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Abstract

This paper proposes a Bayesian adaptive basket trial design to optimize the dose–schedule regimes 

of an experimental agent within disease subtypes, called “baskets”, for phase I-II clinical trials 

based on late-onset efficacy and toxicity. To characterize the association among the baskets and 

regimes, a Bayesian hierarchical model is assumed that includes a heterogeneity parameter, 

adaptively updated during the trial, that quantifies information shared across baskets. To account 

for late-onset outcomes when doing sequential decision making, unobserved outcomes are treated 

as missing values and imputed by exploiting early biomarker and low-grade toxicity information. 

Elicited joint utilities of efficacy and toxicity are used for decision making. Patients are 

randomized adaptively to regimes while accounting for baskets, with randomization probabilities 

proportional to the posterior probability of achieving maximum utility. Simulations are presented 

to assess the design’s robustness and ability to identify optimal dose–schedule regimes within 

disease subtypes, and to compare it to a simplified design that treats the subtypes independently.
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1 Introduction

Early-phase oncology clinical trials were traditionally designed to evaluate new treatments 

under the assumption that patients are homogeneous. Advances in cancer biology and 

genomic medicine have shifted the focus of cancer research and therapy from conventional 

chemotherapy to agents that target specific genetic or molecular abnormalities (Simon and 

Roychowdhury, 2013). Because different cancer histologies may share a common target, this 

motivates the evaluation of different cancers within the same clinical trial. To accommodate 
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this approach in the early-phase evaluation of a new targeted agent, basket trials have 

emerged as a way to account for different disease subtypes (Redig and Jänne, 2015; Ornes, 

2016). Basket trials provide an approach that is intermediate between conducting separate 

trials within cancer subtypes and ignoring subtypes entirely. Compared to traditional early-

phase trial designs, a basket trial has the advantages of borrowing strength between disease 

subtypes, which may improve the efficiency of the trial in terms of sample size and trial 

duration (Simon et al., 2016), and also may allow for the inclusion of patients with rare 

cancers.

Several adaptive basket trial designs have been proposed. Thall et al. (2003) and Berry et al. 

(2013) used hierarchical models to borrow information across different cancer subtypes. 

Simon et al. (2016) proposed a Bayesian model that includes a parameter to quantify 

heterogeneity of treatment effects across disease subtypes. Cunanan et al. (2017) proposed 

an efficient two-stage basket trial design. Trippa and Alexander (2017) proposed using 

adaptive randomization (AR) in a Bayesian basket trial design. Chu and Yuan (2018a) 

proposed a calibrated Bayesian hierarchical model to improve performance. Chu and Yuan 

(2018b) proposed a Bayesian latent-class design to account for subtype heterogeneity by 

adaptively grouping the disease subtypes into clusters based on their treatment responses, 

and then borrowing information within the clusters using a Bayesian hierarchical model.

Our research is motivated by a planned phase I-II trial to optimize the (dose, schedule) 

regime of PGF melphalan as a single agent preparative regimen for autologous stem cell 

transplantation (autosct) in patients with multiple myeloma (MM). This disease is 

heterogeneous, with several different classification systems, studied by Zhang et al. (2006). 

Most commonly, MM is dichotomized as hyperdiploid or not, in terms of pathogenesis 

pathways defined by genetic and cytogenetic abnormalities. A review is given by Fonseca, et 

al. (2009). The primary objective of our motivating trial is to determine the optimal (dose, 

schedule) treatment regime for each MM subtype by using efficacy and toxicity as co-

primary endpoints (Thall et al., 2013; Yuan, Nguyen and Thall, 2016). The trial will study 

three PGF melphalan doses, 200, 225 and 250 mg/m2, and three infusion schedules, 30 

minutes, 12 hours, and 24 hours, yielding nine treatment regimes. Toxicity is defined as the 

binary indicator of grade 3 mucositis lasting > 3 days or any grade 4 (severe) or 5 (fatal) 

non-hematologic or non-infectious toxicity, with onset within 30 days from the start of 

treatment infusion. In particular, a patient cannot be assessed as having “no toxicity” until 

he/she has been followed for 30 days. Efficacy is defined as the binary indicator of complete 

remission, evaluated at day 90. Thus, toxicity may be observed soon enough to feasibly 

apply a sequential toxicity-based decision rule, but the efficacy outcome is evaluated much 

later. Even if the accrual rate is moderately fast, a substantial number of treated patients will 

not have had their efficacy outcomes assessed, and some patients will not have had their 

toxicity outcomes assessed, at the time that treatment regimes must be chosen for newly 

enrolled patients. This is a major logistical difficulty when making outcome-adaptive 

decisions for new patients, including choosing (dose, schedule) or determining whether a 

treatment regime is unsafe. Furthermore, these adaptive decisions must be made for each 

MM subgroup.
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In this paper, we propose an efficient basket design for adaptively optimizing dose-schedule 

regimes, and conducting safety monitoring, within disease subtypes in phase I-II trials with 

late-onset (toxicity, efficacy) outcomes. This problem has not been considered by existing 

methods for basket trials. In the MM trial, the design allows patients with different subtypes 

to be given different dose-schedule regimes, an example of “precision medicine.” In phase I-

II trials with heterogeneous patients, a major concern is whether the dose–efficacy or dose-

toxicity curves differ between disease subtypes. This is more complex than basing decisions 

on one-dimensional treatment effects, which are the basis for existing basket trial designs. 

Dealing with multi-dimensional outcomes is challenging in early phase trial designs. See, 

for example, Lee, et al. (2019).

The MM trial is complicated by the following four issues: (1) Adaptive treatment decisions 

must account for the relationships between efficacy, toxicity, dose, schedule, and disease 

subtype. (2) For each disease subtype, the Pr(efficacy | dose, schedule, subtype) function 

may take a variety of possible forms that may or may not be monotonic in dose. Nearly all 

existing subtype-specific phase I dose-finding designs assume monotonic increasing dose–

toxicity curves. See, for example, Morita et al. (2017), Chapple and Thall (2018). (3) In the 

MM trial, because efficacy is scored at day 90 from the start of therapy, no efficacy data for 

patients who have been followed for less than 90 days are available, but it is not feasible to 

suspend accrual until all previously treated patients’ outcomes are fully observed, to apply 

outcome-adaptive rules. Thus, we may not use existing adaptive methods that consider only 

time-to-event outcomes and use follow-up time without efficacy as partial information, as in 

the designs of Cheung and Chappell (2000) and Yuan and Yin (2011). (4) Borrowing 

information across subtypes is not straightforward, because it is unknown a priori whether 

(dose, schedule) effects are homogeneous or heterogeneous between subtypes.

To construct a practical design that addresses all of these issues, we assume a flexible three-

level Bayesian hierarchical model to characterize the associations among dose, schedule, 

disease subtype, and the (toxicity, efficacy) outcome. The hierarchical model facilitates 

borrowing information adaptively across subtypes. To improve the probability of identifying 

optimal (dose, schedule) regimes within subtypes, the design repeatedly determines whether 

or not treatment effects are homogeneous across subtypes. We treat temporarily unobserved 

(“late-onset”) outcomes as missing values, and impute them by exploiting auxiliary 

information that is observed sooner, including low-grade toxicity and bioactivity data. This 

substantially improves efficiency when such auxiliary outcomes are informative. Elicited 

utilities of (toxicity, efficacy) outcomes are used as a basis for sequentially adaptive subtype-

specific (dose, schedule) optimization. To avoid getting stuck at a suboptimal regime, our 

proposed two-stage design adaptively randomizes each newly enrolled patient to a treatment 

regime according to that patient’s disease subtype.

