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Abstract

This paper proposes a Bayesian adaptive basket trial design to optimize the dose—schedule regimes
of an experimental agent within disease subtypes, called “baskets”, for phase I-11 clinical trials
based on late-onset efficacy and toxicity. To characterize the association among the baskets and
regimes, a Bayesian hierarchical model is assumed that includes a heterogeneity parameter,
adaptively updated during the trial, that quantifies information shared across baskets. To account
for late-onset outcomes when doing sequential decision making, unobserved outcomes are treated
as missing values and imputed by exploiting early biomarker and low-grade toxicity information.
Elicited joint utilities of efficacy and toxicity are used for decision making. Patients are
randomized adaptively to regimes while accounting for baskets, with randomization probabilities
proportional to the posterior probability of achieving maximum utility. Simulations are presented
to assess the design’s robustness and ability to identify optimal dose—schedule regimes within
disease subtypes, and to compare it to a simplified design that treats the subtypes independently.
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1 Introduction

Early-phase oncology clinical trials were traditionally designed to evaluate new treatments
under the assumption that patients are homogeneous. Advances in cancer biology and
genomic medicine have shifted the focus of cancer research and therapy from conventional
chemotherapy to agents that target specific genetic or molecular abnormalities (Simon and
Roychowdhury, 2013). Because different cancer histologies may share a common target, this
motivates the evaluation of different cancers within the same clinical trial. To accommodate
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this approach in the early-phase evaluation of a new targeted agent, basket trials have
emerged as a way to account for different disease subtypes (Redig and Janne, 2015; Ornes,
2016). Basket trials provide an approach that is intermediate between conducting separate
trials within cancer subtypes and ignoring subtypes entirely. Compared to traditional early-
phase trial designs, a basket trial has the advantages of borrowing strength between disease
subtypes, which may improve the efficiency of the trial in terms of sample size and trial
duration (Simon et al., 2016), and also may allow for the inclusion of patients with rare
cancers.

Several adaptive basket trial designs have been proposed. Thall et al. (2003) and Berry et al.
(2013) used hierarchical models to borrow information across different cancer subtypes.
Simon et al. (2016) proposed a Bayesian model that includes a parameter to quantify
heterogeneity of treatment effects across disease subtypes. Cunanan et al. (2017) proposed
an efficient two-stage basket trial design. Trippa and Alexander (2017) proposed using
adaptive randomization (AR) in a Bayesian basket trial design. Chu and Yuan (2018a)
proposed a calibrated Bayesian hierarchical model to improve performance. Chu and Yuan
(2018b) proposed a Bayesian latent-class design to account for subtype heterogeneity by
adaptively grouping the disease subtypes into clusters based on their treatment responses,
and then borrowing information within the clusters using a Bayesian hierarchical model.

Our research is motivated by a planned phase I-11 trial to optimize the (dose, schedule)
regime of PGF melphalan as a single agent preparative regimen for autologous stem cell
transplantation (autosct) in patients with multiple myeloma (MM). This disease is
heterogeneous, with several different classification systems, studied by Zhang et al. (2006).
Most commonly, MM is dichotomized as hyperdiploid or not, in terms of pathogenesis
pathways defined by genetic and cytogenetic abnormalities. A review is given by Fonseca, et
al. (2009). The primary objective of our motivating trial is to determine the optimal (dose,
schedule) treatment regime for each MM subtype by using efficacy and toxicity as co-
primary endpoints (Thall et al., 2013; Yuan, Nguyen and Thall, 2016). The trial will study
three PGF melphalan doses, 200, 225 and 250 mg/n?, and three infusion schedules, 30
minutes, 12 hours, and 24 hours, yielding nine treatment regimes. Toxicity is defined as the
binary indicator of grade 3 mucositis lasting > 3 days or any grade 4 (severe) or 5 (fatal)
non-hematologic or non-infectious toxicity, with onset within 30 days from the start of
treatment infusion. In particular, a patient cannot be assessed as having “no toxicity” until
he/she has been followed for 30 days. Efficacy is defined as the binary indicator of complete
remission, evaluated at day 90. Thus, toxicity may be observed soon enough to feasibly
apply a sequential toxicity-based decision rule, but the efficacy outcome is evaluated much
later. Even if the accrual rate is moderately fast, a substantial number of treated patients will
not have had their efficacy outcomes assessed, and some patients will not have had their
toxicity outcomes assessed, at the time that treatment regimes must be chosen for newly
enrolled patients. This is a major logistical difficulty when making outcome-adaptive
decisions for new patients, including choosing (dose, schedule) or determining whether a
treatment regime is unsafe. Furthermore, these adaptive decisions must be made for each
MM subgroup.
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In this paper, we propose an efficient basket design for adaptively optimizing dose-schedule
regimes, and conducting safety monitoring, within disease subtypes in phase I-11 trials with
late-onset (toxicity, efficacy) outcomes. This problem has not been considered by existing
methods for basket trials. In the MM trial, the design allows patients with different subtypes
to be given different dose-schedule regimes, an example of “precision medicine.” In phase I-
Il trials with heterogeneous patients, a major concern is whether the dose—efficacy or dose-
toxicity curves differ between disease subtypes. This is more complex than basing decisions
on one-dimensional treatment effects, which are the basis for existing basket trial designs.
Dealing with multi-dimensional outcomes is challenging in early phase trial designs. See,
for example, Lee, et al. (2019).

The MM trial is complicated by the following four issues: (1) Adaptive treatment decisions
must account for the relationships between efficacy, toxicity, dose, schedule, and disease
subtype. (2) For each disease subtype, the Pr(efficacy | dose, schedule, subtype) function
may take a variety of possible forms that may or may not be monotonic in dose. Nearly all
existing subtype-specific phase | dose-finding designs assume monotonic increasing dose—
toxicity curves. See, for example, Morita et al. (2017), Chapple and Thall (2018). (3) In the
MM trial, because efficacy is scored at day 90 from the start of therapy, no efficacy data for
patients who have been followed for less than 90 days are available, but it is not feasible to
suspend accrual until all previously treated patients’ outcomes are fully observed, to apply
outcome-adaptive rules. Thus, we may not use existing adaptive methods that consider only
time-to-event outcomes and use follow-up time without efficacy as partial information, as in
the designs of Cheung and Chappell (2000) and Yuan and Yin (2011). (4) Borrowing
information across subtypes is not straightforward, because it is unknown a priori whether
(dose, schedule) effects are homogeneous or heterogeneous between subtypes.

To construct a practical design that addresses all of these issues, we assume a flexible three-
level Bayesian hierarchical model to characterize the associations among dose, schedule,
disease subtype, and the (toxicity, efficacy) outcome. The hierarchical model facilitates
borrowing information adaptively across subtypes. To improve the probability of identifying
optimal (dose, schedule) regimes within subtypes, the design repeatedly determines whether
or not treatment effects are homogeneous across subtypes. We treat temporarily unobserved
(“late-onset™) outcomes as missing values, and impute them by exploiting auxiliary
information that is observed sooner, including low-grade toxicity and bioactivity data. This
substantially improves efficiency when such auxiliary outcomes are informative. Elicited
utilities of (toxicity, efficacy) outcomes are used as a basis for sequentially adaptive subtype-
specific (dose, schedule) optimization. To avoid getting stuck at a suboptimal regime, our
proposed two-stage design adaptively randomizes each newly enrolled patient to a treatment
regime according to that patient’s disease subtype.

