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Abstract

Biological age captures some of the variance in life expectancy for which chronological age is not accountable, and it quantifies the heterogeneity 
in the presentation of the aging phenotype in various individuals. Among the many quantitative measures of biological age, the mathematically 
uncomplicated frailty/deficit index is simply the proportion of the total health deficits in various health items surveyed in different individuals. 
We used 3 different statistical methods that are popular in machine learning to select 17–28 health items that together are highly predictive of 
survival/mortality, from independent study cohorts. From the selected sets, we calculated frailty indexes and Klemera–Doubal’s biological age 
estimates, and then compared their mortality prediction performance using Cox proportional hazards regression models. Our results indicate 
that the frailty index outperforms age and Klemera–Doubal’s biological age estimates, especially among the oldest old who are most prone to 
biological aging-caused mortality. We also showed that a DNA methylation index, which was generated by applying the frailty/deficit index 
calculation method to 38 CpG sites that were selected using the same machine learning algorithms, can predict mortality even better than the 
best performing frailty index constructed from health, function, and blood chemistry.
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Aging occurs with the passage of time. Calendar age is associated 
with adverse changes, including chronic diseases and mortality for 
which it is a risk factor. However, studies of model organisms in-
dicate that the passage of time is not the direct cause of aging: life 
spans can be altered by genetic, nutritional, or pharmaceutical inter-
ventions (1,2). If chronological age was the direct and main cause of 
aging, delay or reversal of aging that has been observed using model 
organisms would be impossible. Moreover, chronological age alone 
cannot account for the wide variation in age-related phenotypes 
among age peers or in birth cohorts (3–5).

Biological aging is characterized by a gradual decline in health 
and body functioning over time, with increasing risks of disability, 
disease, and mortality. Biological age gauges progression of func-
tional aging that occurs independently of chronological age (6,7). 
Functional decline can be associated with quantitative measures 

of various biomolecules and health-related items that change with 
calendar age. Chronological age is a confounder that underlies all 
aspects of biological aging. It can be likened to the time period taken 
for chemical reactions to occur, but it is the reactants and products 
that characterize chemical reactions, not the time.

For estimation of biological age from biomarkers, researchers 
usually rely on calendar age (8). For example, the approach based 
on multiple linear regression uses calendar age to derive coeffi-
cients for individual biomarkers. In the approach based on principal 
component analysis, without calendar age, no dominant principal 
components can be found that can account for the bulk of the data 
variation, and biological age measures derived from one or more 
principal components are outperformed by those derived from mul-
tiple linear regressions (8–10). The Klemera–Doubal (KD) method 
has been popular because KD’s biological age estimates outperform 
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age in mortality prediction (11). The KD method proposes 2 main 
equations for biological age estimation: Eq. (25) termed BE and Eq. 
(34) termed BEC. However, the BE estimate requires 2 age-derived 
parameters and BEC requires age as another biomarker in addition 
to the 2 age-derived parameters used for BE. Thus, the outperform-
ance of BE and BEC over age in mortality prediction makes sense in 
that the KD measures incorporate both age and health data. This is 
especially true for BEC, which explicitly uses age as an additional 
biomarker.

The frailty index (FI, also called deficit index) is simply the pro-
portion of health deficits in various health items surveyed for any in-
dividual at any given time (12,13). The health items usually include 
blood test results, survey data on physical activities, and cognitive 
and physical functional abilities. The frailty index is fully quanti-
tative and has been extensively studied and well characterized as a 
measure of biological age (14–16). In this study of 3 independent 
population samples, we selected 17–28 health items that were pre-
dictors of all-cause mortality, using statistical algorithms that are 
popular in machine learning for predictive modeling. From the 
selected sets, we calculated frailty indexes, BE, and BEC, and com-
pared their mortality prediction performance using Cox propor-
tional hazards regression models. Our results indicate that the frailty 
index outperforms age, BE, and BEC, especially in nonagenarians. 
We also found that a DNA methylation index, called DmI, calcu-
lated using only 38 DNA methylation measurements selected with 
the same statistical algorithms can predict mortality better than the 
best performing frailty index.

