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The genetic background of lupus nephritis (LN) has not been completely elucidated. We performed a case-only study of 2886 SLE
patients, including 947 (33%) with LN. Renal biopsies were available from 396 patients. The discovery cohort (Sweden, n= 1091)
and replication cohort 1 (US, n= 962) were genotyped on the Immunochip and replication cohort 2 (Denmark/Norway, n= 833) on
a custom array. Patients with LN, proliferative nephritis, or LN with end-stage renal disease were compared with SLE without
nephritis. Six loci were associated with LN (p < 1 × 10−4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y, and ACER3) in the discovery cohort.
Variants in BANK1 showed the strongest association with LN in replication cohort 1 (p= 9.5 × 10−4) and proliferative nephritis in a
meta-analysis of discovery and replication cohort 1. There was a weak association between BANK1 and LN in replication cohort 2
(p= 0.052), and in the meta-analysis of all three cohorts the association was strengthened (p= 2.2 × 10−7). DNA methylation data in
180 LN patients demonstrated methylation quantitative trait loci (meQTL) effects between a CpG site and BANK1 variants. To
conclude, we describe genetic variations in BANK1 associated with LN and evidence for genetic regulation of DNA methylation
within the BANK1 locus. This indicates a role for BANK1 in LN pathogenesis.
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INTRODUCTION
Systemic lupus erythematosus (SLE) is a complex autoimmune
disease predominantly affecting women in their child-bearing age.
Lupus nephritis (LN) constitutes one of the main clinical challenges
in patients with SLE and is a cause of significant morbidity and
mortality. LN occurs in 15–55% of patients with SLE with a higher
incidence in Asian and African populations [1, 2]. Proliferative
glomerulonephritis, defined as class III/IV according to the
histopathological classification systems ISN/RPS 2003 or WHO, is
considered the most severe form of nephritis and requires
immunosuppressive treatment with glucocorticoids and mycophe-
nolate mofetil or cyclophosphamide [3, 4]. Despite improved
treatment regimens, approximately 10% of all LN patients develop
end-stage renal disease (ESRD) [1].
The genetic background to SLE has been thoroughly investi-

gated through candidate gene and genome-wide association
studies. To date, more than 100 SLE risk loci have been identified
that explain a significant proportion of SLE heritability [5]. Less is
known about the genetic background of LN. Distinct genetic
factors associated with LN in patients of different ethnicities have

been reported [2]. Some of the known SLE susceptibility genes,
which function in the immune system, seem to be also associated
with LN. Still, more renal-specific genes predispose specifically to
LN. Genetic variants in HLA-DR, ITGAM, FCGR, IRF5, TNIP1, STAT4,
and TNFSF4 have been associated with both SLE per se and with
LN, whereas APOL1, PDGFRA, and HAS2 have been identified in LN
specifically [6]. Genetic variants in STAT4 have been proposed to
associate with SLE and LN in general, and with a more severe
subtype of LN and renal failure [7, 8].
Epigenetic regulation, such as DNA methylation, has been

proposed to be of importance in SLE pathogenesis [9]. Epigenetic
mechanisms affect gene expression without altering the under-
lying DNA sequence. Hypomethylation of type I interferon-
induced genes in patients with SLE has been well established
[10, 11]. In LN, a role of epigenetic regulation has been suggested,
e.g., the type I interferon regulator gene IRF7 is differently
methylated between SLE patients with and without renal
involvement [12]. This case-only study aimed to further elucidate
the genetic and epigenetic background to LN and its subtypes
using data from three large SLE cohorts.
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RESULTS
Patient characteristics
Patient characteristics are described in Table 1. In all cohorts,
patients with LN were more often men, younger at diagnosis, and
presented with a higher number of American College of
Rheumatology (ACR) criteria than SLE patients without LN. Renal
biopsy data were available for the discovery and replication cohort
1, where proliferative nephritis was the most common class of
nephritis (173/278, 62% in the discovery cohort and 65/118, 55%
in replication cohort 1). Among LN patients with available renal
function data at follow-up, 38/290 (13%) in the discovery cohort
and 48/216 (22%) in replication cohort 1 proceeded to ESRD.