A simpler design is proposed by Lin et al. (2019) to optimize dose–schedule regimes in a 

similar setting, but it assumes that the probability of treatment efficacy is strictly ordered for 

different subtypes, and it does not borrow any additional information to deal with delayed 

outcomes. In contrast, the design proposed in here is more general in that (1) it does not 

make any ordering assumption about the probability of efficacy, (2) it can adaptively identify 

response homogeneity or heterogeneity across subtypes based on the observed data, and (3) 
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it uses more of the available data, including bioactivity and low-grade toxicity data, in 

making treatment decisions when some previously treated patients have efficacy outcome 

data pending.

To make things concrete, we present the design in the context of the motivating trial. The 

design potentially can be applied quite widely, however. In many early phase oncology trials, 

the efficacy outcome is defined to be evaluated a substantial amount of time after the start of 

therapy. Moreover, it is routine practice to define toxicity as an ordinal categorical variable, 

in terms of severity grade, and to record biological or conventional prognostic variables 

related to efficacy prior to enrollment.

The remainder of this paper is organized as follows. In Section 2, we present the hierarchical 

model for the subtype–dose–schedule–response relationship and the Bayesian data 

augmentation model for unobserved outcomes. In Section 3, we describe the trial design, 

including the utility function, rules for trial conduct, and prior elicitation methods. In 

Section 4, we apply the proposed design to the motivating trial and conduct simulation 

studies to examine the design’s performance. We close with a brief discussion in Section 5 

and provide other technical details and the results of additional simulations in the 

Supplementary Material. The R code to implement and simulate the proposed design is 

available from the first author upon request.

2 Probability Model

2.1 Inference model

We consider a phase I-II trial to evaluate all combinations of D doses and S treatment 

schedules, for a total of DS treatment regimes, where each patient has one of B different 

tumor subtypes, known as “baskets.” Let n denote the number of patients accrued by an 

interim decision-making point in the trial, and index patients by i = 1, …, n. For the ith 

patient, denote toxicity by Xi, efficacy by Yi, cancer subtype by bi ∈ {1, …, B}, and the 

assigned dose-schedule treatment regime by ri = (di, si), for di ∈ {1, …, D}, and si ∈ {1, …, 

S}. We assume that Xi and Yi both are binary, with Xi = 1 indicating dose-limiting toxicity 

(DLT) and Yi = 1 indicating response. However, toxicity may occur and be observed at any 

time during a predefined assessment window [0, TX] and, similarly, efficacy is either 

observed at some time during a window [0, TY] or observed at TY. This is similar to the 

outcome structures considered in a phase I-II setting by Jin et al. (2014). Extension of this 

structure to accommodate bivariate ordinal outcomes, as in Thall et al. (2017), is 

conceptually straightforward but technically much more complex.

To characterize the joint distribution of the observed outcomes (Xi, Yi) as a function of 

regime ri and disease subtype bi, we propose a three-level Bayesian hierarchical model. This 

is more elaborate than a more conventional two-level hierarchical model, and is motivated 

by the desire to account for (1) effects of latent variables used to define the observed 

outcomes, done in the Level 1 model, and also (2) joint effects of patient subgroups and 

treatment regimes, done in the Level 2 model. This may be regarded as an extra level in the 

hierarchy that accounts for between-patient variability while borrowing information between 

subtypes by assuming that the mean (subtype, schedule) effects are iid across disease 
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subtypes. Level 3 then provides priors for mean and variance parameters appearing in Level 

2 of the hierarchical model.

Formally, following Albert and Chib (1993), Chen and Dey (1998), and Chib and Greenberg 

(1998), as a device to facilitate joint modeling and computation, we define each observed 

(Xi, Yi) pair in terms of real-valued bivariate normal latent variables, (ξi, ηi), as Xi = I(ξi > 

0) and Yi = I(ηi > 0), where I(A) denotes the indicator function for the event A. Thus, the 

joint distribution of (Xi, Yi) is induced by that of (ξi, ηi). The three-level hierarchical model 

that we use to specify the distribution of the latent variables (ξi, ηi), for disease subtype bi, 

and treatment regime ri = (di, si), is as follows:

Level 1: ξi ∣ bi, ri, ui, ξbi, ri, σξ
2indN ξbi, ri + ui, σξ

2 ,    i = 1, …, n

ηi ∣ bi, ri, vi, ηbi, ri, ση2
indN ηbi, ri + vi, ση2 ,    i = 1, …, n

Level 2: ui, vi ∣ Σu, v
i.i.d.BN 02, Σu, v ,    i = 1, …, n

ξb, r ∣ ξ̈r, τξ
i.i.d.N ξ̈r, τξ

2 ,    b = 1, …, B

ηb, r ∣ η̈r, τη
i.i.d.N η̈r, τη2 ,    b = 1, …, B

Level 3: ξ̈d, s ξ̈−d, s, ξ0, νξ
2i.i.d.N ξ0, νξ

2 I ξ̈d − 1, s < ξ̈d, s < ξ̈d + 1, s ,    d = 1, …, D

η̈d, s ∣ η0, νη2
i.i.d.N η0, νη2 ,    d = 1, …, D

τξ, τη ∣ ψ0, γ0
ind half‐Cauchy ψ0, γ0 .

(2.1)

Above, BN(02, Σu,v) denotes a bivariate normal distribution with mean vector 02 = (0, 0) and 

covariance matrix Σu,v, ξ̈−d, s denotes the subvector of ξ̈s = ξ̈1, s, …, ξ̈D, s  with ξ̈d, s deleted 

for d = 1, …, D, and N(·)I(A) denotes the truncated normal distribution having support given 

by the set A in the indicator function. We denote the vector of all fixed hyperparameters that 

must be prespecified by θ0 = σξ
2, ση2, Σu, v, ξ0, η0, νξ

2, νη2, ψ0, γ0 .

In Level 1 of the model, the patient-specific random effects (ui, vi) induce association 

between ξi and ηi, which in turn induces the association between Xi and Yi. Numerical 

values of the hyperparameters σξ
2, ση2  must be specified to ensure that the model is 

identifiable. The Level 2 priors on ξb, r and ηb, r facilitate information borrowing across 

cancer subtypes. Specifically, for each (dose, schedule) regime r, we assume that {ξb, r, b = 

1, ⋯, C} (or {ηb, r, b = 1, ⋯, C}) are generated from a common normal distribution, where 

ξ̈r, η̈r  are the mean (toxicity, efficacy) effects of regime r = (d, s), and τξ
2, τη2  characterize 

the degree of heterogeneity of toxicity and efficacy, respectively, between subtypes. As 

τξ
2, τη2 0, model (2.1) shrinks to the homogeneous case for which the regime effects in 

different subtypes are the same. In the motivating MM trial, based on clinical experience the 

toxicity distribution is assumed to be homogeneous between subgroups, but efficacy may be 

heterogeneous between subgroups. We thus simplify the model by setting τξ
2 = 0, while 
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τη2 ≠ 0. In general, however, the model can account for heterogeneous toxicity by specifying 

τξ
2 ≠ 0.

Since τη2 controls the degree to which efficacy information is borrowed across different 

tumor subtypes, rather than fixing τη2, we estimate its value adaptively based on the observed 

data. The choice of the prior on τη2 is critical to ensure good performance of the proposed 

design. To leverage information sharing, we follow the suggestion of Gelman (2006) by 

assuming a half-Cauchy(ψ0, γ0) prior on τη in Level 3 of the model, where ψ0 is the 

location parameter and γ0 is the scale parameter. When ψ0 = 0 and γ0 is large, this prior is 

weakly informative. To account for the common assumption that the risk of toxicity 

increases monotonically with dose for each schedule, in the Level 3 prior we impose an 

order constraint on {ξ̈d, s, d = 1, …, D} for each s at each Markov chain Monte Carlo 

sampling step. This ensures that the latent variable for toxicity increases stochastically in d. 

In contrast, we do not impose any monotonicity restriction on efficacy, so that the dose–

efficacy curve is very flexible and can take a wide variety of shapes. In the MM trial, there is 

no ordering based on infusion schedule. If the infusion times would affect the risk of toxicity 

in other settings, however, such prior ordering information also can be similarly incorporated 

in our design.