Method

Louisiana Healthy Aging Study
Louisiana Healthy Aging Study (LHAS) data were from 592 
Caucasian subjects aged from 21 to 103 (17). Previously, FI34 had 
been constructed from 34 randomly selected health items, as de-
scribed (18). In this study, we constructed FI28 from 28 items selected 
for their ability to predict mortality. The data set contained 188 
health variables with <10% missing data points and intervariable 
correlation coefficient <0.6. The missing data points were imputed 
using the preProcess function (method  =  “bagImpute”) in the R 
caret package. In selecting the 28 items, we used the random forest 
regression for survival (an ensemble learning method based on de-
cision trees; the R ranger package, num.trees = 500, num.random.
splits = 1, alpha = 0.5, importance = permutation), elastic net cox 
regression (a regularized regression method that combines lasso and 
ridge methods; the R glmnet package, family =  cox, alpha = 0.5), 
and CoxBoost (Cox regression modeling based on likelihood-based 
boosting; the R coxBoost package, maxstepno = 500, K = 10, pen-
alty = 1000, type = verweij). The 28 items, present in common in all 
3 outputs, are from surveys of physical activities, medical histories, 
physical examinations, cognitive functioning, and blood test results 
(Supplementary Table 1). 

National Health and Nutrition Examination Survey
Various health items can be grouped into 4 categories: physical ac-
tivities, physical function abilities, cognitive functioning, and blood 
counts and chemistry data. In preparing data sets from public data-
bases, we wanted to have public data sets in which health items are 
from all these 4 categories. Another critical factor that affected our 
data selection is the availability of sufficient mortality data for sur-
vival/mortality analysis. Earlier data sets contain more mortality 

data but fewer or no health items for one or more of the 4 categories. 
For example, we chose the 1999–2000 cycle data for National 
Health and Nutrition Examination Survey (NHANES) because un-
like the previous (older) data sets, this cycle data set has cognitive 
functioning variables. The same principle applied to selection of the 
Health and Retirement Study (HRS) data set (below). Unlike older 
data sets, the 2006 data have “sensitive biomarker” data (6 blood 
test results) and sufficient mortality data. So, selection of a data set 
from each public database is a balance between mortality data and 
availability of diverse data categories.

NHANES data sets consist of demographics, dietary, laboratory, 
and examination data from interviews and Mobile-Exam Center 
examinations (19). From NHANES 1999–2000, we initially gath-
ered 2568 variables, comprising demographics, laboratory, and 
examination data, for 4972 subjects whose mortality status was 
known. However, this data set lacked health items about cognitive 
and physical functioning. To include more body systems, we added 
variables in cognitive functioning (CFQ, 7 variables in 1834 subjects) 
and muscle strength (MSX, 16 variables in 2156 subjects). After re-
moving variables unrelated to health, variables with missingness > 
10%, and a variable from each intercorrelated variable pair (r > .6), 
we obtained a data set consisting of 811 subjects with 70 variables. 
These NHANES subjects, consisting of 24% Mexican American, 
62% Caucasian, and 14% African American, were 60–85 years old 
(in NHANES 1999–2000, age ≥ 85 is coded 85). The 3 statistical al-
gorithms were applied, and 17 health items were selected and coded 
to calculate FI17 (Supplementary Table 2). The majority of the 
17 items were from blood tests. Cox proportional hazards regres-
sion models using NHANES data were adjusted for races, sample 
weights, strata, and clusters, using the R survey package.

Health and Retirement Study
The HRS is sponsored by the National Institute on Aging (grant 
number NIA U01AG009740) and is conducted by the University 
of Michigan (20). We used the 2006 wave in the RAND HRS 
Longitudinal File. To have many diverse health items, we combined 
635 public variables for 42  053 subjects with 343 sensitive bio-
marker variables for 6735 subjects, resulting in 978 variables for 
6735 subjects. Selection of variables with complete data points and 
non-Hispanic Caucasians further reduced the data to 71 variables 
for 3894 subjects. The 3 statistical algorithms were applied to this 
data set and 18 health items were selected (Supplementary Table 3). 
The subjects were 30–96 years old, and the final set includes items 
of blood tests, cognitive and physical abilities, and several diseases, 
among others. Cox proportional hazards regression models using 
HRS data were adjusted for sample weights, strata, and clusters, 
using the R survey package.

Klemera–Doubal’s Measures of Biological Age
The data set of coded variables in each population sample that was 
used to calculate the corresponding frailty index was used to cal-
culate KD’s BE and BEC estimates of biological age using the R 
WGCNA package with the default setting (21).