A simpler design is proposed by Lin et al. (2019) to optimize dose-schedule regimes in a
similar setting, but it assumes that the probability of treatment efficacy is strictly ordered for
different subtypes, and it does not borrow any additional information to deal with delayed
outcomes. In contrast, the design proposed in here is more general in that (1) it does not
make any ordering assumption about the probability of efficacy, (2) it can adaptively identify
response homogeneity or heterogeneity across subtypes based on the observed data, and (3)

Bayesian Anal. Author manuscript; available in PMC 2022 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Linetal. Page 4

it uses more of the available data, including bioactivity and low-grade toxicity data, in
making treatment decisions when some previously treated patients have efficacy outcome
data pending.

To make things concrete, we present the design in the context of the motivating trial. The
design potentially can be applied quite widely, however. In many early phase oncology trials,
the efficacy outcome is defined to be evaluated a substantial amount of time after the start of
therapy. Moreover, it is routine practice to define toxicity as an ordinal categorical variable,
in terms of severity grade, and to record biological or conventional prognostic variables
related to efficacy prior to enroliment.

The remainder of this paper is organized as follows. In Section 2, we present the hierarchical
model for the subtype—dose—schedule-response relationship and the Bayesian data
augmentation model for unobserved outcomes. In Section 3, we describe the trial design,
including the utility function, rules for trial conduct, and prior elicitation methods. In
Section 4, we apply the proposed design to the motivating trial and conduct simulation
studies to examine the design’s performance. We close with a brief discussion in Section 5
and provide other technical details and the results of additional simulations in the
Supplementary Material. The R code to implement and simulate the proposed design is
available from the first author upon request.

2 Probability Model

2.1 Inference model

We consider a phase I-11 trial to evaluate all combinations of D doses and Streatment
schedules, for a total of DS treatment regimes, where each patient has one of B different
tumor subtypes, known as “baskets.” Let 77 denote the number of patients accrued by an
interim decision-making point in the trial, and index patients by /=1, ..., 7. For the /"
patient, denote toxicity by Xj, efficacy by Y;, cancer subtype by 5;€ {1, ..., B}, and the
assigned dose-schedule treatment regime by r;= (dj, s), for d;€ {1, ..., D}, and s;€ {1, ...,
S}. We assume that Xjand Y;both are binary, with X;= 1 indicating dose-limiting toxicity
(DLT) and Y;=1 indicating response. However, toxicity may occur and be observed at any
time during a predefined assessment window [0, 7] and, similarly, efficacy is either
observed at some time during a window [0, 7] or observed at 7y. This is similar to the
outcome structures considered in a phase I-11 setting by Jin et al. (2014). Extension of this
structure to accommodate bivariate ordinal outcomes, as in Thall et al. (2017), is
conceptually straightforward but technically much more complex.

To characterize the joint distribution of the observed outcomes (X}, Y;) as a function of
regime r;and disease subtype b;, we propose a three-level Bayesian hierarchical model. This
is more elaborate than a more conventional two-level hierarchical model, and is motivated
by the desire to account for (1) effects of latent variables used to define the observed
outcomes, done in the Level 1 model, and also (2) joint effects of patient subgroups and
treatment regimes, done in the Level 2 model. This may be regarded as an extra level in the
hierarchy that accounts for between-patient variability while borrowing information between
subtypes by assuming that the mean (subtype, schedule) effects are iid across disease
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subtypes. Level 3 then provides priors for mean and variance parameters appearing in Level
2 of the hierarchical model.

Formally, following Albert and Chib (1993), Chen and Dey (1998), and Chib and Greenberg
(1998), as a device to facilitate joint modeling and computation, we define each observed
(Xj, Y) pair in terms of real-valued bivariate normal latent variables, (&5 1), as X;= I(&;>
0) and Y;=I(n;> 0), where I(A) denotes the indicator function for the event A. Thus, the
joint distribution of (X}, Y;) is induced by that of (&, n,). The three-level hierarchical model
that we use to specify the distribution of the latent variables (&;, 7)), for disease subtype b;,
and treatment regime r;= (d; S)), is as follows:

Level 12 & | by, ris s &gy ris 0FN(Epy o + i 03), 0= 1,
ni | by, ris Ui, My, ri,a%@N(ﬁbi,rl. + v;, o-,%), i=1,...,n
Level 2: uy,v; | 2, SBN(0,, 5, ), i=1,....n
éb,r | ér, réi«'—if—i»'N(ér, Tg), b=1,...,.B
g, | ips o IN(i22), b=1,..., B
Level 3: & |€_g. . & Vgi"i*(-i‘ (G0 vA(Ea—rs<E€is<€ys1s) d=1....D

. iid,
g, s | 0. va==N(no.v), d=1,...D

@1

ind
75, Ty | wo, o half-Cauchy(wo, 7o)

Above, BN(0y, Z,, ) denotes a bivariate normal distribution with mean vector 0, = (0, 0) and
covariance matrix X, £_,4, ; denotes the subvector of & = (£ s.....&p, ) With &, ; deleted

for d=1, ..., D, and N(-)I(A) denotes the truncated normal distribution having support given
by the set A in the indicator function. We denote the vector of all fixed hyperparameters that

must be prespecified by 6y = (o2, o7, %, 1» 0. 10, V. v w0 0).

In Level 1 of the model, the patient-specific random effects (¢, v;) induce association
between &;and n; which in turn induces the association between X;and Y; Numerical

values of the hyperparameters (ag 6,2,) must be specified to ensure that the model is
identifiable. The Level 2 priors on &, , and 7, facilitate information borrowing across
cancer subtypes. Specifically, for each (dose, schedule) regime 7, we assume that {,, ,, b=
1, C}(or {7p,, b=1, -+, C}) are generated from a common normal distribution, where
(€. i) are the mean (toxicity, efficacy) effects of regime 7= (d, 3), and (<, z7) characterize
the degree of heterogeneity of toxicity and efficacy, respectively, between subtypes. As

1',;2:, r,% — 0, model (2.1) shrinks to the homogeneous case for which the regime effects in

different subtypes are the same. In the motivating MM trial, based on clinical experience the
toxicity distribution is assumed to be homogeneous between subgroups, but efficacy may be

heterogeneous between subgroups. We thus simplify the model by setting rg =0, while
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1'% # 0. In general, however, the model can account for heterogeneous toxicity by specifying

T?#O.

Since 77 controls the degree to which efficacy information is borrowed across different
tumor subtypes, rather than fixing 2, we estimate its value adaptively based on the observed
data. The choice of the prior on r,% is critical to ensure good performance of the proposed
design. To leverage information sharing, we follow the suggestion of Gelman (2006) by
assuming a half-Cauchy(yy, o) prior on z,,in Level 3 of the model, where yy is the
location parameter and y is the scale parameter. When yyp = 0 and yq is large, this prior is
weakly informative. To account for the common assumption that the risk of toxicity
increases monotonically with dose for each schedule, in the Level 3 prior we impose an
order constraint on {&, 5, d=1, ..., D} for each sat each Markov chain Monte Carlo
sampling step. This ensures that the latent variable for toxicity increases stochastically in d.
In contrast, we do not impose any monotonicity restriction on efficacy, so that the dose—
efficacy curve is very flexible and can take a wide variety of shapes. In the MM trial, there is
no ordering based on infusion schedule. If the infusion times would affect the risk of toxicity
in other settings, however, such prior ordering information also can be similarly incorporated
in our design.