Under the hierarchical model (2.1), given ξbi, ri, ηbi, ri , the joint distribution of (ξi, ηi) can be 

obtained by integrating out (ui, vi), which yields

ξi, ηi ∣ μbi, ri, Σξ, η
indBN μbi, ri, Σξ, η ,    i = 1, …, n . (2.2)

The mean vector μbi,ri depends on both the ith patient’s cancer subtype bi and the treatment 

regime ri = (di, si), with μbi, ri = ξbi, ri, ηbi, ri , and

Σξ, η = Σu, v +
σξ

2 0

0 ση2
.

Suppose, temporarily, that the data of the first n patients are completely observed, and let 

Dn
com = xi, yi , i = 1, …, n  denote the complete dataset and θ = {μb,r, b = 1, …, B, d = 1, …, 

D, s = 1, …, S} ∪ Σξ,η. The complete data likelihood, based on Dn
com, is given by

L θ ∣ Dncom = ∏
i = 1

n ∫ℓxi

ℓxi + 1∫ℓyi

ℓyi + 1
f ξi, ηi ∣ μbi, ri, Σξ, η dηidξi,

where xi, yi = 0, 1, f ξi, ηi ∣ μbi, ri, Σξ, η  is the distribution induced by (2.2), and the cutoff 

vector (ℓ0, ℓ1, ℓ2) = (−∞, 0, ∞). Let π(θ | θ0) be the joint prior distribution on θ based on the 

hierarchical model (2.1). The joint posterior of θ is given by 

π θ θ0, Dn
com ∝ π θ ∣ θ0 L θ ∣ Dn

com .
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2.2 Imputation model

When the accrual of new patients is fast relative to the duration of the toxicity and efficacy 

assessment periods, TX and TY, there will be some patients for whom Xi and Yi are not 

known at the interim time when adaptive decisions must be made for newly enrolled 

patients. In the MM trial, the toxicity assessment window is [0, TX] = [0, 30] days, while 

efficacy is defined as complete remission at the TY = 90 day evaluation. If, for example, the 

accrual rate is 6 patients per month, then an average of 18 new patients will be accrued while 

waiting to evaluate Yi for the last enrolled patient. In other words, at the time of decision 

making, both the toxicity and efficacy data of previously treated patients are subject to 

temporary missingness, which is nonignorable (Liu et al., 2013). Once the patients who have 

pending Yi values reach their 90-day assessment times, their (toxicity, efficacy) outcomes 

have been observed completely. If the accrual were suspended repeatedly until all previously 

treated patients were fully assessed, this would lead to an impractically lengthy trial, and 

would greatly delay the treatment of new patients, which cannot be done in an actual trial. 

To address this realistically, we exploit additional interim auxiliary information related to the 

unobserved (Xi, Yi), as follows.

Let ti ≤ max{TX, TY} denote the follow-up time of patient i, within the observation 

windows, at some interim decision-making time. Let Ui denote the time to toxicity, with δ = 

(δX,i, δY,i) the response indicator vector of whether each outcome of the ith subject has been 

observed by ti. The binary toxicity outcome Xi is observed if Ui ≤ ti ≤ TX, so Xi = 1, in 

which case δX,i = 1, or the patient has finished the assessment without experiencing toxicity, 

i.e., ti ≥ TX and Ui > TX, so Xi = 0. In contrast, the efficacy outcome is observed if and only 

if the patient has reached their efficacy assessment time, that is, δY,i = I(ti ≥ TY). For 

example, if ti < Ui then Xi is missing and δX,i = 0 at ti. Therefore, the observed data for the 

first n patients are Dn
obs = δX, i, δY , i, ti, Xi, Y i , i = 1, …, n , where Xi = δX, iXi and 

Y i = δY , iY i.

To exploit information on low grade toxicity that may be available before the binary toxicity 

outcome Xi is observed, we define a binary indicator, Li, of whether the ith patient has 

experienced low-grade toxicity (Li = 1) or not (Li = 0). We assume that a patient with low-

grade toxicity is more likely to experience DLT, formally Pr(Xi = 1 | Li = 1) > Pr(Xi = 1 | Li 

= 0), so Li may be used to help predict as yet unobserved Xi. In our example, Li is available 

much sooner than TX. We assume that, if a patient has finished the toxicity assessment 

without experiencing any DLT, then his/her time-to-toxicity outcome is censored at TX. The 

observed event indicator is Xi, with Xi = 1 if that patient i had toxicity, and Xi = 0 if the time 

to toxicity for patient i is censored by the follow-up time ti or maximum toxicity assessment 

time TX. Formally, Xi = I Ui ≤ min ti, TX . We assume the following proportional hazards 

(PH) model for the distribution of the time to toxicity.
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PH model: λ Ui ∣ Li = λ0 Ui  exp βLi ,   i = 1, …, n,

Baseline model: Ui ∣ Li = 0, p, qi.i.dWeibull p, q ,    i = 1, …, n,
Priors: β ∣ σβ N 0, σβ I 0, ∞ ,

p αp, βp Gamma αp, βp , q αq, βq Gamma αq, βq ,

(2.3)

where λ(Ui | Li) is the conditional hazard function of the time to toxicity given the low-

grade toxicity indicator Li, λ0(Ui) is the baseline hazard, and θ1 = (σβ, αp, βp, αq, βq) are 

hyperparameters. We assume that the baseline survival follows a Weibull distribution, which 

is flexible enough to characterize the time-to-toxicity data in our MM setting. Let f(Ui | Li, 

p, q, β) be the density of Ui and denote the joint posterior distribution

π p, q, β ∣ Dnobs, θ1 ∝ π p, q, β ∣ θ1 LT Dnobs ∣ p, q, β

= π p, q, β ∣ θ1 ∏
i = 1

n
f ti ∣ Li, p, q, β XiS min ti, TX ∣ Li, p, q, β 1 − Xi ,

where S(· | Li, p, q, β) is the survival function. After obtaining the posterior distribution 

π p, q, β ∣ Dn
obs, θ1 , the missing toxicity outcome with δX,i = 0 can be imputed by a Bernoulli 

random variable with the probability of DLT given by

Pr Xi = 1 ∣ δX, i = 0, Dnobs, p, q, β = Pr Ui ≤ TX ∣ Ui ≥ ti, Dnobs, p, q, β

=
S ti ∣ li, p, q, β − S TX ∣ li, p, q, β

S ti ∣ li, p, q, β .

In the MM trial, 90-day response is defined as complete response (CR) or partial response 

(PR). In therapy of MM, CR is defined as is negative immunofixation on analysis of blood 

serum and urine, disappearance of any soft tissue plasmacytomas, and < 5% plasma cells in 

the bone marrow, and PR is defined as ≥ 50% of blood serum M-protein and ≥ 90% 

reduction in urinary M-protein level within 24 hours. Additional details are given by Durie 

et al. (2006). Thus, early measurement of the M-protein in the serum and urine are 

associated with the 90-day response indicator Yi.