Calculation of DmI From 38 DNA Methylation 
Measurements
We used DNA methylation data obtained using the Infinium 
HumanMethylation450 BeadChip assay from 211 LHAS DNA 
samples aged 60–103, as described previously (22). DNA methy-
lation measurements (β values) that failed quality control measures 
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and those highly correlated (one from each intercorrelated pair, 
r  >  .6) were removed. From the resulting 56  949 DNA methyla-
tion level measurements, 2842 CpG sites whose variable importance 
scores were within the top 10% were collected using the random 
forest survival regression, 38 CpG sites with nonzero coefficients 
using the elastic net Cox regression, and 19 CpG sites with nonzero 
coefficients using the boosted Cox regression as described above. 
These 3 sets of selected CpG sites partially overlapped with each 
other, indicating the presence of many CpG sites with DNA methy-
lation levels predictive of mortality and a wide variation in selection 
of such CpG sites depending on the feature selection method used 
(and parameters set). Hannum et al. (23) built a predictive model 
of aging using 71 DNA methylation sites using the elastic net re-
gression. DNA methylation levels at these sites were highly correl-
ated with chronological age. Using the same method, Horvath (24) 
proposed DNA methylation age measures based on 353 CpG sites. 
Thus, the elastic net method appeared prolific with DNA methy-
lation data. Furthermore, 18 of the 19 CpG sites selected by the 
boosted were also found in the 38 CpG sites selected by the elastic 
net. As stated in “Discussion” section, Weidner et al. (25) showed 
that only 3 age-related CpG sites were sufficient for a predictive 
model in blood. Thus, although the 18 or 19 CpG sites should work 
as well, to increase the applicability of the DmI to other tissues, we 
decided to use the 38 CpG sites selected by the elastic net method 
(Supplementary Table 4).

Beta values of these sites are associated with mortality either posi-
tively or negatively (inversely). Positively correlated DNA methyla-
tion sites predict higher risk of death for subjects with higher beta 
values of the sites. Thus, for each of the 9 positively correlated CpG 
sites, the following coding using quartile (Q) values was applied: if 
β < Q1, 0; if Q1 ≤ β < Q3, 0.5; if β > Q3, 1. On the other hand, nega-
tively correlated DNA methylation sites predict lower risk of death 
for subjects with higher beta values of the sites. For this type of CpG 
site, the following coding was applied: if β < Q1, 1; if Q1 ≤ β < Q3, 
0.5; if β > Q3, 0. DmI is the average of these coded values. A separate 
DmI calculated from raw beta values from positively correlated CpG 
sites and (1 − β) values from the negatively correlated CpG sites gave 
very similar results.

Estimation of Mortality Prediction Effect Size
The end point of biological aging is death, so the accuracy of bio-
logical age estimates is best evaluated by their effect sizes in mor-
tality prediction. The Cox proportional hazards regression analysis 
is a popular method for survival/mortality analysis of censored data. 
To show the age adjustment effect in Cox regression analysis, we 
compared z scores (coefficients divided by standard errors). In com-
paring effect sizes of predictors, we used the standardized Cox re-
gression coefficient, which estimates the effect of 1 SD change in a 
continuous predictor variable on the hazard of death. We also used 
likelihood ratio test and concordance statistics, the latter of which is 
the same as the area under the curve (AUC) in the receiver operating 
characteristic (ROC) analysis. The difference in goodness-of-fit of 
2 nested models can be ascribed to the added predictor variable in 
the extended model, and the statistical significance of the differ-
ence (Δlog-likelihood) can be assessed using the likelihood ratio χ 2 
test, which was provided by the R anova function. For analysis of 
complex survey data, we used the design-adjusted Rao–Scott like-
lihood ratio test, provided by the regTermTest function in the R 
survey package. The null hypothesis of this test is that the regression 
coefficient of the term being tested is zero. Concordance (C-index) 

is another model fit measure, and the performance of 2 predictors 
can be compared by noting the change in concordance as each of the 
predictors is added to a common model. Concordance scores were 
provided by the coxph function of the R survival package or by the 
svycoxph function of the R survey package. All analyses were ad-
justed for sex and race (in the NHANES data).