Genetic association analysis
Discovery cohort. First, we compared allele frequencies between
SLE patients with (n= 377) and without LN (n= 714) in the
discovery cohort. The strongest signals of association with LN
were found for four highly-linked single nucleotide polymorph-
isms (SNPs) close to the Nuclear Factor of Kappa Light Polypeptide
Gene Enhancer in B Cells Inhibitor, Alpha (NFKBIA) gene (top SNP
rs12433012, p= 1.3 × 10−5, OR: 0.54, 95% CI: 0.41–0.71). A total of
139 SNPs were associated with p < 0.001. Associations with p < 1 ×
10−4 were observed for SNPs in Calcium Voltage-Gated Channel
Subunit Alpha1 S (CACNA1S), Integrin Subunit Alpha 1 (ITGA1), B
Cell Scaffold Protein with Ankyrin Repeats 1 (BANK1), Olfactory
Receptor Family 2 Subfamily Y Member 1 (OR2Y1) and Alkaline
Ceramidase 3 (ACER3) (Fig. 1, Supplementary Table 1).
We then analyzed the association between genetic variants and

the subgroup proliferative nephritis, comparing LN patients with
proliferative nephritis (n= 173) versus SLE without nephritis (n=
714). Associations with p < 1 × 10−4 were found between
proliferative nephritis and SNPs in ITGA1 and BANK1 (Supplemen-
tary Table 2). Finally, analysis was performed comparing LN
patients who had reached ESRD (n= 38) versus SLE without
nephritis (n= 714). An association between LN patients with ESRD
and rs2763321 in the Membrane Palmitoylated Protein 7 (MPP7)
gene was found (p= 7.4 × 10−6) (Supplementary Table 3).

Replication cohort 1. All SNPs reaching a p-value of <0.001 in the
analyses of LN (nSNPs= 139), proliferative nephritis (nSNPs= 198),
or ESRD (nSNPs= 182) versus SLE without nephritis in the discovery
cohort were analyzed in replication cohort 1. In the analysis
of LN (n= 216) versus SLE without nephritis (n= 746), the
strongest signal of association was identified for a SNP in BANK1
(p= 9.5 × 10−4) (Table 2). When analyzing proliferative nephritis
(n= 65) and ESRD (n= 48) versus SLE without nephritis, no
associations with p < 0.001 were found (data not shown).
Meta-analyses were performed using the results from the

discovery and replication cohort 1 for LN, proliferative nephritis,
and ESRD versus SLE without nephritis, respectively. In the LN
meta-analysis, the strongest signal of association was found for
several highly-linked SNPs in BANK1 (pmeta= 3.3 × 10−7 for the top
SNP rs4699261), passing the Bonferroni-corrected p-value of
<1.0 × 10−6 (Table 2 and Supplementary Fig. 1). A regional
association plot of the BANK1 region based on the analysis of LN
versus SLE without nephritis in the discovery cohort, revealed a
cluster of highly linked SNPs in the first intron region (Fig. 2).
In the meta-analysis of proliferative nephritis versus SLE without

nephritis, associations were observed for several SNPs in BANK1
(top SNP rs6856202, pmeta= 1.3 × 10−5, r2= 0.53 to rs4699261,
Supplementary Table 4. Finally, a meta-analysis of ESRD versus SLE
without nephritis found an association for rs12573804 in long
intergenic non-protein coding RNA 1515 (LINC01515) on chromo-
some 10 (pmeta= 9.6 × 10−6, Supplementary Table 5).

Replication cohort 2. Ten SNPs from genes with the highest
signals of association to LN in the discovery cohort were selected
and successfully genotyped in replication cohort 2, consisting of

833 patients with SLE from Denmark and Norway. In the analysis
of patients with LN (n= 354) versus SLE without nephritis (n=
479), no significant associations between these SNPs and LN were
found (Supplementary Table 6). However, BANK1 SNP rs4699259
(r2= 0.98 to rs4699261) was associated with LN with p= 0.052
and the same direction of effect (OR: 0.80, 95% CI: 0.64–1.0) as in
the discovery cohort and replication cohort 1. A random-effect
meta-analysis was performed using the results for rs4699259 from
all three cohorts. In this meta-analysis, the association between LN
and BANK1 was strengthened (pmeta= 2.2 × 10−7).

