin cortex and adherens junctions was also 

shown for apically constricting cells in C. elegans gastrulation29.

Part of the underlying mechanism of the molecular clutch appears to be force-sensitive 

elements within the structure of adaptor proteins. For example, when force is applied to 

Talin, it induces a shift in structural conformation that exposes a binding site for the 

recruitment of Vinculin, which reinforces its interaction with F-actin118,124,143. A similar 

force-dependent conformational switch exists in α-Catenin, which controls vinculin 
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recruitment at adherens junctions144,145. The α-Catenin : F-actin interaction operates as a 

catch bond, increasing in binding affinity under force, suggesting multiple mechanisms for 

mechanosensation and linkage adaptation may be operating simultaneously146. Indeed, 

many adaptor proteins have recently been shown to exhibit catch bonds, including Talin147 

and Vinculin148, which suggests that mechanosensation may be a general property of 

adaptor proteins involved in cytoskeletal-junctional linkage. Some of these proteins, such as 

Vinculin and Afadin may enable strengthening of this connection in response to force149-151. 

In addition, actin turnover can strengthen this connection. In Drosophila gastrulation, F-actin 

turnover promotes stable connection of the contractile machinery to junctions during apical 

constriction152. In the Drosophila pupal wing epithelium, F-actin turnover also recruits 

additional factors, such as Canoe/Afadin, to strengthen the connection between actomyosin 

and the junction153.

The properties and mechanisms of cytoskeleton-junctional connectivity can vary between 

different regions of the cell, between tissues, and between organisms. Adhesome 

composition can vary with cell type and between adhesion molecule subtypes and can 

depend on tension. For example, the N-cadherin adhesome in cardiomyocytes is distinct 

from the E-Cadherin adhesome of epithelial cells154. Proteomics approaches have also 

revealed that as many as 400 proteins bind to integrin adhesions in a force dependent manner 

and may be involved in mechanotransduction155. Characterizing the composition of 

junctional adhesomes under different mechanical states will be critical to our understanding 

of force propagation in morphogenesis. The recruitment of additional adaptor proteins, such 

as Vinculin or p120-catenin, has been shown to modulate the total force transmitted between 

adhesion complexes and actomyosin156, as well as the stability of junctional complexes by 

regulating rates of adhesion receptor endocytosis157.

Macroscopic patterning of force generation in morphogenesis:

Because cytoskeletal systems are connected between cells, the macroscopic organization of 

cytoskeletal components, and how forces are patterned across an entire tissue is critical to 

morphogenesis. Similar to how morphogens set up a gradient of signaling activity to specify 

unique cell fate, signaling gradients can also specify unique force generating properties in 

cells across a tissue, which can promote morphogenesis. As opposed to cases of uniform 

contractility (Fig. 4A), spatial gradients of Myo-II activity (Fig. 4B) can create an imbalance 

of forces within a tissue that enhance tissue deformation. In addition, the actomyosin 

cytoskeleton can form structures that are interconnected across tissues (i.e., supracellular), 

sometimes including hundreds or even thousands of cells.

Recent evidence suggests that force imbalances may be genetically patterned by the same 

signaling mechanisms involved in cell fate specification. Fibroblast growth factor (FGF) 

signaling stimulates cell motility and is required for axis elongation of the chick embryo158. 

FGF signaling also stimulates actomyosin contractility and apical constriction in the 

zebrafish lateral line and the chick otic vesicle159-161. In the developing chick hindgut, a 

gradient of FGF signaling establishes a contractility gradient that is required for the 

polarized collective cell migration that forms the hindgut (Fig. 4C)162. In this case, hindgut 

cells move from low tension to high tension, towards the source of highest FGF signal, and 
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this movement, in conjunction with cell contraction, generates a fold in the endoderm that 

gives rise to the hindgut. Contractility gradients have also been observed in other systems, 

such as Drosophila gastrulation (Fig. 4D). During Drosophila gastrulation, the transcription 