Under the hierarchical model (2.1), given (Ebi,ri’ ﬁb’.,,l.), the joint distribution of (&}, n,) can be

obtained by integrating out (u; v;), which yields
ind .
&t | My, v ZeBN(Hp, rp Zey) i=1...n. 22

The mean vector [, ;depends on both the A patient’s cancer subtype b;and the treatment
regime ri= (dl! 5/), with Mbi’ r= (gbi”'i’ ﬁbi, "i)' and

Zen=Zu o+

%n

Suppose, temporarily, that the data of the first /2 patients are completely observed, and let
D™ = {(x;, y),i = 1,...,n} denote the complete dataset and 6= {u,, =1, ..., B, d=1, ...,
D, s=1, ..., 5 UZg, The complete data likelihood, based on D™, is given by

fx,'+1

n
Lol o) = ] fx,
i=1

fy[ +1
i /; Vi £ 8o | 1oy, vy Ze, n)anidé;,
where x;,y; = 0.1, f(fi,ﬂi | Wby, rp> Ze, ,1) is the distribution induced by (2.2), and the cutoff

vector (4, 4, ) = (-0, 0, ). Let (6| &) be the joint prior distribution on @based on the
hierarchical model (2.1). The joint posterior of @is given by
(660, DF°™) x (6 | 6p)L(6 | DF°™).
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Imputation model

When the accrual of new patients is fast relative to the duration of the toxicity and efficacy
assessment periods, 7xand 7y, there will be some patients for whom X;and Yjare not
known at the interim time when adaptive decisions must be made for newly enrolled
patients. In the MM trial, the toxicity assessment window is [0, 7x] = [0, 30] days, while
efficacy is defined as complete remission at the 7y = 90 day evaluation. If, for example, the
accrual rate is 6 patients per month, then an average of 18 new patients will be accrued while
waiting to evaluate Y;for the last enrolled patient. In other words, at the time of decision
making, both the toxicity and efficacy data of previously treated patients are subject to
temporary missingness, which is nonignorable (Liu et al., 2013). Once the patients who have
pending Yjvalues reach their 90-day assessment times, their (toxicity, efficacy) outcomes
have been observed completely. If the accrual were suspended repeatedly until all previously
treated patients were fully assessed, this would lead to an impractically lengthy trial, and
would greatly delay the treatment of new patients, which cannot be done in an actual trial.
To address this realistically, we exploit additional interim auxiliary information related to the
unobserved (X}, Y;), as follows.

Let ;< max{ Ty, Ty} denote the follow-up time of patient / within the observation
windows, at some interim decision-making time. Let U, denote the time to toxicity, with §=
(6x. 6yj) the response indicator vector of whether each outcome of the A subject has been
observed by #. The binary toxicity outcome Xjis observed if U;< ;< Tx, so X;=1,in
which case &x ;= 1, or the patient has finished the assessment without experiencing toxicity,
i.e., ;= Txand U;> Ty, so X;=0. In contrast, the efficacy outcome is observed if and only
if the patient has reached their efficacy assessment time, that is, 8y.;= I(#;= Ty). For
example, if & < Ujthen Xjis missing and §x ;= 0 at & Therefore, the observed data for the

first /7 patients are D™ = {(sx, 1, 6y, i, 1. Xi. ¥;).i = 1,....n}, where X, = 6x_;X; and
Y,‘ = 6Y,iYi'

To exploit information on low grade toxicity that may be available before the binary toxicity
outcome Xjis observed, we define a binary indicator, L; of whether the # patient has
experienced low-grade toxicity (L;= 1) or not (L;= 0). We assume that a patient with low-
grade toxicity is more likely to experience DLT, formally Pr(X;=1| L;=1) >Pr(X;=1| L;
=0), so L;may be used to help predict as yet unobserved Xj. In our example, L;is available
much sooner than 7. We assume that, if a patient has finished the toxicity assessment
without experiencing any DLT, then his/her time-to-toxicity outcome is censored at 7x. The
observed event indicator is X;, with X; = 1 if that patient 7had toxicity, and X; = 0 if the time

to toxicity for patient 7is censored by the follow-up time #; or maximum toxicity assessment
time 7x. Formally, X; = I{U; < min(z;, Tx)}. We assume the following proportional hazards

(PH) model for the distribution of the time to toxicity.
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PH model: A(U; | L;) = A49(U;) exp(BL;), i =1,...,n,
Baseline model: U; | L; = 0, p, q@Weibull(p, q), i=1,...,n,

223)
Priors: f | o4~N(0, 54)I(0, o0),

play, By~Gamma(ay, B,), qlay, B;~Gamma(ay, ).

where A(U;| L)) is the conditional hazard function of the time to toxicity given the low-
grade toxicity indicator L; Ag(U)) is the baseline hazard, and &, = (op, ap By ag By are
hyperparameters. We assume that the baseline survival follows a Weibull distribution, which
is flexible enough to characterize the time-to-toxicity data in our MM setting. Let {U;]| L,
P, g, P) be the density of U;and denote the joint posterior distribution

fr(p, ¢8| DY, 91) o« z(p.q. | 01 )LT(D?zbS | p.g. ﬂ)

n ~
=a(p.a.8161) [] 761 Li.p.a, ) XiS(min(t;, Tx) | Li. p.a. ﬂ)(1 - Xi)
i=1

where S(- | L; p, g, P) is the survival function. After obtaining the posterior distribution
#(p.a, 51 D, 61), the missing toxicity outcome with &x,;= 0 can be imputed by a Bernoulli

random variable with the probability of DLT given by
Pr(Xi =1]6x,i=0, DY, .. ﬂ) = Pr(Ui <Tx | U; > 1. D% p.g. ﬂ)

_S@ 1 1.p.q.8) = S(Tx | ;. p.q. )
NI XY) ’

In the MM trial, 90-day response is defined as complete response (CR) or partial response
(PR). In therapy of MM, CR is defined as is negative immunofixation on analysis of blood
serum and urine, disappearance of any soft tissue plasmacytomas, and < 5% plasma cells in
the bone marrow, and PR is defined as = 50% of blood serum M-protein and = 90%
reduction in urinary M-protein level within 24 hours. Additional details are given by Durie
et al. (2006). Thus, early measurement of the M-protein in the serum and urine are
associated with the 90-day response indicator Y.

Let Zj, denote the biomarker measurement for the /7 patient at time ¢}, k= 1, ..., Kj where

Kiis the total number of biomarker measurements of the /7 patient by the decision-making
time ¢ We model the longitudinal biomarker measurements Zj,and link them to the efficacy
outcome Y;using the following hierarchical model.
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Bioactivity Model: Zjy | i, wo, W, r;» G%EQN (LUO + Wy, riliks o-%),
. X 2ind. 2 2
Link Model: #; | wy,, ;> @, a,,~N(a0 + a Wy, + QW s a,,),

Level 1 Priors: wy , | wy, r,zﬂlf'légN(Er, T%)), b=1,...,.B

wy | T,%,O~N(0, T%UO), 24)

ii.d.
ay, @ | T(%‘\'N(O, T(,Zx)s
o2~IGamma(a, f,),
Level 2 Priors: w, | wy, v,%)lf'lég;N (LEO, vlzv)

72~half-Cauchy (wg, yo),

where a = (ag, a1, ap) and 0, = (o2, a, 72, 2. . Bz, i, Vit w0, v0) @re hyperparameters. In

particular, ag must be fixed to make the model identifiable. In the bioactivity model, wy is
the intercept, which can be viewed as the baseline biomarker value, and the second term
wp,, ritik captures the trajectory of the biomarker. The relationship between the latent variable

n;and the random effect Wh;, r; induces association between the biomarker measurements

and the efficacy outcome. The random effect wj, depends on the patient’s disease subtype
and treatment regime. We also assume that {w}, , =1, ..., B} are sampled from a common
normal distribution with variance parameter v2, which determines the amount of information

shared across subtypes. In other words, v2, is another heterogeneity parameter derived from
the bioactivity data.