Case-control analysis. To further corroborate the association
between LN and BANK1, the top SNP rs4699261 was investigated
in a case-control analysis of patients from the discovery cohort
with SLE (n= 1091) and stratified for SLE without nephritis
(n= 714) and LN (n= 377) versus healthy controls (n= 2707),
respectively. An association with SLE was found with p= 2.0 ×
10−4 and OR 0.80 (95% CI: 0.71–0.90). In the analysis of SLE
without nephritis versus controls, no association with BANK1 was
found (p= 0.28, OR 0.93, 95% CI: 0.81–1.07). When comparing LN
patients with controls, a stronger association with BANK1 SNP rs
4699261 could be determined with p= 6.0 × 10−7 and OR 0.62
(95% CI: 0.52–0.75).

Analysis of genetic regulation of DNA methylation by LN
associated variants
Next, we aimed to investigate whether the effects of LN-
associated genetic variants from this and previous studies, could
be mediated through changes in DNA methylation. A methylation
quantitative trait loci (meQTL) analysis was performed in whole
blood from 180 LN patients from the discovery cohort against the
genotypes. The strongest meQTL effects were identified in
Integrin Subunit Alpha M (ITGAM) and B lymphocyte kinase
(BLK). However, genetic variants in these genes were not
significantly associated with LN in this study (data not shown).
In the BANK1 locus, we identified meQTL effects between CpG site
cg01116491 and several SNPs (top SNP rs6856202, pmeQTL= 6.1 ×
10−4, r2= 0.52 to rs4699259, Supplementary Table 7). The SNP
rs6856202 major allele (A) is the risk allele, associated with LN in
the discovery cohort (p= 3.1 × 10−4) and with proliferative
nephritis in the meta-analysis of discovery and replication cohort 1
(p= 1.3 × 10−5) (Supplementary Tables 1, 4). LN patients
homozygous for the risk allele (A) showed hypermethylation at
CpG site cg01116491 compared with LN patients heterozygous
(GA) or homozygous for the non-risk allele (G) (Fig. 3). Association
with DNA methylation levels was also found for another block of
SNPs in the BANK1 locus (top SNP rs7683892, r2= 0.57 to
rs4699259). However, we did not observe a direct effect of the
top SNP rs4699259 with the level of DNA methylation at any
BANK1 CpG site (data not shown).

Functional annotation of associated variants
To further investigate the potential functional role of the identified
variants, public databases were queried. In Open Targets Genetics
[13], SNP rs4699259 is shown to be an expression quantitative trait
locus (eQTL) for BANK1 in lymphoblastoid cell lines, where the risk
allele (C) is associated with upregulated BANK1 mRNA expression
(β= 0.20, p= 5.8 × 10−10). Furthermore, in the GTEx portal,
rs4699259 is proposed to be an eQTL for BANK1 expression in
subcutaneous adipose tissue, and in HaploReg v4.1, rs4699262 (in
perfect LD with rs4699259, r2= 1.0) is shown to be an eQTL for
BANK1 expression in the blood (p= 5.7 × 10−5) [14].

DISCUSSION
Here we present associations between SNPs in BANK1 and LN in
the hitherto most extensive case-only study, comprising nearly
3000 patients with SLE of European ancestry. Furthermore, to the
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best of our knowledge, this is the first time BANK1 SNPs have been
associated with the severe form of proliferative nephritis. We also
present novel evidence for genetic regulation of DNA methylation
within the BANK1 locus in patients with LN. The top SNP is an eQTL
for BANK1, where the risk allele is associated with upregulated
BANK1 mRNA expression in lymphoblastoid cell lines.
To investigate potential functional effects of BANK1 variants, we