factor twist controls mesoderm differentiation and its target genes that induce apical 

actomyosin activity are expressed in a gradient around the ventral midline163-165. This gene 

expression gradient results in a gradient of apical constriction and myosin activity that is 

highest at the midline of the invagination and decreases with distance from the 

midline56,163,164,166. Drosophila endoderm invagination also exhibits a wave of apical 

constriction, but in this case the spatial patterning results from mechanotransduction. In the 

endoderm, there is an integrin-mediated anchorage of cells at the primordium edge and a 

mechanical relay in which cells tug and stretch their neighbors inducing them to apically 

constrict167,168.

Actomyosin cytoskeletal structures can also be organized at larger spatial scales within the 

embryo. In many morphogenetically active tissues, junctional actomyosin is oriented and 

linked into supracellular ‘cables’ or meshworks stretching over many cell diameters that 

serve important functions in tissue-scale processes such as wound healing and 

morphogenesis169. F-actin cables or rings form in a variety of morphogenetic processes in 

diverse organisms, such as during mouse neural tube closure and eyelid closure170,171, chick 

amniogenesis and lens placode invagination 172,173, zebrafish epiboly and rhombomere 

boundary formation174-176, and Drosophila dorsal closure, compartment boundary 

formation, and germband extension79,177,178, which suggests that supracellular actomyosin 

cables may be an evolutionarily conserved mechanism of transmitting forces at tissue scales. 

However, there is some debate as to the function of supracellular actomyosin structures – do 

they contract or constrict structures, just at larger scales? Or do they have alternative 

functions, such as modulating tissue mechanical properties?

An intuitive model for the function of supracellular actomyosin networks is to generate 

tissue-scale contractility in order to constrict or shorten surfaces or edges. For example, in 

the ‘purse string’ model of dorsal closure in the Drosophila embryo, a supracellular 

actomyosin cable was thought to constrict in order to ‘zip’ the epidermis closed (Fig. 

5A)177,179. However, other evidence has argued against this model, instead suggesting that 

the actin cable creates tension to straighten tissues edges, to allow for uniform tissue 

closure180-182. Actomyosin cables have been shown to play a similar role in straightening 

edges during the formation of compartment boundaries in multiple tissues within the 

Drosophila embryo – Myo-II contractility at these boundaries creates a local increase in 

tension that biases junctional rearrangements to suppress transient mixing between 

compartments (Fig. 5B)178,183,184. A similar phenomenon also occurs at compartment 

boundaries in the developing zebrafish brain, where actomyosin cables refine boundaries 

between rhombomeres176. In the early Drosophila embryo, planar polarized Myo-II is 

organized into a supracellular “ribbon” that functions as a ‘denoising’ mechanism to ensure 

morphogenetic precision in creating the cephalic fold that separates future head structures 

from the rest of the embryo (Fig. 5C)185. Similarly, in Drosophila gastrulation, actomyosin 

organized into a supracellular meshwork, as opposed to a cable, promotes directional tissue 

stiffening and robust folding during mesoderm invagination (Fig. 5D)186. In the Drosophila 
wing disc, multicellular actomyosin cables form in a tension-dependent manner in order to 
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stiffen the tissue and prevent mechanical stress from degrading tissue integrity187. Taken 

together, these findings suggest that supracellular actomyosin structures may operate 

macroscopically to generate tissue stiffness and/or confer robustness, and do not always 

function to contract tissue surfaces.

How do such extensive cytoskeletal structures form? In the Drosophila pupal dorsal thorax 

and wing disc, evidence suggests that supracellular actomyosin structures are, in part, 

organized by the adhesion apparatus, but it is unclear whether this is a general organizing 

principal across tissues27,104. During Drosophila germ band extension, contractile 

actomyosin flows are biased towards sites of increased adhesion, which amplifies 

asymmetries in junctional contractility and generates anisotropic cell deformation188. 