Denote w = {wj, } for =1, ..., Band all DS pairs r= (d, s). We denote the posterior

~obs

distribution of (a, w) under the Bayesian hierarchical model (2.4) by n'(a, wl|0,, D, ) where

D = Oy (7,0 = 1,....n} with z;= {Zjx, k=1, ..., K}. A missing efficacy outcome, with

6y ;= 0, can be imputed as a Bernoulli random variable with success probability

~obs ) 72 ~obs )
PrYi=1|5Y’i=0,Dn LA, W, 05| = fl fl’]l'an ,a,w,an df’]l',

where the conditional distribution f(n,- | D a,w, a,%) is derived from (2.4).

To deal with temporarily missing toxicity/efficacy data, we adopt a Bayesian data
augmentation (BDA) approach (Daniels and Hogan, 2008; Little and Rubin, 2014) to
iteratively impute the missing data using the available auxiliary information (See
Supplementary Material for detailed sampling steps). We sample from the posterior
distribution of the model parameters based on the dataset completed using the imputed
values. In the MM study, low-grade toxicity may be observed quickly, and some bioactivity
variables are measured repeatedly. We use this auxiliary information to impute missing
values of X;and Y} so that adaptive treatment decisions can be made in real time based on
the completed dataset. The BDA algorithm iterates between two steps: an imputation (1)
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step, and a posterior (P) step, in which posterior samples of the parameters are simulated
based on the imputed data. Liu et al. (2013) and Jin et al. (2014) used a similar data
augmentation approach in dose-finding studies with incompletely observed outcomes.
However, they only used follow-up time and did not exploit auxiliary variables to help
impute missing outcomes.

We carry out the BDA procedure for posterior sampling using JAGS via the R2jags package
(Su and Yajima, 2015). The posterior samples obtained from JAGS can be utilized directly to
calculate the posterior utility functions as specified in Section 3. In general, it takes
approximately 2s in R to complete one BDA procedure with three chains and a total of 9,000
posterior samples. When the sample size is 180 and the posterior estimates are estimated for
each subtype after a cohort of three patients have been treated, it requires about 6 minutes to
simulate one trial. We thus used a high performance computing cluster to conduct runs in
parallel across 200 computational nodes.

3 Trial design

3.1 Utility function

We take a utility-based approach to quantify efficacy-toxicity risk-benefit trade-offs. To do
this, a numerical utility U(x, ) is elicited for each of the elementary outcome pairs (x, J) =
(0, 0), (1, 0), (0, 1), or (1, 1). A consistent utility function must satisfy the admissibility
constraints (1, 0) < min{ U1, 1), /0, 0)} and max{ A1, 1), A0, 0)} < 0, 1). Itis
convenient to fix the best case utility (0, 1) = 100 and the worst case utility ({1, 0) =0,
although this is not necessary, and ask the clinicians to specify the utilities ({0, 0) and (1,
1) between 0 and 100 for the two remaining intermediate outcome combinations. If ((1, 1)
> U0, 0), then efficacy is considered more important than toxicity, while if (1, 1) < (0,
0), then avoiding toxicity matters more than achieving efficacy. For illustrations of the
choice of Ux, J), see Houede et al. (2010), Thall and Nguyen (2012), or Yuan, Nguyen and
Thall (2016).

For each disease subtype b, the mean utility of regime r= (4, $) given @is

u(6.

,b,r

1 1
= Z Z Ux,y)Pr{X=x,Y=y|b=br=(d,s)0}.
x=0y=0

)= E{U(X,Y) | b=b,r =(d,s),0) =

The posterior probability that the treatment regime 7= (4, s) achieves the highest utility
within schedule sis

w(b,r) = Pr|u(0,b,r) = max {u(6,b,7)}|©, szs

¥ e {(L,s).....(D.s)}

5

where © = (6, 6;, 6,). The probability of assignment to regime r= (4| s) under the proposed
AR procedure, which is given in detail below, depends on (b, 7). This is different from the
AR procedures used by Thall and Nguyen (2012), Lee, et al. (2015), and others, where the
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AR probabilities are defined in terms of posterior mean utilities, i.e.,
~obs

@(b,r) = E|u(0,b,r) | ©, D, |. While @(b, r) summarizes only the first moment of the posterior

of (8, b, n), the probability w(b, r) is more variable because it accounts for the posterior
distribution of (6, b, ). Hence, AR probabilities defined in terms of w(b, /) lead to more
extensive exploration of the set of regimes, so w(b, 7) has a smaller chance of getting stuck
at suboptimal regimes.

3.2 Adaptive randomization

Let mx(b, ) = Pr{X=1| b, r} be the marginal probability of toxicity and (b, /) = Pr{Y'=
1| b, r} the marginal probability of efficacy, for b=1, ..., B, d=1, ..., D,and s=1, ..., S,
where r= (4, s). For each subtype b, we define a set of admissible regimes by adaptively
screening out any regimes with either excessively high toxicity or unacceptably low efficacy
based on the interim data. For each 4, denote a fixed elicited upper limit 7 on n)T((b, ryand a

fixed elicited lower limit zy on z£ (b, r). The set of admissible regimes <, for disease
subtype & consists of all = (d, $) that satisfy the two requirements

Pr{nx(b, r>7xx|0, 52bs} <c¢y and Pr{lry(b, r)<zy|®, 52‘35 <cy,

where cxand cy are fixed cutoff probabilities calibrated to obtain a design with good
operating characteristics. If no regimes satisfy these admissible criteria, the trial is stopped
early and no regime is selected.

The primary objective of the MM basket trial is to find the optimal admissible treatment
regime r=(d, ) for each cancer subtype b. Since toxicity assessment is much faster than
efficacy assessment, we consider a two-stage trial design. In stage 1, patients in each subtype
are randomized fairly among schedules. Since toxicity is observable much earlier than
efficacy, the toxicity data play a major role in stage 1, with treatment regimes that have
excessively high toxicity probabilities within a subgroup being ruled out. In stage 2, as
previously missing efficacy outcomes are observed for patients who have completed their
efficacy assessment, this efficacy data is included in the decision making. We adaptively
randomize the remaining patients among all acceptable regimes across different schedules.

Assume that patients are recruited sequentially to each schedule within each disease subtype.
Let Anax be the maximum total sample size, and pp the prevalence of subtype 6=1, ..., B,

S0 ZbB: 1 pp = 1. For each subtype b, we fairly allocate xp,/Vnax patients to each schedule in

stage 1. Thus, the remaining number of patients in stage 2 is (1 — xS)pp/Nmax- The two-stage
trial is conducted as follows.