Let Zik denote the biomarker measurement for the ith patient at time tik′ , k = 1, …, Ki, where 

Ki is the total number of biomarker measurements of the ith patient by the decision-making 

time ti. We model the longitudinal biomarker measurements Zik and link them to the efficacy 

outcome Yi using the following hierarchical model.
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Bioactivity Model: Zik ∣ tik′ , w0, wbi, ri, σz2
indN w0 + wbi, ritik′ , σz2 ,

Link Model: ηi ∣ wbi, ri, α, ση2
indN α0 + α1wbi, ri + α2wbi, ri

2 , ση2 ,

Level 1 Priors: wb, r ∣ wr, τw2
i.i.d.N wr, τw2 ,    b = 1, …, B

w0 ∣ τw0
2 N 0, τw0

2 ,

α1, α2 ∣ τα2
i.i.d.N 0, τα2 ,

σz2 IGamma αz, βz ,

Level 2 Priors: wr ∣ w0, νw2
i.i.d.N w0, νw2 ,

τw2 half‐Cauchy  ψ0, γ0 ,

(2.4)

where α = (α0, α1, α2) and θ2 = ση2, α0, τw0
2 , τα2, αz, βz, w0, νw2 , ψ0, γ0  are hyperparameters. In 

particular, α0 must be fixed to make the model identifiable. In the bioactivity model, w0 is 

the intercept, which can be viewed as the baseline biomarker value, and the second term 

wbi, ritik′  captures the trajectory of the biomarker. The relationship between the latent variable 

ηi and the random effect wbi, ri induces association between the biomarker measurements 

and the efficacy outcome. The random effect wb,r depends on the patient’s disease subtype 

and treatment regime. We also assume that {wb,r, b = 1, …, B} are sampled from a common 

normal distribution with variance parameter νw2 , which determines the amount of information 

shared across subtypes. In other words, νw2  is another heterogeneity parameter derived from 

the bioactivity data.

Denote w = {wb,r} for b = 1, …, B and all DS pairs r = (d, s). We denote the posterior 

distribution of (α, w) under the Bayesian hierarchical model (2.4) by π α, w θ2, Dn
obs , where 

Dn
obs = Dn

obs ∪ zi, i = 1, …, n  with zi = {zik, k = 1, …, Ki}. A missing efficacy outcome, with 

δY,i = 0, can be imputed as a Bernoulli random variable with success probability

Pr Yi = 1 ∣ δY , i = 0, Dn
obs, α, w, ση2 = ∫ℓ1

ℓ2
f ηi ∣ Dn

obs, α, w, ση2 dηi,

where the conditional distribution f ηi ∣ Dn
obs, α, w, ση2  is derived from (2.4).

To deal with temporarily missing toxicity/efficacy data, we adopt a Bayesian data 

augmentation (BDA) approach (Daniels and Hogan, 2008; Little and Rubin, 2014) to 

iteratively impute the missing data using the available auxiliary information (See 

Supplementary Material for detailed sampling steps). We sample from the posterior 

distribution of the model parameters based on the dataset completed using the imputed 

values. In the MM study, low-grade toxicity may be observed quickly, and some bioactivity 

variables are measured repeatedly. We use this auxiliary information to impute missing 

values of Xi and Yi, so that adaptive treatment decisions can be made in real time based on 

the completed dataset. The BDA algorithm iterates between two steps: an imputation (I) 
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step, and a posterior (P) step, in which posterior samples of the parameters are simulated 

based on the imputed data. Liu et al. (2013) and Jin et al. (2014) used a similar data 

augmentation approach in dose-finding studies with incompletely observed outcomes. 

However, they only used follow-up time and did not exploit auxiliary variables to help 

impute missing outcomes.

We carry out the BDA procedure for posterior sampling using JAGS via the R2jags package 

(Su and Yajima, 2015). The posterior samples obtained from JAGS can be utilized directly to 

calculate the posterior utility functions as specified in Section 3. In general, it takes 

approximately 2s in R to complete one BDA procedure with three chains and a total of 9,000 

posterior samples. When the sample size is 180 and the posterior estimates are estimated for 

each subtype after a cohort of three patients have been treated, it requires about 6 minutes to 

simulate one trial. We thus used a high performance computing cluster to conduct runs in 

parallel across 200 computational nodes.

3 Trial design

3.1 Utility function

We take a utility-based approach to quantify efficacy-toxicity risk-benefit trade-offs. To do 

this, a numerical utility U(x, y) is elicited for each of the elementary outcome pairs (x, y) = 

(0, 0), (1, 0), (0, 1), or (1, 1). A consistent utility function must satisfy the admissibility 

constraints U(1, 0) < min{U(1, 1), U(0, 0)} and max{U(1, 1), U(0, 0)} < U(0, 1). It is 

convenient to fix the best case utility U(0, 1) = 100 and the worst case utility U(1, 0) = 0, 

although this is not necessary, and ask the clinicians to specify the utilities U(0, 0) and U(1, 

1) between 0 and 100 for the two remaining intermediate outcome combinations. If U(1, 1) 

> U(0, 0), then efficacy is considered more important than toxicity, while if U(1, 1) < U(0, 

0), then avoiding toxicity matters more than achieving efficacy. For illustrations of the 

choice of U(x, y), see Houede et al. (2010), Thall and Nguyen (2012), or Yuan, Nguyen and 

Thall (2016).

For each disease subtype b, the mean utility of regime r = (d, s) given θ is

u θ, b, r = E U X, Y ∣ b = b, r = d, s , θ =

= ∑
x = 0

1
∑

y = 0

1
U x, y Pr X = x, Y = y ∣ b = b, r = d, s , θ .

The posterior probability that the treatment regime r = (d, s) achieves the highest utility 

within schedule s is

ω b, r = Pr u θ, b, r = max
r′ ∈ 1, s , …, D, s

u θ, b, r′ Θ, Dn
obs ,

where Θ = (θ0, θ1, θ2). The probability of assignment to regime r = (d, s) under the proposed 

AR procedure, which is given in detail below, depends on ω(b, r). This is different from the 

AR procedures used by Thall and Nguyen (2012), Lee, et al. (2015), and others, where the 
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AR probabilities are defined in terms of posterior mean utilities, i.e., 

ω b, r = E u θ, b, r ∣ Θ, Dn
obs . While ω b, r  summarizes only the first moment of the posterior 

of u(θ, b, r), the probability ω(b, r) is more variable because it accounts for the posterior 

distribution of u(θ, b, r). Hence, AR probabilities defined in terms of ω(b, r) lead to more 

extensive exploration of the set of regimes, so ω(b, r) has a smaller chance of getting stuck 

at suboptimal regimes.

3.2 Adaptive randomization

Let πX(b, r) = Pr{X = 1 | b, r} be the marginal probability of toxicity and πY(b, r) = Pr{Y = 

1 | b, r} the marginal probability of efficacy, for b = 1, …, B, d = 1, …, D, and s = 1, …, S, 

where r = (d, s). For each subtype b, we define a set of admissible regimes by adaptively 

screening out any regimes with either excessively high toxicity or unacceptably low efficacy 

based on the interim data. For each b, denote a fixed elicited upper limit πX on πX
T b, r  and a 

fixed elicited lower limit πY  on πyE b, r . The set of admissible regimes Ab for disease 

subtype b consists of all r = (d, s) that satisfy the two requirements

Pr πX b, r > πX ∣ Θ, Dn
obs < cX  and   Pr πY b, r < πY ∣ Θ, Dn

obs < cY ,

where cX and cY are fixed cutoff probabilities calibrated to obtain a design with good 

operating characteristics. If no regimes satisfy these admissible criteria, the trial is stopped 

early and no regime is selected.

The primary objective of the MM basket trial is to find the optimal admissible treatment 

regime r = (d, s) for each cancer subtype b. Since toxicity assessment is much faster than 

efficacy assessment, we consider a two-stage trial design. In stage 1, patients in each subtype 

are randomized fairly among schedules. Since toxicity is observable much earlier than 

efficacy, the toxicity data play a major role in stage 1, with treatment regimes that have 

excessively high toxicity probabilities within a subgroup being ruled out. In stage 2, as 

previously missing efficacy outcomes are observed for patients who have completed their 

efficacy assessment, this efficacy data is included in the decision making. We adaptively 

randomize the remaining patients among all acceptable regimes across different schedules.

Assume that patients are recruited sequentially to each schedule within each disease subtype. 

Let Nmax be the maximum total sample size, and pb the prevalence of subtype b = 1, …, B, 

so ∑b = 1
B pb = 1. For each subtype b, we fairly allocate κpbNmax patients to each schedule in 

stage 1. Thus, the remaining number of patients in stage 2 is (1 − κS)pbNmax. The two-stage 

trial is conducted as follows.