Alternatively, the actomyosin cytoskeleton itself could respond to extrinsic forces or 

constraints that are present in the tissue. Indeed it has been shown in numerous 

developmental contexts that actomyosin fibers are assembled or stabilized in response to 

stretch or tension 79,187. More work is necessary to determine how these structures form, and 

interpret their function and importance for tissue morphogenesis.

Conclusions and future directions:

Overall, it is clear that organisms liberally utilize cytoskeletal contraction and protrusion and 

a multitude of mechanisms to polarize force-generating machines to generate the wondrous 

diversity of organismal form. In addition to thinking about morphogenesis as a sum of 

cellular building blocks, there is clear importance to understanding how cells interconnect 

and transmit force across a tissue and how this is patterned at a macroscopic level. 

Understanding how cytoskeletal structures link between cells and how forces are transmitted 

from cell to cell in a tissue will be a fruitful area of further investigation. In addition to force 

generation, supracellular cytoskeletal structures are also likely to affect the mechanical state 

of tissues in a developing embryo, such as whether it behaves like a solid or liquid. Indeed, 

recent evidence suggests that tissue fluidity can be modulated by multicellular actomyosin 

patterns, and that this is important for gap closure in the context of wound healing and 

normal developmental processes189,190. Further studies linking supracellular actomyosin 

structures to tissue material properties in diverse systems will be necessary to unravel this 

connection.

It will be important to couple this macroscopic view of morphogenesis to higher resolution 

visualization of the machines that carry out force generation. Some outstanding questions 

are: 1) how is cytoskeletal filament alignment, which determines force polarity, controlled in 

a developing tissue? and 2) what is the importance of dynamic cytoskeletal behaviors, such 

as waves, pulses, and flows? We find the coupling of the macro-scale tissue analysis to the 

nano- and micro-scale organization within cells to be one of the most exciting future 

opportunities that will advance our understanding of morphogenesis.
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Figure 1: Molecular mechanisms of pushing and pulling:
(A) polymerization of F-actin by the preferential addition of actin monomers to the plus end 

creates a small pushing force (~1.3 pN). (B) In a branched actin network at the leading edge 

of the cell, the force of actin polymerization is sufficient to push the plasma membrane 

forward. (C) pulling forces are produced by the action of Myo-II minifilaments (pink) 

pulling against opposing F-actin filaments to generate tension (~4 pN). (D) polarized 

contraction of Myo-II (red) within an actomyosin network can pull cell junctions (green), or 

other points of connection to the membrane, inwards and contract a surface of a cell.
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Figure 2: Shape change by contraction and expansion:
(tissues, top) polarized contraction or expansion on apical or basal surfaces can generate 

tissue folding. (surfaces, center) Shape change of individual cellular surfaces can also alter 

tissue geometry, as in basal extrusion or apical emergence. (edges, bottom) Coordinated 

shape change of individual edges or cellular interfaces can drive tissue movements, such as 

the convergent extension movements that elongates the Drosophila germ band (red). 

Contraction of lateral interfaces can also shorten edges between neighboring cells along the 

apical-basal axis, promoting tissue folding, as is seen in the Drosophila wing disc epithelium 

(right).
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Figure 3: Structure of junctions that link adhesion to the actomyosin cytoskeleton:
Adherens junction (A), and focal adhesions (B) share common organizational principles that 

facilitate dynamic attachment to the F-actin cytoskeleton, including stratification into a 

similar set of functionally distinct compartments that enable: (1) extracellular force 

transduction, (2) adhesion regulation, (3) intracellular force transduction, and (4) F-actin 

regulation.
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Figure 4: Spatial patterning of contractility:
(A) When contractility is uniform forces between cells are balanced, and deformation is 

limited. In contrast, when contractility is organized in a gradient (B), force imbalance can 

allow for increased deformation and tissue folding. (C) In chick hindgut development, an 