Stage 1.—If the next patient has disease subtype 6, determine the admissible set </, based

on the most recent data D>,

1.1 Randomly choose a schedule, s, with probability 1/S each.
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1.2 If the selected schedule shas never been tested, then start the subtrial for this
schedule at the lowest dose, i.e., r=(1, ). Otherwise, subject to the constraint that no
untried dose may be skipped when escalating, randomly choose an admissible regime
r=(d,s)e oy d=1, ..., D, for the next patient with AR probability proportional to

(b, .

1.3 The subtrial for subtype &is either stopped when the maximum sample size
xPpNmax 1S reached, or terminated early if no dose within this schedule is admissible
for subtype b.

Stage 2.—For each newly enrolled patient in subtype 4, first determine the optimal
admissible regime rji(s) = (dj(s), s) that has largest posterior probability of having the

maximum mean utility within each s, i.e.,

di(s)= argmax w(b,rl{redy|r=(ds)}, s=1,.,85.
de{l,...,D}

Then choose the schedule s € {1, ---, S} with probability proportional to

co(b, r;’;(s)) =Pr ug(b, rZ(s)) = max {ug(b,rp)} 1 O, 52bs

rp € {r;;(l), s r;;(S)}

and assign the new patient to regime (d;(s), s). In other words, the second stage adaptively

randomizes patients to the best dose—schedule regime within each schedule. Repeat this
process until the remaining patients have been treated in the second stage. If no regime is
admissible for subtype b, then stop the trial for that subtype.

At the end of the study, based on the complete data Dpmax, for each subtype 6=1, ..., B, the
optimal treatment regime r; = (dj;, s;}) is defined as that with the largest posterior probability

of having the maximum mean utility among all the regimes, formally

rj = arg max Pr(u(6, b, r) = max{ug(b,r')} | ©, Eﬁbs
o

redyp

3.3 Design parameter calibration

To obtain a design with good performance, one must carefully calibrate the numerical values
of both the hyperparameters, ® = (6, €, 6,), and the design parameters, (Mmax, « Tx, zy,
Cx; Xy). In general, this can be done as follows. The method requires prior values of (b, /)
and rry (b, 1) to be elicited from the physicians who are planning the trial, for each subgroup
band regime r.

The method uses the idea of prior expected sample size (ESS) given by Morita et al. (2008)
to specify the hyperparameters 8y, 8;, 6. As the first step of an iterative process, fix the
initial values of (o, o7, £,,,) and (v, vi, w0, 70). Given a regime 7, the values of & and 7o
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can be obtained by matching the mode of the prior of each rx(b, /) and =y (b, 7) with the
corresponding elicited value. Using the initial fixed hyperparameters, prior samples of 7 x({b,
N and ity (b, ) values are generated using the hierarchical model (2.1). Following the
approach of Lee, et al. (2015), each prior sample is fit to a Beta(a, 6) distribution using the
method of moments, with the prior ESS approximated as a + 6. The hyperparameter 6, can
be calibrated repeatedly until a+ bis near 1 for each (6, r) combination, which gives a
reasonably vague prior. A similar procedure can be used to obtain 8; and 6. Additional
details, including guidelines for choosing the numerical prior and design parameter values,
are given in Section S2 of Supplementary Material.

The upper limit zx on (b, 1), and the lower limit zy on 7y (b, 1) also must be specified by

the clinician. In practice, the maximum sample size Npyax Of a phase I-11 trial is specified
based on practical limitations, and choosing N, may be informed by preliminary trial
simulations to assess the design’s performance for a range of different feasible values. We
recommend that at least D patients are assigned to each schedule in stage 1 for each subtype,
to ensure that each dose within each schedule has a reasonable probability of being tried,
unless the lowest dose is found to be unsafe for that schedule. Formally, this implies that x>
maxXpeq1,... s L Ol(PpN"™)}. For example, given Nmax = 180, D=3, C=3, and (o1, o, 3) =
(3/12, 4/12, 5/12), x should be greater than 1/15, to ensure that at least one patient in
subtype 1 can be assigned to each dose for each schedule in stage 1. When Ajpax is adequate,
we recommend allocating more patients to stage 1, to ensure that the preliminary estimate of
the subgroup-specific optimal treatment regime for each subtype is reasonably accurate. In
the MM study, Nimax = 180, and we assign at least 30 = 9 patients to each schedule for each
subtype in stage 1.

4 Simulation Study

4.1 Simulation design

A simulation study to assess the proposed design’s performance was designed to be similar
to the MM trial, with B = 3 different subtypes and patients in each subtype assigned to one
of the nine dose—schedule regimes, for a total of 27 subtype-specific dose—schedule regimes.

The toxicity window was T = 30 days with the same upper limit 7y =. 15 for all z(b, r).

Low-grade toxicity was defined as grade 1 or 2 toxicity observed immediately. Bioactivity
was simulated as a longitudinal variable measured on each of days 10, 20, ---, 90. Assuming
equal subgroup proportions (o1, o, p3) = (1/3, 1/3, 1/3), the maximum sample size Npax =
180 leads to an average of 6.6 patients assigned to each of the 27 subgroup-regime
combinations. We also performed a sensitivity analysis to investigate the design’s
performance for other (py, », p3) vectors. We set x = 0.15 so that the stage 1’s sample size
was 81. We assumed an accrual rate of 10 patients per month, with patients arriving
according to a Poisson process, so it took approximately 18 months to accrue 180 patients.
The proposed design was examined under 12 different scenarios. The assumed fixed
marginal probabilities (rzx{b, 1), Ty (b, N) in each scenario are given in Table S1 of the
Supplementary Material, and the true mean utilities E(U X, Y) | b, 1) are given in Table S2
of the Supplementary Material. The 12 scenarios have six homogeneous cases and six
corresponding heterogeneous cases. For each homogeneous case, say scenario /, rry (b, 1)
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was the same across subtypes 6= 1, 2, 3 for all r. For the corresponding heterogeneous case,
{mx(b, N :b=1,2, 3}and y (1, ) were the same as in scenario /, but zy (b, 1)’s were
different for 6= 2, 3. Comparing the design’s performance under scenarios 7and 7+ 1 thus
shows what is gained by borrowing information across subtypes. Let " denote the largest

expected utility for all 9 regimes in subtype 6. The set of subgroup-specific optimal
treatment regimes (OTRs) are defined as those have expected utilities no less than uj'®* -5,

so in particular more than one rmay be nominally “optimal.” The OTRs for each subtype
under each scenario are indicated in boldface in Table S2 of the Supplementary Material.
The data-generating algorithms for the toxicity and efficacy outcomes (x;, y)), /=1, ..., n,
and for the bioactivity and low-grade toxicity data, are provided in the Supplementary
Material.