Stage 1.—If the next patient has disease subtype b, determine the admissible set Ab based 

on the most recent data Dn
obs.

1.1 Randomly choose a schedule, s, with probability 1/S each.
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1.2 If the selected schedule s has never been tested, then start the subtrial for this 

schedule at the lowest dose, i.e., r =(1, s). Otherwise, subject to the constraint that no 

untried dose may be skipped when escalating, randomly choose an admissible regime 

r = d, s ∈ Ab, d = 1, …, D, for the next patient with AR probability proportional to 

ω(b, r).

1.3 The subtrial for subtype b is either stopped when the maximum sample size 

κpbNmax is reached, or terminated early if no dose within this schedule is admissible 

for subtype b.

Stage 2.—For each newly enrolled patient in subtype b, first determine the optimal 

admissible regime rb* s = db* s , s  that has largest posterior probability of having the 

maximum mean utility within each s, i.e.,

db* s = arg max
d ∈ 1, …, D

 ω b, r I r ∈ Ab ∣ r = d, s ,    s = 1, …, S .

Then choose the schedule s ∈ {1, ⋯, S} with probability proportional to

ω b, rb* s = Pr uθ b, rb* s = max
rb′ ∈ rb* 1 , …, rb* S

uθ b, rb′ ∣ Θ, Dn
obs ,

and assign the new patient to regime db* s , s . In other words, the second stage adaptively 

randomizes patients to the best dose–schedule regime within each schedule. Repeat this 

process until the remaining patients have been treated in the second stage. If no regime is 

admissible for subtype b, then stop the trial for that subtype.

At the end of the study, based on the complete data DNmax, for each subtype b = 1, …, B, the 

optimal treatment regime rb* = db*, sb*  is defined as that with the largest posterior probability 

of having the maximum mean utility among all the regimes, formally

rb* = arg max
r ∈ Ab

 Pr u θ, b, r = max
r′

uθ b, r′ ∣ Θ, Dn
obs .

3.3 Design parameter calibration

To obtain a design with good performance, one must carefully calibrate the numerical values 

of both the hyperparameters, Θ = (θ0, θ1, θ2), and the design parameters, (Nmax, κ, πX, πY , 

cX, xY). In general, this can be done as follows. The method requires prior values of πX(b, r) 
and πY (b, r) to be elicited from the physicians who are planning the trial, for each subgroup 

b and regime r.

The method uses the idea of prior expected sample size (ESS) given by Morita et al. (2008) 

to specify the hyperparameters θ0, θ1, θ2. As the first step of an iterative process, fix the 

initial values of (σξ
2, ση2, Σu,v) and (νξ

2, νη2, ψ0, γ0). Given a regime r, the values of ξ0 and η0 
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can be obtained by matching the mode of the prior of each πX(b, r) and πY (b, r) with the 

corresponding elicited value. Using the initial fixed hyperparameters, prior samples of πX(b, 

r) and πY (b, r) values are generated using the hierarchical model (2.1). Following the 

approach of Lee, et al. (2015), each prior sample is fit to a Beta(a, b) distribution using the 

method of moments, with the prior ESS approximated as a + b. The hyperparameter θ0 can 

be calibrated repeatedly until a + b is near 1 for each (b, r) combination, which gives a 

reasonably vague prior. A similar procedure can be used to obtain θ1 and θ2. Additional 

details, including guidelines for choosing the numerical prior and design parameter values, 

are given in Section S2 of Supplementary Material.

The upper limit πX on πX(b, r), and the lower limit πY  on πY (b, r) also must be specified by 

the clinician. In practice, the maximum sample size Nmax of a phase I-II trial is specified 

based on practical limitations, and choosing Nmax may be informed by preliminary trial 

simulations to assess the design’s performance for a range of different feasible values. We 

recommend that at least D patients are assigned to each schedule in stage 1 for each subtype, 

to ensure that each dose within each schedule has a reasonable probability of being tried, 

unless the lowest dose is found to be unsafe for that schedule. Formally, this implies that κ ≥ 

maxb∈{1,…,B}{D/(pbNmax)}. For example, given Nmax = 180, D = 3, C = 3, and (p1, p2, p3) = 

(3/12, 4/12, 5/12), κ should be greater than 1/15, to ensure that at least one patient in 

subtype 1 can be assigned to each dose for each schedule in stage 1. When Nmax is adequate, 

we recommend allocating more patients to stage 1, to ensure that the preliminary estimate of 

the subgroup-specific optimal treatment regime for each subtype is reasonably accurate. In 

the MM study, Nmax = 180, and we assign at least 3D = 9 patients to each schedule for each 

subtype in stage 1.

4 Simulation Study

4.1 Simulation design

A simulation study to assess the proposed design’s performance was designed to be similar 

to the MM trial, with B = 3 different subtypes and patients in each subtype assigned to one 

of the nine dose–schedule regimes, for a total of 27 subtype-specific dose–schedule regimes. 

The toxicity window was TX = 30 days with the same upper limit πX =. 15 for all πX
T b, r . 

Low-grade toxicity was defined as grade 1 or 2 toxicity observed immediately. Bioactivity 

was simulated as a longitudinal variable measured on each of days 10, 20, ⋯, 90. Assuming 

equal subgroup proportions (p1, p2, p3) = (1/3, 1/3, 1/3), the maximum sample size Nmax = 

180 leads to an average of 6.6 patients assigned to each of the 27 subgroup-regime 

combinations. We also performed a sensitivity analysis to investigate the design’s 

performance for other (p1, p2, p3) vectors. We set κ = 0.15 so that the stage 1’s sample size 

was 81. We assumed an accrual rate of 10 patients per month, with patients arriving 

according to a Poisson process, so it took approximately 18 months to accrue 180 patients. 

The proposed design was examined under 12 different scenarios. The assumed fixed 

marginal probabilities (πX(b, r), πY (b, r)) in each scenario are given in Table S1 of the 

Supplementary Material, and the true mean utilities E(U(X, Y) | b, r) are given in Table S2 

of the Supplementary Material. The 12 scenarios have six homogeneous cases and six 

corresponding heterogeneous cases. For each homogeneous case, say scenario i, πY (b, r) 
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was the same across subtypes b = 1, 2, 3 for all r. For the corresponding heterogeneous case, 

{πX(b, r) : b = 1, 2, 3} and πY (1, r) were the same as in scenario i, but πY (b, r)’s were 

different for b = 2, 3. Comparing the design’s performance under scenarios i and i + 1 thus 

shows what is gained by borrowing information across subtypes. Let ub
max denote the largest 

expected utility for all 9 regimes in subtype b. The set of subgroup-specific optimal 

treatment regimes (OTRs) are defined as those have expected utilities no less than ub
max − 5, 

so in particular more than one r may be nominally “optimal.” The OTRs for each subtype 

under each scenario are indicated in boldface in Table S2 of the Supplementary Material. 

The data-generating algorithms for the toxicity and efficacy outcomes (xi, yi), i = 1, …, n, 

and for the bioactivity and low-grade toxicity data, are provided in the Supplementary 

Material.