Results

FI28 in LHAS
We used 3 different statistical algorithms to select 28 health items 
in LHAS that are highly predictive of survival/mortality, according 
to Cox proportional hazards regressions analysis. Comparison of 
z scores of raw coefficients for the 28 items before and after age 
adjustment indicated that age adjustments substantially reduced 
z scores of the health variables in all regressions (Supplementary 
Figure 1). One possible explanation for this reduction is that being 
age-related changes, these health items are correlated with age. FI28 
and KD’s BE (BE28) and BEC (BEC28) were calculated using these 
28 health items. FI34 had been previously constructed using ran-
domly selected 34 health items, and BE34 and BEC34 were calcu-
lated using the same set. Although this study was cross-sectional, we 
can infer longitudinal properties of these biological age measures. 
All these measures of biological age increased exponentially with 
age, which coincides with the exponential increase in mortality with 
age (Supplementary Figure 2). We can conveniently infer how closely 
these biological age measures are related to age by assuming linear 
relationships. All were significantly correlated with age (p < .001; 
Kendall’s τ = .54 for FI34, .65 for BE34, and .81 for BEC34, .63 for 
FI28, .66 for BE28, .82 for BEC28).

The prediction effect size of each biological age measure was 
estimated using sex-adjusted Cox regression models for the whole 
LHAS cohort analyzed (Figure 1A). Age in the base model showed 
the largest standardized coefficient, confirming that age is the best 
predictor of mortality in the general population. When biological age 
measures derived from 34 health items were individually added to 
the base model, the effect size of age was reduced, with the amount 
of the reduction proportional to the degree of correlation of the bio-
logical measure with age: The reduction was smallest with FI34 but 
largest with BEC34. Further reduction of the effect size of age was 
observed when biological age measures derived from the 28-item set 
were added, and again the reduction was proportional to the cor-
relation of the biological measure with age. These results indicate 
that KD measures, especially BEC28, are largely redundant with age. 
The same results were obtained from analysis of sex-separated data 
(Supplementary Figure 3).

Although all biological age measures were significant predictors 
of mortality after adjustment for age, BEC28 seemed to have the lar-
gest effect size (Figure 1A). However, comparisons of concordance 
and Δlog-likelihood values indicate that the best model was that 
containing FI28 (Table 1). Furthermore, addition of BE28 or BEC28 
to models containing age and FI28 did not improve the model fit, 
indicating that these measures are essentially redundant with both 
age and FI28.

Mortality from biological aging is more relevant to the elderly 
than the young; therefore, the Cox regression modeling involving 
sex, age, and a biological age measure was applied to nested age 
groups in which the lower age limit increased toward the upper 
age limit (103). The effect size of age was larger than that of FI28 
until the lower age cutoff reached 90 (Figure 1B). After that, 
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however, the effect size of age decreased and became no longer 
significant. In contrast, the effect size of FI28 remained relatively 
stable, maintaining its significance in all age groups. The same 

nested age group analysis was applied to sex-separated data and 
similar results were obtained (Supplementary Figure 4). The dom-
inance of the frailty index over age was also observed with FI34 
(Supplementary Figure 5A). Thus, among subjects aged greater 
than 91 (69 deceased out of 71), both FI34 and FI28 remained 
significant, whereas age was no longer significant in predicting 
mortality.

The Cox regression analysis of nested age groups was 
also repeated using age, BEC28, and FI28 in the same models 
(Supplementary Figure 5B). Unlike age and FI28, BEC28 was not a 
significant predictor of mortality in all age groups. At age older than 
91 years, only FI28 was a significant predictor. Similar observations 
were made using BE28 + FI28, BE34 + FI34, or BEC34 + FI34 (data 
not shown).

Frailty Indexes Using NHANES and HRS Data
The comparisons of biological age measures in LHAS indicate that 
the frailty index calculated using selected health items can outper-
form BE and BEC as a biological age measure. Using independent 
public data sets, we tested the generalizability of the finding. The 
same feature selection methods were applied to the processed 
1999–2000 NHANES data set, and 17 health items were selected 
(Supplementary Table 2). As in LHAS, the age adjustment substan-
tially reduced z scores of most of the variables, indicating that these 
health items constitute age-related changes (Supplementary Figure 
6). The coded data were used to calculate biological age measures. 
The prediction effect size of these biological age measures was esti-
mated using survey-weighted Cox regression modeling. The design-
adjusted likelihood ratio test value of FI17 was higher than that of 
BE17 or BEC17 (Table 2). Furthermore, in the presence of age and 
FI17, BE17 or BEC17 was not significant at all, confirming the re-
dundancy of the KD measures with age and the frailty index. In the 
NHANES data, accurate estimation and comparison of effect sizes 
was not possible because the age of 85 years and older was com-
bined as age 85.