performed a meQTL analysis using whole blood from patients
with LN. The BANK1 top SNP associated with proliferative nephritis
displayed a meQTL effect, where LN patients homozygous for the
risk genotype showed hypermethylation at CpG site cg0111649.
The CpG site cg01116491 is located in a gene body region
approximately 3300 bp downstream of the transcription start site
of BANK1. Hypermethylation in gene body regions can be an
indication of increased gene expression [15, 16]. This meQTL site is
in a region that overlaps with histone modification mark
H3K36me3 in B cells, and H3K36me3 is associated with actively
transcribed gene bodies [17]. These findings could indicate an
effect of the risk genotype for BANK1 in upregulating BANK1
expression, mediated by epigenetic regulation.
Searching databases, SLE-associated variants in BANK1 are

eQTLs in multiple tissues, where the risk alleles associate with
increased BANK1 expression [18]. Interestingly, different eQTL
effects for BANK1 SNP rs4637409 (r2= 0.75 to rs4699261) in B cells
from healthy males and females have been described [19]. In
males, the SLE risk allele was associated with increased expression
of the SLC39A8 gene, located downstream of BANK1, whereas the
eQTL effect was opposite in females. Sex-biased eQTL effects are
intriguing since LN is more common in male patients with SLE,
and this topic warrants further investigations.
BANK1 is a B cell adaptor protein primarily expressed in mature

B cells and, to a lesser extent, in myeloid and plasmacytoid
dendritic cells [18, 20]. Upon B cell receptor activation, BANK1
enhances calcium mobilization, becomes tyrosine phosphorylated,
and can promote Lyn-mediated phosphorylation of inositol 1,4,5-
trisphosphate receptors (IP3R) [20]. BANK1 is 785aa in its full-
length (FL) form and has a smaller isoform lacking the second
exon (D2 isoform), which encodes a Toll/IL-1 receptor domain (TIR)
[21]. The SLE risk variant rs10516487 in exon 2, first described by
Kozyrev et al., is causing a nonsynonymous substitution (R61H)
and correlates with decreased splicing of exon 2 and a higher
expression of the FL isoform containing the TIR domain [21, 22].
BANK1 is functionally linked to Toll-like receptor (TLR) pathways
with downstream activation of transcription factor NFκB and IFN
regulatory factors, promoting B cell activation and inflammation,
and prominent features of SLE [23–26].

Genetic variations in BANK1 have convincingly been associated
with SLE and replicated in multiple ethnicities [18, 21, 27–30]. The
often investigated exon 2 non-synonymous variant rs10516487
(R61H), displays associations with SLE of approximately the same
magnitude in all studied ethnicities (≈OR 0.70 referring to the
minor allele), despite differences in minor allele frequency among
control populations. Martinez-Bueno et al. reported a trans-ethnic
mapping of BANK1 associations with SLE in Europeans and
African−Americans [18]. The associated markers covered the
same regions in both populations but haplotype blocks differed,
with greater diversity among African−Americans. We conclude
that although there are trans-ethnic differences in haplotype
structure, the association between SLE and BANK1 variants is
robust across ethnicities.
Stratifying SLE patients for the immunologic, hematological, or

renal ACR criteria or presence of anti-dsDNA antibodies, more
robust associations with BANK1 have been reported compared
with analyses of all SLE patients versus controls [28, 31]. Several
autoimmune diseases report associations with BANK1, including
systemic sclerosis, rheumatoid arthritis, autoimmune thyroid
disease, and germinal center formation in Sjögren’s syndrome
minor salivary glands, suggesting BANK1 as a general auto-
immunity susceptibility gene [32–35]. The exon 2 variant
rs10516487 (r2= 0.75 to rs4699259) was only weakly associated
with LN in our case-only analysis of the discovery cohort (OR
0.76, 95% CI 0.61–0.95, p= 0.015, data not shown) and did not
pass our filtering criteria for analysis in replication cohorts 1 and
2. The exon 2 variant may confer risk for SLE per se, whereas the
intron 1 variants here described having an impact on disease
severity such as LN, particularly the more severe subtype
proliferative nephritis.
While LN case-control analyses inherently also are SLE case-

control studies, we chose to perform and replicate a case-only
study comparing SLE patients with or without LN in an attempt to
refine the genetic contribution to LN. To further determine if the
BANK1 association was primarily with LN and not SLE per se, we
performed a post hoc case-control analysis of the discovery cohort
comparing SLE, SLE without nephritis, and LN versus controls,
respectively. We found the association with BANK1 to be stronger
in the analyses, LN versus controls and LN versus SLE without
nephritis (Table 2), than the SLE case-control and SLE without
nephritis-control analyses, and conclude the association with
BANK1 is mainly with LN. Chung et al. performed a case-only meta-
analysis of three genome-wide association studies (GWAS) and
found an association with LN within the PDGF receptor-α
(PDGFRA) gene locus [36]. Unfortunately, this gene locus was not