In the simulations, we denote the proposed basket phase I-II trial design as BTD12. The 

detailed configuration of the BTD12 is provided in Supplementary Material. For comparison, 

we simulated a simpler naive design that is used quite often in practice. This naive design 

collapses the different disease subtypes into a single population, based on the assumption of 

homogeneity. To deal with delayed outcomes, this design would make adaptive treatment 

assignment decisions for new patients only after the outcomes of the previously treated 

patients are all observed. To evaluate the advantage of borrowing information across 

subtypes by the BTD12 design, as a comparator we also simulated a design that conducts 

separate, independent trials for each of the three subtypes, with maximum sample size 

pbNmax for each subtype b = 1, …, B. This design, hereafter referred to as ITD12, does not 

borrow information across subtypes for decision making. To evaluate the gain for borrowing 

information from additional bioactivity and low-grade toxicity data, we simulated the 

observed-data version of the BTD12 (denoted by BTD12
O ). This design does not borrow any 

information from additional bioactivity or low-grade toxicity data. In addition, it makes 

treatment decisions based on the patients whose outcomes have been completely observed 

by the decision-making time. As a benchmark for comparison, we also simulated the 

complete-data version of the BTD12 (denoted by BTD12
C ), which repeatedly suspends the 

accrual of new patients prior to each treatment assignment, to wait until all pending 

outcomes of perviously treated patients have been observed completely. As a result, BTD12
C

has no missing outcomes. However, BTD12
C  requires a very lengthy trial duration and is not 

feasible in practice. Nonetheless, it provides an upper bound for evaluating the performance 

of the proposed design since BTD12
C  uses all the data in decision making. Lastly, we include 

the design proposed in Lin et al. (2019) for ordered cancer subtypes (hereafter referred to as 

OTD) in the simulation study. The OTD design requires strong prior information on the 

efficacy probability ordering among different subtypes. To adapt this design in our 

simulation setting, we assume that the treatment efficacy probabilities follow the ordering: 

subtype 3 > subtype 2 > subtype 1. For each design, the posterior distributions were updated 

after each cohort of three patients was treated. We simulated each design 1000 times under 

each scenario.
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4.2 Simulation results

The simulation results of the proposed BTD12 design are summarized in Tables S3 and S4 of 

the Supplementary Material, including within-subtype selection percentages and number of 

patients allocated to each regime. The simulation results show that BTD12 has particularly 

high probabilities of selecting the optimal subgroup-specific treatment regimes, and it 

allocates most patients to the appropriate regimes. As mentioned, the marginal toxicity and 

efficacy probabilities are the same for subtype 1 in scenarios i and I + 1, for i an odd 

number, with the key difference that scenario i is a homogeneous case and scenario I + 1 is a 

heterogeneous case. Comparing the OTR selection percentages for subgroup 1 for each 

scenario pair i and I + 1 shows that the BTD12 design generally has a greater probability of 

OTR identification, primarily because it borrows information across subtypes in the 

homogeneous cases.

We next focus on comparisons among the BTD12, naive, ITD12, OTD, and BTD12
C  designs. 

Table 1 shows the percentages of selecting OTRs for each design. Table 2 provides other 

operating characteristics, including the percentage of patients allocated to overly toxic 

regimes with πX b, r > πX, the percentage of patients allocated to inefficacious regimes with 

πY b, r < πY , the percentage of trials selecting overly toxic regimes, summed across 

subgroups (so the maximum value is 300%), the average trial duration, and the trial 

efficiency index, defined as EI = ∑b = 1
B pb

ub − ub
ub
max − ub

, where ub is the empirical expected 

utility induced by one design for cancer subtype b, ub
max is the maximum utility among the 

regimes for subtype b, and ub is the empirical mean utility induced by uniformly allocating 

patients to each of the dose–schedule regimes within subtype b. EI has a maximum value of 

1, and measures how efficient the design is in treating the patients enrolled in the trial: If a 

design allocates as many patients as possible to the best treatment regime with 

E U X, Y ∣ b, r = ub
max, then its EI would approach one. Thus, larger EI corresponds to better 

design performance. Alternatively, if EI < 0, then the design is unacceptable since it 

performs worse than the equal allocation scheme.

Table 1 shows that, in the homogeneous scenarios indexed by odd numbers, on average the 

naive design achieves the best performance. This is because the homogeneity assumption of 

the naive design is correct in these scenarios. The naive design thus can be treated as the 

oracle design in the homogeneous scenarios. However, in the heterogeneous scenarios where 

the model is misspecified, the naive design has the smallest OTR selection percentage, on 

average. Across the 12 scenarios, the within-subtype OTR selection percentage by BTD12 is 

76%, on average, which exceeds that provided by ITD12 by approximately 15%. The 

advantage of BTD12 over ITD12 is quite large in the homogeneous scenarios, because 

BTD12 borrows information across subtypes while ITD12 does not. For example, in 

scenarios 1, 7, and 9, BTD12 has more than a 20% greater chance of identifying the OTRs 

than ITD12. The most striking case is scenario 5, in which the correct OTR selection 

percentage of BTD12 is almost double that of ITD12.

Lin et al. Page 15

Bayesian Anal. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the heterogeneous scenarios, indexed by even numbers, one concern is that excessive 

borrowing of information between subgroups may harm the performance of BTD12. The 

simulations show that BTD12 still outperforms ITD12 in most of the heterogeneous 

scenarios, which may be attributed to the ability of BTD12 to adaptively determine the 

amount of information borrowed from each subtype. For example, in scenario 4, subtype 2 

has two OTRs, regimes (1, 1) and (2, 3), that are totally different for subtypes 1 and 3. The 

simulation results from Table 1, and Tables S3 and S4 in the Supplementary Material, 

together, show that BTD12 is able to correctly detect this heterogeneity and allocate most 

patients to subtype-specific OTRs. The OTR selection percentage for subtype 2 is 70.5, 

which is particularly close to that based on ITD12. In addition, since subtypes 1 and 3 have a 

common OTR, as a result, BTD12 performs better than ITD12 in terms of the OTR selection 

percentages for subtypes 1 and 3, due to adaptive information borrowing. There is only one 

OTR for each subtype, and the three subtype-specific OTRs are different in scenario 6, 

which is difficult for BTD12 as information borrowing across subtypes may lead to incorrect 

OTR selections. However, the simulations show that, in scenario 6, BTD12 still is superior to 

ITD12. Another interesting result is seen in scenario 12, where the treatment effects are 

heterogeneous but the locations of the OTRs are the same across the three subtypes. In this 

case, it appears that BTD12 benefits greatly from information borrowing, since it yields 

higher OTR selection percentages than ITD12. Moreover, since the toxicity outcomes are 

assumed to be homogeneous across subtypes, there are always safety advantages from 

information sharing by BTD12. Borrowing toxicity information across subtypes improves 

the reliability of the rules for screening out overly toxic regimes, whereas the ITD12, which 

does not borrow information, has worse safety. This is shown by Table 2, which indicates 

that BTD12 selects fewer overly toxic regimes and allocates fewer patients to overly toxic 

regimes, compared to ITD12. Table 2 also shows that BTD12 uniformly dominates the ITD12 

design in terms of trial efficiency and average trial duration.

Comparing the operating characteristics of the BTD12 design and the observed-data BTD12
O

design shows that borrowing information from bioactivity and low-grade toxicity data makes 

the BTD12 more efficient. Table 2 shows that the EI values of BTD12 are generally larger 

than those of BTD12
O , and BTD12 allocates fewer patients to overly toxic treatment regimes. 

In addition, BTD12 yields higher selection percentages of optimal treatment regimes than 

BTD12
O , especially in the heterogeneous scenarios 2, 4, 6, and 8. Recall that the complete data 

design BTD12
C  is a benchmark that could never be used in practice since, by repeatedly 

suspending accrual, it would require an impossibly long trial duration. For example, BTD12
C

would require up to 180 months (15 years) to complete a trial of 180 patients. Since the 

decisions of BTD12 are made based on less data, unavoidably, it is less efficient than the 

optimal complete-data BTD12
C  design, according to the EI values in Table 2. In terms of other 

metrics, such as OTR selection or overdose control, BTD12 and BTD12
C  have very similar 

performance, however. Although outcomes are missing early in the trial, it appears that 

BTD12 is able to recover from the efficiency loss in the late-stage of the trial when more 

outcomes that had been temporarily missing are observed.

Lin et al. Page 16

Bayesian Anal. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparing the BTD12 basket design and the order-based OTD design, we found that these 

two methods yield similar OTR selection percentages in homogenous scenarios (indexed by 

odd numbers), where the ordering restriction of OTD was not violated. However, in 

heterogenous scenarios (indexed by even numbers) where the true subtype–efficacy structure 

does not satisfy the strong ordering restriction on the treatment efficacy probabilities among 

the three cancer subtypes, the performance of OTD is uniformly inferior to that of BTD12. 