We applied the same selection methods to the 2006 wave of HRS 
data and selected 18 health items (Supplementary Table 3). As in 
LHAS and NHANES, age adjustment substantially reduced z scores 
of most of the variables in mortality prediction (Supplementary 
Figure 7). The adjusted likelihood ratio test value of FI18 was higher 
than that of BE18 or BEC18, and the model containing FI18 showed 
the highest concordance (Table 3). Also, at age older than 83 years 
(173 deceased of 223 total), age became not significant while FI18 
remained significant (Supplementary Figure 8).

DmI Calculated From DNA Methylation 
Measurements in LHAS
We applied the feature selection methods to genomic DNA methyla-
tion measurements and selected 38 CpG sites whose DNA methyla-
tion levels were highly predictive of mortality. Cox regressions of the 
38 DNA measurements with and without age adjustment showed 
that z scores of many DNA methylation measurements were notice-
ably inflated after age adjustment (Supplementary Figure 9). This is 
contrary to the reduction observed with general health items. DmI 
was calculated by averaging coded beta values over the 38 selected 
CpG sites. Like many of the individual CpG sites, DmI and age 
strengthened the prediction effect of each other when present to-
gether in a model (Supplementary Figure 10). DmI was significantly 
correlated with FI28 (p < .001) and FI34 (p < .001) but not with age 

Figure 1.  Effect size (standardized coefficient on y-axis) of mortality predictors 
(x-axis) in Cox regression models in Louisiana Healthy Aging Study (LHAS) 
(A) and changes in effect size of FI28 in nested age groups of the LHAS data 
(B). The base model contains age and sex, and other models additionally 
contain individual biological age measures. The numbers on x-axis in (B) 
indicate individuals whose ages are greater than the numbers (eg, the age 
group “20” means subjects older than age 20, and “85” older than age 85, 
etc.). Note that the x-axis scale is not proportional. The numbers of deceased/
total were 205/592 for age > 20, 151/172 for age > 80, 101/106 for age > 90, 
69/72 for age > 91, 45/47 for age > 92, and 26/27 for age > 93. * .01 < p ≤ .05. 
** .001 < p ≤ .01. ***p ≤ .001.
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(p >> .1). Despite the lack of significant correlation with age, DmI 
was the most significant predictor of mortality, surpassing the frailty 
indexes and KD’s measures (Table 4).

Discussion

The Frailty/Deficit Index
Chronological age has been the major tool in describing or 
predicting many time-dependent phenomena, including aging and 
aging-related diseases. This is mainly because chronological age is 
intuitive and readily available. Consciously or unconsciously, how-
ever, people recognize differences in aging, independent of chrono-
logical age. This recognition comes from the heterogeneity and 
plasticity of biological aging. The heterogeneity of aging is easy 
to appreciate; for example, “One man may be 60  years old, an-
other man may be 60 years young,” as Benjamin Harris (7) states 
in his paper published in the second issue of the original Journal 
of Gerontology. Chronological age cannot account for all the het-
erogeneity. The plasticity of aging is revealed by the observations 
from model organisms that aging can be delayed or even reversed. 
Invariant, chronological age cannot accommodate the plasticity of 
aging at all. Thus, the heterogeneity and plasticity fits well into 
the idea of healthy aging, in contrast to the traditional idea of 
longevity. In daily life, we use chronological age as a quick and 
convenient way of measuring progression of aging and aging-
associated diseases. In science, however, we endeavor to attain the 
highest accuracy in describing or predicting scientific phenomena. 
In pursuing the biology of aging, we must use an accurate measure 
of biological age that can account for not only the heterogeneity 
and plasticity but also other aging-related biological events.

To estimate the variable pace of biological or functional aging 
that occurs independently of the invariant pace of chronological 
aging, researchers began to develop various biological age meas-
ures. Rockwood et  al. (14) and Fried et  al. (26) quantitated the 
concept of frailty by counting small numbers of functional losses 
or deficits without including chronological age itself. It is Mitnitski 
et al. (12) who developed a fully quantitative frailty index as a bio-
logical age metric by averaging proportions of defective health items 
among 92 health variables. The health items are usually from di-
verse body domains, and the resulting composite index is considered 
to reflect functional changes occurring at various biological levels. 
Based on this principle, without employing any selection strategies, 

we collected 34 health items from LHAS data and calculated FI34, 
which has been instrumental as a biological age measure in studying 
various aspects of healthy aging (3,27).