FGF signaling gradient patterns graded contractility and cell movement to produce tissue 

folding: endoderm anterior to the caudal intestinal portal (CIP) receives graded levels of 

FGF, which induces a corresponding gradient in contractility levels. (D) In Drosophila 
gastrulation, the dorsal-ventral patterning cascade (left) produces a gradient of Myo-II 

activity. A graded pattern of the transcription factor, twist, on the ventral side of the embryo 

(center) proceeds a gradient of Myo-II activity that powers invagination of the mesoderm 

(right, red).
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Figure 5: Supracellular actomyosin structures in embryos:
In Drosophila embryos, supracellular actomyosin cables (green) are seen during dorsal 

closure (A) and cases of compartment boundary formation, such as between parasegments in 

the early embryo (B). One function of actomyosin cables is to generate tension to straighten 

tissue edges and prevent mixing across boundaries (B, inset). (C) A similar phenomenon is 

seen in the Zebrafish hindbrain, where actomyosin cables promote boundary formation 

between the developing rhombomere brain segments and inhibit cell mixing. Supracellular 

actomyosin structures can also confer proof-reading or robustness to morphogenetic 

processes, such as the actomyosin meshwork present during Drosophila gastrulation (D). 
Here, the meshwork (green) creates directional tissue stiffness along the anterior-posterior 

axis, which resists bending along the long axis of the embryo, and supports folding and 

internalization of the mesoderm (red).
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Table 1:
magnitude of forces generated at molecular, cellular, and tissue scales

values are approximations based on the literature, and provided to allow for ballpark comparison as opposed to 

a definitive reference (for a more detailed accounting of forces at the cellular level, please see 

Ananthakrishnan and Erlicher, 2007 197).

Molecule Stress type Force (pN) Citation(s):

molecules
Myo-II tension (pulling) 3 – 5 25,26

F- actin (polymerization) compression (pushing) 1 – 2 191,192

Within the cell

Force (pN μm−2)

Lamellipodium (keratinocytes and fibroblasts 
in culture) compression 1000 – 2500 34,35

Actomyosin cortex (embryos)

tension

100 - 500 36,37

Actomyosin cortex (cell culture) 600 – 800 38

Traction at focal adhesion (Fibroblast) 1000 – 2000 193

Tug across a single cell-cell contact (adherens 
junction) 500 - 1000 39,194

Between cells in tissue culture

Cell Type

Epithelial

tension

3000 – 4000 41

Epithelial (during collective migration) 300 – 1000 195

Mesenchymal 1000 – 1500 41

Between cells in embryos

Species

Drosophila

tension

100 40

Zebrafish 20 - 60 103

Xenopus 5 196

Mouse 1600 41
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Table 2:
Examples of unbinding forces required to break or rupture bonds within mechanical 
connections between the actomyosin cytoskeleton and adhesion complexes

(this represents only a partial list; for more extensive information, please see Weisel et al. 2003, and Rocha-

Cusachs et al. 2012) 132,210.

Molecular interaction Stress type Rupture force
(pN)

Citation:

Adhesions

α5β1 integrin : fibronectin

Tension

60 – 100 198,199

α2β1 : collagen 100 – 160 200,201

E-cadherin : E-Cadherin 70 - 200 101,202

N-Cadherin : N-Cadherin 30 – 40 101

Adaptors

Talin : Actin 2 203

α-catenin : Actin 5-10 146

Vinculin : Actin 4-8 148

Cytoskeleton

Actin : Myosin 5 - 15 204

Actin : Actin (within F-actin)

400 – 600 205,206

Torsion 100 – 300 205

Compression 0.16 – 4 207-209
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Table 3:
Rupture forces required to break adhesions in cells from different germ layers of a 
vertebrate embryo.

Organism Germ layer Rupture force (pN μm−2) Citation

Zebrafish Endoderm 400 – 600 102

Mesoderm 700 – 1500

Ectoderm 1500 – 3000
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