An interesting finding is that OTD generally yields smaller numbers of patients at overly 

toxic or subtherapeutic regimes than BTD12, as noted in Table 2. This is potentially due to 

the fact that OTD puts highly informative priors on the efficacy probabilities, causing 

extensive information borrowing across different cancer subtypes. As a consequence, the 

convergence of parameter estimates based on OTD is faster, and thus OTD can quickly 

identify overly toxic or subtherapeutic regimes. But the accompanying risk with such a 

faster convergence rate is the higher chance of being trapped in suboptimal treatment 

regimes. On the other hand, BTD12 does not assume a strong association among cancer 

subtypes, and uses observed data to adaptively determine the level of information sharing. 

At the beginning of the trial when the information contained in the observed data is sparse, 

BTD12 tends to be more exploratory and test more untried regimes. Therefore, it has a 

higher number of patients treated at overly toxic of subtherapeutic regimes than BTD12. 

Nevertheless, BTD12 is much safer than the independent ITD12 design. Furthermore, BTD12 

uses more information, leading to a higher EI than OTD across all scenarios. This in turn 

implies that more patients are treated at optimal or nearly optimal regimens based on BTD12.

4.3 Sensitivity analyses

We carried out sensitivity analyses to assess the robustness of the BTD12 design, by 

considering different (a) prevalence proportions for the three subgroups, (b) sample sizes for 

stage 1 while keeping Nmax = 180 constant, (c) patient accrual rates, and (d) prior 

distributions on the heterogeneity parameters. In each sensitivity analysis, the other 

simulation configurations were unchanged from those in Section 4.1. In this section, we only 

describe the results (see Figure 1) under scenarios 1–4 of Table S1 in the Supplementary 

Material, since the substantive conclusions based on the other scenarios are the same.

In sensitivity assessment (a), we considered three prevalence ratios. The first two were p1 : 

p2 : p3 = 3 : 4 : 5, which enrolls more patients with subtype 3, and p1 : p2 : p3 = 5 : 4 : 3, 

which enrolls more patients with subtype 1. Additionally, since in Table 5 of Fonseca, et al. 

(2009) MM patients are classified as {hyperdiploid, non-hyperdiploid, other} with 

respective percentages 45, 40, 15, we examined the design’s behavior using the 

corresponding values p1 : p2 : p3 = 9 : 8 : 3. The simulation results show that, when the 

treatment effects are homogeneous (scenarios 1 and 3), the OTR selection percentages for 

the proposed design are not sensitive to the different prevalence ratios. However, when there 

are heterogeneous treatment effects, as in scenarios 2 and 4, the subtype-specific OTR 

selection percentage increases with the sample size of the subtype. For the most extreme 

imbalance p1 : p2 : p3 = 9 : 8 : 3, lower OTR selection percentages of about 60% are seen in 

Scenario 2 and 70% in Scenario 4, which are slightly below the values for the case p1 : p2 : 

p3 = 5 : 4 : 3, although the decrements are very small in Scenarios 1 and 3.
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In sensitivity assessment (b), we evaluated the design under three different stage 1 sample 

sizes, N1 = 54, 81, and 108, corresponding to κ = 0.10, 0.15, or 0.20, since N1 = κNmaxB. 

The simulations suggest that the OTR selection percentage is not sensitive to these rather 

large differences in stage 1 sample size. However, we also found that smaller κ results in a 

larger EI (results not shown). This is because, when κ is small, more patients are enrolled in 

stage 2, which is the optimization stage. As a result, a design with a smaller value of κ 
generally allocates more patients to OTRs, and hence is more efficient in this regard.

In sensitivity assessment (c), we examined accrual rates of 6, 10, and 15 patients per month, 

which lead to respective average trial durations of 33, 21, and 15 months. Given the fixed 

toxicity/efficacy assessment windows, the accrual rate determines the amount of missing 

data at the time of decision making. The faster new patients arrive, the more likely it will be 

that patients treated previously will have missing outcomes that must be imputed. The 

simulation results displayed in panel (c) of Figure 1 show that the OTR selection percentage 

for the proposed method is quite robust to this range of accrual rates. However, the faster the 

accrual rate, the larger the amount of missing data in the decision-making process. Although 

the accrual rate does not affect the OTR selection percentage for BTD12, additional 

simulations (results not provided) show that a fast accrual rate would make the proposed 

method less efficient and more aggressive.

In sensitivity assessment (d), we evaluated the effects of different prior distributions on the 

heterogeneity parameters τη and τw, which play critical roles in determining the amount of 

information borrowing between subtypes. We considered three cases: τη, 

τw
i.i.d.half‐Cauchy 0, 1 , τη, τw

i.i.d.half‐Cauchy 0, 5 , and τη, τw
i.i.d.IG 0.1, 0.1 . The half-

Cauchy(0, 1) prior places more probability mass on the homogeneous case, i.e., τη = τw = 0. 

The simulation results based on these three prior specifications are particularly close, 

suggesting that our design is not sensitive to these prior distributions.

5 Concluding remarks

The proposed phase I-II basket trial design finds the optimal subtype-specific dose–schedule 

by first assuming a three-level hierarchical model. Complications due to late-onset toxicity 

or efficacy outcomes are addressed by using a two-stage design with adaptive 

randomization, which is a natural approach to this problem. In stage 1, when most of the 

efficacy data are unavailable, toxicity data can be utilized for decision making to screen out 

unsafe treatment regimes. When more patients have completed their follow-up in stage 2, the 

efficacy outcome plays a major role in treating the remaining patients, and for choosing 

optimal (dose, schedule) regimes. To deal with different cancer subtypes, the Bayesian 

hierarchical model assumes that the dose–schedule treatment effects for different subtypes 

vary around a common mean, and thus facilitates adaptive shrinkage based on the observed 

data. The simulations show that the proposed design uniformly outperforms an approach that 

conducts separate independent trials within subgroups when the regime effects are 

homogeneous across subtypes. In addition, the operating characteristics of the proposed 

design are very close to those of the benchmark complete-data design, indicating that the 

efficiency loss due to missing data is minimal.
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Although the assumed imputation models for missing values of Xi and Yi may be incorrect, 

this will have negligible effects on the design’s performance, for several reasons. First, the 

imputation model only provides partial/indirect information, and the treatment-assignment 

decisions of the proposed method are mainly determined by the inference model. Second, 

outcomes are only temporarily missing. Once patients with pending outcomes have finished 

their entire assessments, temporarily unobserved outcomes become available and contribute 

to the estimation of the primary inference model (2.1). Third, the primary objective of the 

trial is not to obtain accurate inference on the subtype-specific regime-response 

relationships, but rather to identify optimal subtype-specific treatment regimes. Our 

simulations show that, even with misspecified imputation models, the proposed design still 

does a good job of allocating patients to optimal regimes and provides high probabilities of 

making correct selections.

While the Bayesian hierarchical model adaptively borrows information across cancer 

subtypes, a caveat is that it tends to shrink the subtype-specific treatment effects toward the 

common mean, which may lead to incorrect treatment assignment decisions when there is a 

mixture of homogeneous and heterogeneous subgroups. As suggested by an associate editor, 

we have considered four scenarios where the treatment effects are very similar for some 

subtypes and very different for the other subtypes. We compared the operating 

characteristics of BTD12 with those of the naive design, which is based on the subtype 

homogeneity assumption, and those of the ITD12 design, which is based on the subtype 

heterogeneity assumption. The simulation results given in the Supplementary Material show 

that the proposed BTD12 design strikes a balance between the full-information-borrowing 

naive design and the no-information-borrowing ITD12 design. However, in this case, one 

may hypothesize that the performance of BTD12 might be improved by adaptively 

combining or splitting the cancer subtypes using the latent subgroup membership variable 

approach of Chapple and Thall (2018). This is a potential area for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Sensitivity assessments of the proposed BTD12 method to (a) different prevalence ratios (p1 : 

p2 : p3); (b) different stage 1 sample sizes; (c) different patient accrual rates; (d) different 

prior distributions on τη and τw. The sensitivity assessments are conducted based on 

scenarios 1–4 of Table S1 in the Supplementary Material.
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Table 1:

Percentages of selecting optimal treatment regimes within each cancer subtype, for each of the five designs 

under each of the 12 scenarios in Table S1 of the Supplementary Material. Efficacy is assessed at day 90, and 

the assessment period for toxicity is 30 days. The accrual rate is 10 patients per month. Scenarios given in 

boxes correspond to heterogeneous cases. The subgroup-specific optimal treatment regimes are defined as 

those have expected utilities no less than ub
max − 5, where ub

max denotes the largest expected utility for all 9 

regimes in subtype b.