In the simulations, we denote the proposed basket phase I-11 trial design as BTD1. The
detailed configuration of the BTD15 is provided in Supplementary Material. For comparison,
we simulated a simpler naive design that is used quite often in practice. This naive design
collapses the different disease subtypes into a single population, based on the assumption of
homogeneity. To deal with delayed outcomes, this design would make adaptive treatment
assignment decisions for new patients only after the outcomes of the previously treated
patients are all observed. To evaluate the advantage of borrowing information across
subtypes by the BTD1, design, as a comparator we also simulated a design that conducts
separate, independent trials for each of the three subtypes, with maximum sample size
PpNmax for each subtype 6=1, ..., B. This design, hereafter referred to as ITD15, does not
borrow information across subtypes for decision making. To evaluate the gain for borrowing
information from additional bioactivity and low-grade toxicity data, we simulated the
observed-data version of the BTD15 (denoted by BTD(I)Z). This design does not borrow any

information from additional bioactivity or low-grade toxicity data. In addition, it makes
treatment decisions based on the patients whose outcomes have been completely observed
by the decision-making time. As a benchmark for comparison, we also simulated the

complete-data version of the BTD1, (denoted by BTDICZ), which repeatedly suspends the
accrual of new patients prior to each treatment assignment, to wait until all pending
outcomes of perviously treated patients have been observed completely. As a result, BTD%
has no missing outcomes. However, BTD1C2 requires a very lengthy trial duration and is not
feasible in practice. Nonetheless, it provides an upper bound for evaluating the performance
of the proposed design since BTD1C2 uses all the data in decision making. Lastly, we include
the design proposed in Lin et al. (2019) for ordered cancer subtypes (hereafter referred to as
OTD) in the simulation study. The OTD design requires strong prior information on the
efficacy probability ordering among different subtypes. To adapt this design in our
simulation setting, we assume that the treatment efficacy probabilities follow the ordering:
subtype 3 > subtype 2 > subtype 1. For each design, the posterior distributions were updated
after each cohort of three patients was treated. We simulated each design 1000 times under
each scenario.
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4.2 Simulation results

The simulation results of the proposed BTD15 design are summarized in Tables S3 and S4 of
the Supplementary Material, including within-subtype selection percentages and number of
patients allocated to each regime. The simulation results show that BTD, has particularly
high probabilities of selecting the optimal subgroup-specific treatment regimes, and it
allocates most patients to the appropriate regimes. As mentioned, the marginal toxicity and
efficacy probabilities are the same for subtype 1 in scenarios 7and /+ 1, for 7an odd
number, with the key difference that scenario 7is a homogeneous case and scenario /+ 1 isa
heterogeneous case. Comparing the OTR selection percentages for subgroup 1 for each
scenario pair 7and /+ 1 shows that the BTD1, design generally has a greater probability of
OTR identification, primarily because it borrows information across subtypes in the
homogeneous cases.

We next focus on comparisons among the BTD15, naive, ITD;, OTD, and BTDY, designs.

Table 1 shows the percentages of selecting OTRs for each design. Table 2 provides other
operating characteristics, including the percentage of patients allocated to overly toxic
regimes with zx(b, r) > 7y, the percentage of patients allocated to inefficacious regimes with

#y(b, r) < my, the percentage of trials selecting overly toxic regimes, summed across

subgroups (so the maximum value is 300%), the average trial duration, and the trial

“p

.. . . —-u o . .
efficiency index, defined as EI = Zfz lpbvb_, where i, is the empirical expected
llb —up

utility induced by one design for cancer subtype b, up'®* is the maximum utility among the
regimes for subtype b, and i, is the empirical mean utility induced by uniformly allocating

patients to each of the dose—schedule regimes within subtype 4. El has a maximum value of
1, and measures how efficient the design is in treating the patients enrolled in the trial: If a
design allocates as many patients as possible to the best treatment regime with

E(U(X.,Y) | b,r) = up*®, then its El would approach one. Thus, larger EI corresponds to better

design performance. Alternatively, if EI < 0, then the design is unacceptable since it
performs worse than the equal allocation scheme.

Table 1 shows that, in the homogeneous scenarios indexed by odd numbers, on average the
naive design achieves the best performance. This is because the homogeneity assumption of
the naive design is correct in these scenarios. The naive design thus can be treated as the
oracle design in the homogeneous scenarios. However, in the heterogeneous scenarios where
the model is misspecified, the naive design has the smallest OTR selection percentage, on
average. Across the 12 scenarios, the within-subtype OTR selection percentage by BTDq, is
76%, on average, which exceeds that provided by ITD4, by approximately 15%. The
advantage of BTDq, over ITD1, is quite large in the homogeneous scenarios, because
BTD1, borrows information across subtypes while ITD15 does not. For example, in
scenarios 1, 7, and 9, BTD15 has more than a 20% greater chance of identifying the OTRs
than ITDy,. The most striking case is scenario 5, in which the correct OTR selection
percentage of BTD15 is almost double that of ITD».
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In the heterogeneous scenarios, indexed by even numbers, one concern is that excessive
borrowing of information between subgroups may harm the performance of BTD15. The
simulations show that BTD15 still outperforms ITD4, in most of the heterogeneous
scenarios, which may be attributed to the ability of BTD1, to adaptively determine the
amount of information borrowed from each subtype. For example, in scenario 4, subtype 2
has two OTRs, regimes (1, 1) and (2, 3), that are totally different for subtypes 1 and 3. The
simulation results from Table 1, and Tables S3 and S4 in the Supplementary Material,
together, show that BTD1, is able to correctly detect this heterogeneity and allocate most
patients to subtype-specific OTRs. The OTR selection percentage for subtype 2 is 70.5,
which is particularly close to that based on ITD15. In addition, since subtypes 1 and 3 have a
common OTR, as a result, BTD1, performs better than ITD15 in terms of the OTR selection
percentages for subtypes 1 and 3, due to adaptive information borrowing. There is only one
OTR for each subtype, and the three subtype-specific OTRs are different in scenario 6,
which is difficult for BTDq5 as information borrowing across subtypes may lead to incorrect
OTR selections. However, the simulations show that, in scenario 6, BTD15 still is superior to
ITD15. Another interesting result is seen in scenario 12, where the treatment effects are
heterogeneous but the locations of the OTRs are the same across the three subtypes. In this
case, it appears that BTD1, benefits greatly from information borrowing, since it yields
higher OTR selection percentages than ITD1,. Moreover, since the toxicity outcomes are
assumed to be homogeneous across subtypes, there are always safety advantages from
information sharing by BTD1,. Borrowing toxicity information across subtypes improves
the reliability of the rules for screening out overly toxic regimes, whereas the ITD1,, which
does not borrow information, has worse safety. This is shown by Table 2, which indicates
that BTDq, selects fewer overly toxic regimes and allocates fewer patients to overly toxic
regimes, compared to ITD1,. Table 2 also shows that BTD;, uniformly dominates the ITD1»
design in terms of trial efficiency and average trial duration.