Fig. 1 Association between 112,815 SNPs and lupus nephritis in the discovery cohort. Manhattan plot displaying results from the
association analysis of 112,815 SNPs in 377 patients with lupus nephritis (LN) and 714 SLE without nephritis in the discovery cohort. The
negative logarithm of the p-value is plotted against the chromosomal location of the tested variants. Genes with SNPs associated with LN with
p < 1 × 10−4 are denoted.
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covered on the Immunochip used in this study. In our previous
study, the STAT4 SNP rs7582694 was associated with LN with
severe renal insufficiency (glomerular filtration rate <30mL/min/
1.73m2) [7]. The outcome of severe renal insufficiency was not
analyzed in the current study. However, STAT4 SNP rs10181656
(r2= 1.0 to rs7582694) displayed a trend for association with ESRD
(p= 0.07, data not shown).

Interestingly, in concordance with previous observations, the
highest signals of association with LN were assigned to genes
outside the MHC locus [7, 37]. The conclusion is that although
variants in the MHC locus confer the strongest genetic risk for SLE,
other gene regulatory regions are of importance in the develop-
ment of LN. The genetic risk for LN has also been assessed by
calculating genetic risk scores (GRS). Reid et al. concluded that SLE
patients with a high GRS were at increased risk of developing
renal disorder, including proliferative nephritis and ESRD [38].
Webber et al. found a high GRS to be associated with proliferative
nephritis and a greater risk for LN in childhood than in adult SLE
[37]. Both of these studies included BANK1 variants in their GRS.
The importance of B cells in LN pathogenesis and inflammation

is not well defined. Infiltrating B cells can be found in more than
half of LN biopsies, mostly in the tubulointerstitial compartment
[39]. Upregulated mRNA expression of BANK1 has been detected
in renal biopsies from LN patients, mainly in the tubulointerstitial
compartment [36]. Together with the genetic association between
BANK1 and LN presented here, a role for B cells in LN pathogenesis
is suggested. Single-cell RNA sequencing of samples from LN
biopsies has determined different B cell clusters with upregulated
genes defining an activated B cell state [40]. Despite this, trials
with anti-B cell therapy in LN have shown varying success [41, 42].
The use of genetic and other biomarkers may improve patient
stratification for treatment decisions in the future [43].
The strengths of this study are the replication of our findings in

large cohorts of well classified SLE patients with homogenous
genetic backgrounds. Renal biopsy data could be retrieved from
two of the cohorts, making it possible to assess the subgroup with
proliferative nephritis. The availability of DNA methylation data
from our discovery cohort adds an epigenetic layer to our genetic
findings. A limitation is a cross-sectional design, where follow-up
time varied between patients. Some SLE patients without nephritis
may develop LN in the future and the subtype may also change
during follow-up. This study only involved SLE patients of
European ancestry, and BANK1 associations to LN in other
ethnicities remain to be studied.
To conclude, we here demonstrate an association between BANK1

and LN in three large cohorts of SLE patients of European ancestry.
Furthermore, evidence of genetic control of methylation levels
within the BANK1 locus was observed. The upregulation of BANK1

Fig. 2 Regional association plot of the BANK1 region. Regional association plot of the BANK1 region displaying results from the analysis of
LN (n= 377) versus SLE without nephritis (n= 714) in the discovery cohort. Top SNP rs4699261 is in strong linkage disequilibrium (r² ≥ 0.8)
with a cluster of SNPs located in the first intronic region.