Method
Scenarios

Average
1 2 3 4 5 6 7 8 9 10 11 12

Cancer subtype 1

BTD12 91.7 80.1 80.4 70.2 73.4 47.8 85.7 72.3 75.9 69.1 85.1 84.8 76.4

Naive 96.6 43.2 85.6 49.8 69.3 19.5 92.8 46.5 83.5 64.2 93.2 91.0 69.6

ITD12 73.4 73.2 62.5 65.0 39.2 37.5 61.1 67.5 53.4 56.8 67.8 68.6 60.5

OTD 93.6 64.0 78.5 60.7 74.5 33.6 87.0 59.5 77.4 67.2 89.2 91.3 73.0

BTD12
O 91.6 74.3 81.2 68.0 68.8 45.8 85.8 68.4 72.5 69.1 85.4 85.4 74.7

BTD12
C 92.9 79.4 81.9 73.5 70.3 46.8 86.9 64.5 78.6 69.9 87.0 87.1 76.6

Cancer subtype 2

BTD12 93.6 76.8 79.4 70.5 73.9 61.3 84.9 81.6 74.2 79.3 87.6 86.6 79.1

Naive 96.6 18.9 85.6 18.6 69.3 26.3 92.8 47.1 83.5 48.2 93.2 91.0 64.3

ITD12 76.0 77.0 62.6 70.5 37.5 58.9 61.4 93.1 56.1 67.6 67.2 74.2 66.8

OTD 95.1 37.5 78.8 35.2 77.1 45.0 88.7 89.4 77.9 54.0 91.0 91.7 71.8

BTD12
O 91.3 72.8 80.2 66.1 70.6 62.2 84.0 81.0 74.8 74.4 86.2 88.1 77.7

BTD12
C 93.9 73.2 81.6 73.6 70.0 59.6 85.9 91.6 80.5 79.1 87.4 87.3 80.3

Cancer subtype 3

BTD12 92.8 77.0 79.6 84.4 73.6 73.2 84.0 53.2 76.3 51.2 85.3 83.9 76.2

Naive 96.6 3.6 85.6 66.4 69.3 32.5 92.8 19.3 83.5 41.0 93.2 91.0 67.4

ITD12 73.9 74.5 64.7 70.9 35.5 65.5 62.9 52.1 53.4 37.9 67.6 66.5 60.5

OTD 91.6 55.6 77.4 65.5 74.1 52.4 85.5 33.4 72.8 37.0 86.5 88.6 68.4

BTD12
O 94.2 77.4 80.8 77.2 70.0 68.7 84.1 49.1 74.3 52.4 86.2 85.0 75.0

BTD12
C 93.6 81.0 82.0 84.7 70.8 69.7 87.2 52.1 80.5 55.9 87.0 85.5 77.5
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Table 2:

Operating characteristics based on five designs under the 12 scenarios in Table S1 of the Supplementary 

Material, assuming accrual rate of 10 patients per month. Scenarios given in boxes correspond to 

heterogeneous cases. “% selection of overly toxic regimes” is the sum of the percentages of selecting overly 

toxic regimes for all three subtypes, so the maximum value is 300%.

Method
Scenarios

Average
1 2 3 4 5 6 7 8 9 10 11 12

% selection of overly toxic regimes

BTD12 1.4 1.4 1.1 7.3 4.3 2.6 13.3 41.1 49.7 53.5 12.2 18.0 17.2

Naive 0.0 0.9 0.0 3.3 3.3 0.3 6.0 27.9 32.4 32.4 6.0 11.7 10.4

ITD12 14.8 15.3 10.4 19.4 16.7 11.0 40.2 45.8 115.1 110.7 33.3 36.4 39.1

OTD 0.9 3.2 1.7 8.9 4.3 2.1 12.8 39.6 52.7 55.0 10.1 13.5 17.1

BTD12
O 1.0 2.8 0.6 10.0 4.0 2.4 16.8 42.8 53.6 55.2 16.1 20.4 18.8

BTD12
C 0.4 1.4 1.9 5.2 3.6 2.2 12.6 39.9 39.6 50.5 11.8 15.9 15.4

# patients allocated to overly toxic regimes

BTD12 16.2 16.0 15.7 22.0 9.5 6.5 22.1 30.2 81.2 79.7 17.5 18.9 28.0

Naive 12.2 12.4 12.2 18.2 6.8 4.1 17.8 25.4 74.0 74.9 12.4 14.0 23.8

ITD12 27.7 27.4 28.6 32.2 7.6 6.5 18.2 22.0 93.1 93.4 16.0 16.9 32.6

OTD 12.3 12.2 12.7 16.2 5.9 4.7 14.7 17.2 51.6 51.1 10.9 11.3 18.4

BTD12
O 20.4 19.4 19.6 26.9 10.1 7.6 24.5 31.4 84.6 84.5 19.8 19.8 30.7

BTD12
C 14.8 14.2 13.3 19.8 8.3 5.6 20.2 27.5 74.5 76.0 15.1 15.1 25.4

# patients allocated to subtherapeutic regimes

BTD12 9.9 12.1 37.8 43.6 9.2 10.6 47.5 53.5 21.4 27.7 64.6 70.2 34.0

Naive 9.0 17.1 32.9 59.2 7.9 9.0 41.2 72.0 19.8 33.1 58.3 62.8 35.3

ITD12 22.0 19.1 61.0 48.8 21.8 21.4 72.4 66.1 26.6 27.2 83.2 94.9 45.2

OTD 5.2 8.1 21.7 27.7 4.5 5.2 28.7 35.8 9.2 16.1 38.3 42.7 20.3

BTD12
O 10.9 12.1 39.4 42.2 9.7 10.3 50.4 54.6 19.3 26.2 64.3 71.8 34.3

BTD12
C 9.0 11.3 33.8 43.0 7.7 9.4 45.2 53.5 20.7 26.8 62.5 66.6 32.4

Trial efficiency index

BTD12 53.0 46.5 53.2 43.2 27.0 26.7 35.5 19.1 36.4 37.1 37.3 36.2 37.6

Naive 56.9 38.2 57.9 36.8 27.5 19.6 42.5 5.1 40.9 36.2 45.3 42.3 37.4

ITD12 28.0 27.0 35.4 33.6 26.8 14.9 19.6 17.1 24.6 27.2 25.8 23.2 25.3

OTD 41.9 33.2 44.6 29.2 18.6 16.8 28.7 6.4 29.5 27.3 38.3 30.6 21.0

BTD12
O 46.0 40.4 49.0 38.2 21.3 23.1 31.3 17.2 33.6 32.8 35.4 34.8 33.6

BTD12
C 54.0 48.6 56.6 45.7 26.8 26.9 38.7 22.1 40.0 39.9 40.5 39.8 40.0

Average trial duration (in months)

BTD12 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
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Method
Scenarios

Average
1 2 3 4 5 6 7 8 9 10 11 12

Naive 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0

ITD12 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0

OTD 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0

BTD12
O 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0

BTD12
C 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0
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