Comparing the operating characteristics of the BTD4, design and the observed-data BTD(1)2

design shows that borrowing information from bioactivity and low-grade toxicity data makes
the BTD1, more efficient. Table 2 shows that the El values of BTD15, are generally larger

than those of BTD?Z, and BTD1 allocates fewer patients to overly toxic treatment regimes.
In addition, BTD15 yields higher selection percentages of optimal treatment regimes than
BTD?Z, especially in the heterogeneous scenarios 2, 4, 6, and 8. Recall that the complete data

design BTDY; is a benchmark that could never be used in practice since, by repeatedly

suspending accrual, it would require an impossibly long trial duration. For example, BTD1C2

would require up to 180 months (15 years) to complete a trial of 180 patients. Since the
decisions of BTD1, are made based on less data, unavoidably, it is less efficient than the

optimal complete-data BTD1C2 design, according to the El values in Table 2. In terms of other
metrics, such as OTR selection or overdose control, BTD;, and BTD1C2 have very similar

performance, however. Although outcomes are missing early in the trial, it appears that
BTD;, is able to recover from the efficiency loss in the late-stage of the trial when more
outcomes that had been temporarily missing are observed.
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Comparing the BTD15 basket design and the order-based OTD design, we found that these
two methods yield similar OTR selection percentages in homogenous scenarios (indexed by
odd numbers), where the ordering restriction of OTD was not violated. However, in
heterogenous scenarios (indexed by even numbers) where the true subtype—efficacy structure
does not satisfy the strong ordering restriction on the treatment efficacy probabilities among
the three cancer subtypes, the performance of OTD is uniformly inferior to that of BTD15.
An interesting finding is that OTD generally yields smaller numbers of patients at overly
toxic or subtherapeutic regimes than BTD15, as noted in Table 2. This is potentially due to
the fact that OTD puts highly informative priors on the efficacy probabilities, causing
extensive information borrowing across different cancer subtypes. As a consequence, the
convergence of parameter estimates based on OTD is faster, and thus OTD can quickly
identify overly toxic or subtherapeutic regimes. But the accompanying risk with such a
faster convergence rate is the higher chance of being trapped in suboptimal treatment
regimes. On the other hand, BTDq, does not assume a strong association among cancer
subtypes, and uses observed data to adaptively determine the level of information sharing.
At the beginning of the trial when the information contained in the observed data is sparse,
BTD, tends to be more exploratory and test more untried regimes. Therefore, it has a
higher number of patients treated at overly toxic of subtherapeutic regimes than BTDj,.
Nevertheless, BTDy, is much safer than the independent ITD1, design. Furthermore, BTD1»
uses more information, leading to a higher EI than OTD across all scenarios. This in turn
implies that more patients are treated at optimal or nearly optimal regimens based on BTD15.

4.3 Sensitivity analyses

We carried out sensitivity analyses to assess the robustness of the BTD1, design, by
considering different (a) prevalence proportions for the three subgroups, (b) sample sizes for
stage 1 while keeping Mnax = 180 constant, (c) patient accrual rates, and (d) prior
distributions on the heterogeneity parameters. In each sensitivity analysis, the other
simulation configurations were unchanged from those in Section 4.1. In this section, we only
describe the results (see Figure 1) under scenarios 1-4 of Table S1 in the Supplementary
Material, since the substantive conclusions based on the other scenarios are the same.

In sensitivity assessment (a), we considered three prevalence ratios. The first two were py :
M p3=3:4:5, which enrolls more patients with subtype 3,and p; : o : p3=5:4:3,
which enrolls more patients with subtype 1. Additionally, since in Table 5 of Fonseca, et al.
(2009) MM patients are classified as {hyperdiploid, non-hyperdiploid, other} with
respective percentages 45, 40, 15, we examined the design’s behavior using the
corresponding values py : p» : p3 =9 : 8 : 3. The simulation results show that, when the
treatment effects are homogeneous (scenarios 1 and 3), the OTR selection percentages for
the proposed design are not sensitive to the different prevalence ratios. However, when there
are heterogeneous treatment effects, as in scenarios 2 and 4, the subtype-specific OTR
selection percentage increases with the sample size of the subtype. For the most extreme
imbalance py : p» : ;3 =9 : 8: 3, lower OTR selection percentages of about 60% are seen in
Scenario 2 and 70% in Scenario 4, which are slightly below the values for the case p : p» :
3 =5:4: 3, although the decrements are very small in Scenarios 1 and 3.
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In sensitivity assessment (b), we evaluated the design under three different stage 1 sample
sizes, MV =54, 81, and 108, corresponding to x = 0.10, 0.15, or 0.20, since NV} = xNpyaB.
The simulations suggest that the OTR selection percentage is not sensitive to these rather
large differences in stage 1 sample size. However, we also found that smaller x results in a
larger EI (results not shown). This is because, when x is small, more patients are enrolled in
stage 2, which is the optimization stage. As a result, a design with a smaller value of x
generally allocates more patients to OTRs, and hence is more efficient in this regard.

In sensitivity assessment (c), we examined accrual rates of 6, 10, and 15 patients per month,
which lead to respective average trial durations of 33, 21, and 15 months. Given the fixed
toxicity/efficacy assessment windows, the accrual rate determines the amount of missing
data at the time of decision making. The faster new patients arrive, the more likely it will be
that patients treated previously will have missing outcomes that must be imputed. The
simulation results displayed in panel (c) of Figure 1 show that the OTR selection percentage
for the proposed method is quite robust to this range of accrual rates. However, the faster the
accrual rate, the larger the amount of missing data in the decision-making process. Although
the accrual rate does not affect the OTR selection percentage for BTDo, additional
simulations (results not provided) show that a fast accrual rate would make the proposed
method less efficient and more aggressive.

In sensitivity assessment (d), we evaluated the effects of different prior distributions on the
heterogeneity parameters z, and z,, which play critical roles in determining the amount of
information borrowing between subtypes. We considered three cases:

70" Lhalf-Cauchy(0, 1), 7,y 7, Lhalf-Cauchy(0, 5), and ,, 7,"-21G(0.1,0.1). The half-
Cauchy(0, 1) prior places more probability mass on the homogeneous case, i.e., ;= z,,= 0.

The simulation results based on these three prior specifications are particularly close,
suggesting that our design is not sensitive to these prior distributions.

5 Concluding remarks

The proposed phase I-11 basket trial design finds the optimal subtype-specific dose—schedule
by first assuming a three-level hierarchical model. Complications due to late-onset toxicity
or efficacy outcomes are addressed by using a two-stage design with adaptive

randomization, which is a natural approach to this problem. In stage 1, when most of the
efficacy data are unavailable, toxicity data can be utilized for decision making to screen out
unsafe treatment regimes. When more patients have completed their follow-up in stage 2, the
efficacy outcome plays a major role in treating the remaining patients, and for choosing
optimal (dose, schedule) regimes. To deal with different cancer subtypes, the Bayesian
hierarchical model assumes that the dose-schedule treatment effects for different subtypes
vary around a common mean, and thus facilitates adaptive shrinkage based on the observed
data. The simulations show that the proposed design uniformly outperforms an approach that
conducts separate independent trials within subgroups when the regime effects are
homogeneous across subtypes. In addition, the operating characteristics of the proposed
design are very close to those of the benchmark complete-data design, indicating that the
efficiency loss due to missing data is minimal.
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Although the assumed imputation models for missing values of X;and Y;may be incorrect,
this will have negligible effects on the design’s performance, for several reasons. First, the
imputation model only provides partial/indirect information, and the treatment-assignment
decisions of the proposed method are mainly determined by the inference model. Second,
outcomes are only temporarily missing. Once patients with pending outcomes have finished
their entire assessments, temporarily unobserved outcomes become available and contribute
to the estimation of the primary inference model (2.1). Third, the primary objective of the
trial is not to obtain accurate inference on the subtype-specific regime-response
relationships, but rather to identify optimal subtype-specific treatment regimes. Our
simulations show that, even with misspecified imputation models, the proposed design still
does a good job of allocating patients to optimal regimes and provides high probabilities of
making correct selections.