A significant predictor of mortality, FI34 is associated with 
changes in various physiological processes, such as resting meta-
bolic rate, body composition, tissue damage, and gut dysbiosis 
(28,29). FI34 is heritable and associated with mitochondrial uncoup-
ling protein genes UCP2 and UCP3, programmed cell death genes 
LASS1 and XRCC6, and a noncoding regulatory region at 12q13-14 
(18,30–32).

To see whether we can enhance the performance of the 
frailty index in mortality prediction, we used feature selection 
algorithms for survival/mortality analysis to gather 28 health 
items from the LHAS data for construction of FI28. Thus, FI28 
is different from FI34 in that FI28 is from a set of health items 
that were selected for their ability to predict mortality, whereas 
FI34 is derived from health items chosen without such a selec-
tion strategy. Only 3 items are common in both FI34 and FI28 
(cataracts, heart attack, and Mini-Mental State Examination). 
However, FI34 and FI28 are directly comparable because the 
health items were from the same study and frailty indexes calcu-
lated from statistically valid numbers of health items (≥ ~20) are 
known to yield comparable results (33). Therefore, differences 
in these 2 frailty indexes can be attributed largely to the selec-
tion of desired health items in FI28. We also calculated KD’s BE 
and BEC estimates of biological aging using the same sets of 
health items. By comparing Cox regression models containing 
the biological age measures and calendar age, we found (i) FI28 
performed better than FI34 as a mortality predictor, (ii) FI28 
was the best predictor, outperforming chronological age, BE, 
and BEC, especially among the oldest subjects who are highly 
prone to risks of biological aging, and (iii) BE and BEC outper-
formed chronological age.

Our results with FI34 agree with the previous results obtained 
by Mitnitski et al (4) using FI-CSHA, which, like FI34, is a standard 
frailty index calculated using 38 health variables from the Canadian 
Study of Health and Aging. In their study, BEC was the best pre-
dictor of mortality, followed by chronological age, BE, and FI-CSHA. 
Levine (9) also observed the outperformance of BEC over BE or 
other linear regression or principle component-derived biological 
age measures using NHANES III data. Thus, in our study, the ob-
servation that FI28 surpassed BEC in mortality prediction clearly 

Table 1.  Model Comparison Using the Concordance and Likelihood Ratio Test Statistics in Cox Regression Analysis of LHAS

Model 1 Model 2 Concordance (SE) ΔLog-Likelihood Significance

Sex Model 1 + age .883 (.01) 232.601 ***
Sex + age Model 1 + FI34 .887 (.01) 3.63 **
Sex + age Model 1 + BE34 .886 (.01) 3.10 *
Sex + age Model 1 + BEC34 .886 (.01) 3.10 *
Sex + age Model 1 + FI28 .896 (.009) 24.05 ***
Sex + age Model 1 + BE28 .893 (.009) 18.26 ***
Sex + age Model 1 + BEC28 .893 (.009) 18.26 ***
Sex + age + FI28 Model 1 + BE28 .896 (.009) 0.22 n.s.
Sex + age + FI28 Model 1 + BEC28 .896 (.009) 0.22 n.s.
Sex + age + BE28 Model 1 + FI28 .896 (.009) 6.00 ***
Sex + age + BEC28 Model 1 + FI28 .896 (.009) 6.00 ***

Notes: LHAS = Louisiana Healthy Aging Study. The concordance estimates the accuracy of Model 2. The Δlog-likelihood and significance are to assess the 
significance of the added predictor (Model 1 + an added predictor = Model 2) in each pair of nested models. N = 592, age range = 21–103, 205/592 deceased.

* .01 < p ≤ .05. ** .001 < p ≤ .01. ***p ≤ .001; n.s. = p > .05.

Journals of Gerontology: BIOLOGICAL SCIENCES, 2021, Vol. 76, No. 8� 1351



demonstrates that the performance of the frailty index can be dra-
matically improved by selecting constituent health variables.