While the Bayesian hierarchical model adaptively borrows information across cancer
subtypes, a caveatis that it tends to shrink the subtype-specific treatment effects toward the
common mean, which may lead to incorrect treatment assignment decisions when there is a
mixture of homogeneous and heterogeneous subgroups. As suggested by an associate editor,
we have considered four scenarios where the treatment effects are very similar for some
subtypes and very different for the other subtypes. We compared the operating
characteristics of BTD1, with those of the naive design, which is based on the subtype
homogeneity assumption, and those of the ITD4, design, which is based on the subtype
heterogeneity assumption. The simulation results given in the Supplementary Material show
that the proposed BTD1, design strikes a balance between the full-information-borrowing
naive design and the no-information-borrowing ITDq, design. However, in this case, one
may hypothesize that the performance of BTD1, might be improved by adaptively
combining or splitting the cancer subtypes using the latent subgroup membership variable
approach of Chapple and Thall (2018). This is a potential area for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
Sensitivity assessments of the proposed BTD1, method to (a) different prevalence ratios (o :

. p3); (b) different stage 1 sample sizes; (c) different patient accrual rates; (d) different
prior distributions on z, and z,. The sensitivity assessments are conducted based on
scenarios 1-4 of Table S1 in the Supplementary Material.
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Percentages of selecting optimal treatment regimes within each cancer subtype, for each of the five designs
under each of the 12 scenarios in Table S1 of the Supplementary Material. Efficacy is assessed at day 90, and
the assessment period for toxicity is 30 days. The accrual rate is 10 patients per month. Scenarios given in
boxes correspond to heterogeneous cases. The subgroup-specific optimal treatment regimes are defined as

those have expected utilities no less than up'®* — 5, where u"®* denotes the largest expected utility for all 9

regimes in subtype b.

Scenarios

Method @ 5 El s |§| . 5 @ M Average
Cancer subtype 1

BTD;, 91.7 80.1 804 702 734 478 857 723 759 691 851 848 76.4
Naive 96.6 432 856 498 693 195 928 465 835 642 932 0910 69.6
ITDy, 734 732 625 650 392 375 611 675 534 568 678 68.6 60.5
OTD 936 640 785 607 745 336 870 595 774 672 892 0913 73.0
BTD102 916 743 812 680 688 458 858 684 725 69.1 854 854 4.7
BTD(I:Z 929 794 819 735 703 468 869 645 786 69.9 870 871 76.6
Cancer subtype 2

BTD;, 936 768 794 705 739 613 849 816 742 793 876 86.6 79.1
Naive 966 189 856 186 693 263 928 471 835 482 932 0910 64.3
ITD; 760 770 626 705 375 589 614 931 561 676 672 742 66.8
OTD 951 375 788 352 771 450 887 894 779 540 910 917 718
BTD?2 91.3 728 802 66.1 706 622 840 810 748 744 862 881 A
BTD% 939 732 816 736 700 596 859 916 805 791 874 873 80.3
Cancer subtype 3

BTDy, 928 770 796 844 736 732 840 532 763 512 853 839 76.2
Naive 966 3.6 856 664 693 325 928 193 835 410 932 0910 67.4
ITD1, 739 745 647 709 355 655 629 521 534 379 676 665 60.5
OTD 916 556 774 655 741 524 855 334 728 37.0 865 886 68.4
BTD102 942 774 808 772 700 687 841 491 743 524 862 850 75.0
BTD1C2 936 810 820 847 708 69.7 872 521 805 559 870 855 775
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Operating characteristics based on five designs under the 12 scenarios in Table S1 of the Supplementary

Table 2:

Material, assuming accrual rate of 10 patients per month. Scenarios given in boxes correspond to
heterogeneous cases. “% selection of overly toxic regimes” is the sum of the percentages of selecting overly

toxic regimes for all three subtypes, so the maximum value is 300%.

Scenarios
Method 5 E| s |§| . 5 M Average
% selection of overly toxic regimes
BTD;, 1.4 1.4 11 7.3 4.3 2.6 13.3 41.1 49.7 53.5 12.2 18.0 17.2
Naive 0.0 0.9 0.0 3.3 3.3 0.3 6.0 27.9 324 324 6.0 11.7 10.4
ITDy, 14.8 153 10.4 19.4 16.7 11.0 40.2 458 1151 110.7 333 36.4 39.1
OTD 0.9 3.2 1.7 8.9 4.3 21 12.8 39.6 52.7 55.0 10.1 135 17.1
BTD(I)Z 1.0 2.8 0.6 10.0 4.0 24 16.8 42.8 53.6 55.2 16.1 20.4 18.8
BTD?Z 0.4 14 19 5.2 3.6 2.2 12.6 39.9 39.6 50.5 11.8 159 154
# patients allocated to overly toxic regimes
BTDy, 16.2 16.0 15.7 22.0 9.5 6.5 221 30.2 81.2 79.7 175 18.9 28.0
Naive 12.2 12.4 12.2 18.2 6.8 4.1 17.8 25.4 74.0 74.9 12.4 14.0 23.8
ITD; 271.7 27.4 28.6 322 7.6 6.5 18.2 22.0 93.1 93.4 16.0 16.9 32.6
OTD 12.3 12.2 12.7 16.2 5.9 4.7 14.7 17.2 51.6 511 10.9 113 18.4
BTD(I)Z 20.4 19.4 19.6 26.9 10.1 7.6 24.5 314 84.6 84.5 19.8 19.8 30.7
BTD1C2 14.8 14.2 133 19.8 8.3 5.6 20.2 275 745 76.0 151 151 254
# patients allocated to subtherapeutic regimes
BTD;, 9.9 12.1 37.8 43.6 9.2 10.6 475 53.5 21.4 27.7 64.6 70.2 34.0
Naive 9.0 171 329 59.2 7.9 9.0 41.2 72.0 19.8 33.1 58.3 62.8 353
ITD1; 22.0 19.1 61.0 48.8 21.8 21.4 72.4 66.1 26.6 27.2 83.2 94.9 45.2
OTD 5.2 8.1 21.7 271.7 45 5.2 28.7 35.8 9.2 16.1 38.3 427 20.3
BTD?Z 10.9 12.1 39.4 422 9.7 10.3 50.4 54.6 19.3 26.2 64.3 718 34.3
BTD?Z 9.0 11.3 33.8 43.0 7.7 9.4 452 535 20.7 26.8 62.5 66.6 324
Trial efficiency index
BTD;; 53.0 46.5 53.2 43.2 27.0 26.7 355 19.1 36.4 37.1 37.3 36.2 37.6
Naive 56.9 38.2 57.9 36.8 275 19.6 425 51 40.9 36.2 453 423 374
ITDy, 28.0 27.0 354 33.6 26.8 14.9 19.6 171 24.6 27.2 258 232 25.3
OTD 41.9 33.2 44.6 29.2 18.6 16.8 28.7 6.4 29.5 27.3 38.3 30.6 21.0
BTD(I)Z 46.0 40.4 49.0 38.2 21.3 23.1 313 17.2 33.6 32.8 354 34.8 33.6
BTD1C2 54.0 48.6 56.6 45.7 26.8 26.9 38.7 22.1 40.0 39.9 40.5 39.8 40.0
Average trial duration (in months)
BTD;, 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
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Scenarios
Method 5 E| s |§| . 5 N Average
Naive 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0
ITD; 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0
OTD 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
BTD(I)Z 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
BTDlC2 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0
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