It should be noted that no health items are commonly present in 
all 3 selected sets that were used to calculated FI28, FI18, and FI17. 
Fried et al. (26) regarded frailty as a clinical syndrome and categor-
ized subjects into 3 levels (normal, prefrail, and frail) based on 5 
fixed descriptive items, which could be useful in clinical settings. On 
the other hand, the frailty index by Mitnitski et al. (12) is the pro-
portion of deficits present in aging individuals. The number of health 
items used to calculate the frailty index typically varies from ~20 to 
~100. Thus, unlike the Fried et al.’s (26) frailty or any similar quali-
tative or semi-quantitative index, the frailty/deficit index is based on 
the probability concept and it has been shown that different frailty 
indexes calculated from different sets of health items show similar 
properties if health items are diverse. Besides the theoretical reason, 
there is a practical reason why fixing a set of specific health items 
for the frailty index calculation is not recommended: It is difficult 
to find the same health items among different studies and data sets. 
Even if there had been many health items commonly present in all 3 
data sets, the likelihood that the same health items would be selected 
and included in the final sets would be low partly because of the 
population and ethnicity-specific effect of a health variable and 
partly because of its varying interactions with other health variables 
present in statistical modeling. Detection of underlying common 

physiological processes may require systematic in-depth analyses of 
large-scale, longitudinal data sets (34,35).

Other types of biological age metrics have been proposed, but 
most of them rely on chronological age as a surrogate biological age 
measure, and thus these types of biological age measures are highly 
correlated with chronological age (8). Indeed, “a perfect correlation 
between a biomarker and chronological age yields the biomarker 
as perfectly useless as an alternative to chronological age as a pre-
dictor of anything” (36). Likewise, any biological age metrics that 
are made to perfectly correlate with chronological age or made to 
predict chronological age with high accuracy will be useless.

Recently, several aging metrics have been reported that are less 
dependent on chronological age. For example, Levine et  al. (37) 
selected 9 biomarkers by applying a penalized Cox regression 
method to NHANES III data. By incorporating the 9 biomarkers 
and chronological age into a parametric model based on the cumu-
lative distribution function of the Gompertz model, they estimated 
10-year mortality risks of individuals. At the final step, the mortality 
scores were converted to “PhenotypicAge” using another cumula-
tive distribution function based on a univariate Gompertz regression 
model involving only age. Thus, calculation of the phenotypic age 
involves several assumptions and parametric models. It should be 
noted that the phenotypic age is highly correlated with chronological 
age (r = .94 using NHANES IV). On the other hand, calculation of 

Table 3.  Model Concordance and Likelihood Ratio (Rao–Scott) Test Statistics of Biological Age Measures in Survey-Weighted Cox Regression 
Analysis of HRS Data

Survey-Weighted Cox Model Concordance (SE) Term Tested 2logLR Significance

Base (sex + age) .759 (.012) Age 678.23 ***
Base + BE18 .812 (.01) Age 327.22 ***

BE18 423.07 ***
Base + BEC18 .812 (.01) Age 177.94 ***

BEC18 423.07 ***
Base + FI18 .816 (.009) Age 409.37 ***

FI18 489.39 ***

Notes: HRS = Health and Retirement Study; LR = likelihood ratio. The concordance estimates the accuracy of each model. The 2logLR and significance are to 
assess the significance of the indicated term.

***p ≤ .001.

Table 2.  Model Concordance and Likelihood Ratio (Rao–Scott) Test Statistics of Biological Age Measures in Survey-Weighted Cox Regression 
Analysis of NHANES Data

Survey-Weighted Cox Model Concordance (SE) Term Tested 2Log LR Significance

Base (sex + race + age) .686 (.021) Age 128.83 ***
Base + BE17 .744 (.019) Age 6.89 **

BE17 38.87 ***
Base + BEC17 .744 (.019) Age 1.59 n.s.

BEC17 38.87 ***
Base + FI17 .760 (.018) Age 19.29 ***

FI17 135.70 ***
Base + FI17 + BE17 .762 (.018) Age 8.07 **

FI17 55.34 ***
BE17 2.79 n.s.

Base + FI17 + BEC17 .762 (.018) Age 0.44 n.s.
FI17 55.34 ***
BEC17 2.79 n.s.

Notes: LR = likelihood ratio; NHANES = National Health and Nutrition Examination Survey. The concordance estimates the accuracy of each model. The 
2logLR and significance are to assess the significance of the indicated term.

** .001 < p ≤ .01. ***p ≤ .001; n.s. = p > .05.
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the frailty index is straightforward, without using any assumptions 
or models or derivation of parameters using chronological age.

DNA Methylation Index
We selected 38 CpG sites that were commonly present among the 
top performing CpG sites identified by the statistical algorithms. 
Interestingly, neither the 38 DNA methylation levels nor the DmI cal-
culated from them was correlated with age (p >> .1). However, DmI 
was significantly correlated with FI28 and with FI34. Surprisingly, 
the effect size of DmI in mortality prediction was greater than that 
of FI28 (Table 4), suggesting that accurate biological age metrics do 
not have to be highly correlated with chronological age.

Aging genomes tend to lose DNA methylation, with the exception 
of some regions where CpG sites gain DNA methylation (38–40). 
For example, CpG islands gain DNA methylation in many tissues, 
including blood (41). Thus, DNA methylation levels at many gen-
omic CpG sites correlate with chronological age either negatively or 
positively (42,43). A cross-sectional compilation found up to 56 579 
CpG sites significantly associated with age, and about 30% of them 
significantly change longitudinally (44).

Theoretically, a single CpG site whose DNA methylation level 
perfectly correlates with chronological age could be used as an ac-
curate age predictor. However, DNA methylation is tissue, environ-
ment, and population specific; therefore, prediction models usually 
employ multiple CpG sites to increase model predictability in mul-
tiple tissues and cohorts. Thus, subsets of age-related CpG sites, up 
to several hundred in number, have been used as epigenetic pre-
dictors of chronological age or in epigenetic models of aging (23,24). 
Using multivariate linear regression modeling, Weidner et  al. (25) 
found that only 3 age-related CpG sites were sufficient to predict 
chronological age reasonably well in blood samples.

Efforts have been made to find CpG sites that are associated with 
functional phenotypes of biological aging, independently of chrono-
logical age. These phenotypes include blood pressure, lung function, 
hand grip strength, blood metabolic markers, cognitive functioning, 
and mortality (23,44–47). Svane et al. (47) identified 2806 CpG sites 
associated with all-cause mortality after adjustment for age and other 
relevant covariates. Thus, although an order of magnitude smaller in 
number compared with the age-associated CpG sites, there are CpG 
sites whose DNA methylation levels are associated with functional 
declines. Furthermore, certain CpG sites are associated with cognitive 
functioning and survival but not with age, indicating that age-related 
changes alone may not be sufficient to explain the biology of aging 
(48). Recently Levine et al. (37) came up with DNAm PhenoAge, which 
is based on 513 CpG sites associated with the Gompertz model-based 

phenotypic age described above. In contrast, our DmI is based on only 
38 CpG sites, without employing any complicated models.

There are several considerations related to DmI that need to be ad-
dressed. First, its performance relative to other DNA methylation age 
metrics, such as DNAm PhenoAge, is unknown. Second, it is yet to be de-
termined what underlies the increase in effect size of DmI in the presence 
of calendar age, which is applicable to any of the DNA methylation-based 
measures. This could be a type of statistical enhancement in which a vari-
able increases the relationship of another variable with the dependent 
variable when both independent variables are present together in a regres-
sion model. We suspect complex statistical interactions of the variables 
involving one or more hidden variables. Third, we are uncertain about the 
replicability of the properties of DmI calculated from the 38 CpG sites. 
Svane et al. (47) built a good mortality prediction model using 14 CpG 
sites but it did not perform well in independent samples. Therefore, it is 
not surprising that none of our 38 CpG sites overlap with the 14 CpG 
sites or any of the top 24 CpG sites that were most significantly associ-
ated with mortality among the CpG sites compiled by Svane et al. (47). 
All these results highlight the varying nature of epigenetic measurements 
across different human populations. Fourth, it is unclear what biological 
properties, if any, the 38 CpG sites bear. Gene ontology analysis of genes 
linked to the 38 CpG sites found none significant (the number is too small 
for gene enrichment analysis). It is possible that these CpG sites constitute 
the mortality nodes in the network model of the frailty index (49). In con-
trast to the frailty nodes in this model, we suggest that mortality nodes 
may have a probability of damage that may increase with chronological 
age. Such a scenario would explain the enhancement of the effect size of 
Dml with calendar age.

In sum, using 3 independent population data sets, we showed 
that the frailty/deficit index constructed from selected health items 
performs best, especially among the oldest old groups where mor-
tality caused by biological aging is most prevalent. We also showed 
that a frailty index based on DNA methylation, which was generated 
by applying the frailty index calculation method, can predict mor-
tality even better than the best performing frailty index.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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