Fig. 3 Genetic regulation of methylation in lupus nephritis at
BANK1. Box plot of the BANK1 meQTL rs6856202−cg01116491. SNP
genotypes at rs6856202 are shown on the x-axis, methylation-beta
values of CpG site cg01116491 are shown on the y-axis. The major
allele (A) of rs6856202 is associated with increased methylation at
cg01116491 (pmeQTL= 6.0 × 10−4) in whole blood from patients with
LN. The major allele (A) is the risk allele for LN in the discovery
cohort and displayed the highest signal of genetic association to
proliferative nephritis in the meta-analysis of discovery and
replication cohort 1 (pmeta= 1.3 × 10−5). Box plot center lines
indicate medians, box boundaries indicate first and third quartile,
and whiskers extend to data points located within 1.5 times the
length of interquartile range from the median.
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gene expression in renal biopsies from LN patients indicates a
functional role of BANK1, although the exact mechanisms in LN
pathogenesis need to be further elucidated.

SUBJECTS AND METHODS
Patients
Discovery cohort. The discovery cohort included 1155 Swedish SLE
patients, out of which 1091 passed genotype quality control (QC). The
patients originated from Stockholm (n= 346), Linköping (n= 172), Uppsala
(n= 188), Lund (n= 153), and Umeå (n= 232), and fulfilled either the 1982
ACR criteria for SLE or had a biopsy confirmed LN in the presence of anti-
nuclear antibodies (ANA) or anti-double-stranded DNA (dsDNA) antibodies,
according to the SLICC classification [44, 45]. Renal biopsy histopathology
was available from 278/377 (73.7%) patients. The study protocol was
approved by the local ethics committees, and the patients gave written
informed consent.

Replication cohort 1. Replication cohort 1 included 962 patients after QC,
with SLE from the University of California, San Francisco (UCSF) Lupus
Genetics project [46]. European ancestry was determined using STRUC-
TURE, including individuals being ≥85% European [47]. All patients
completed an extensive questionnaire and the SLE diagnosis was
confirmed by medical record review according to the ACR criteria [45].
Renal biopsy histopathology was available from 118/216 (54.6 %) patients.
The study protocol was approved by the local ethics committees, and the
patients gave written informed consent.

Replication cohort 2. Replication cohort 2 consisted of 854 patients with
SLE from Denmark and Norway, all of self-reported European origin and
fulfilling ≥4 ACR criteria for SLE [45]. After QC, 833 patients remained for
analysis. The study protocol was approved by the local ethics committees,
and the patients gave written informed consent. Patient characteristics are
shown in Table 1.

Controls. Healthy blood donors were recruited as previously described
[48]. After QC, 2707 healthy controls remained.

Genotyping and quality control
The discovery cohort and controls were genotyped on the Illumina
Infinium Immunochip (San Diego, California, USA), containing 196,524
SNPs covering the major autoimmune diseases [49]. Genotyping was
performed at the SNP&SEQ Technology Platform, part of the National
Genomics Infrastructure (NGI) at Uppsala University, Sweden. SNP-based
QC filters were call rate >95%, Hardy−Weinberg equilibrium (HWE) p > 1 ×
10−6, and MAF > 0.05. Sample QC included principal component analysis
(PCA) performed on 1000 Genomes Project data, where individuals of non-
European ancestry were removed, cryptic relatedness analysis with the
removal of second-degree relatives or closer, and autosomal hetero-
zygosity with the removal of individuals with anomalously high (F ≤−0.1)
or low (F ≤ 0.1) heterozygosity. The sample call rate was set to 96%. After
QC, 112,815 SNPs remained for analysis.
Replication cohort 1 was genotyped on the Immunochip in four different

laboratories. The following QC was performed on the genotyping data
from each lab in the following order prior to merging data from all four
labs: (1) Removal of individuals with <80% complete genotyping, (2)
removal of SNPs with <95% call rate, and (3) removal of individuals with
<95% complete genotyping. Duplicates and first-degree relatives were
removed by identity-by-descent analysis [50]. Ancestry outliers with
substantial non-European ancestry were identified via EIGENSTRAT (>4SD
in top three principal components) and excluded [51]. SNPs with HWE p <
1 × 10−5 (based on European controls) were removed. After QC, 128,263
SNPs remained for analysis.
A total of 15 SNPs with association to LN in the discovery cohort (all p <

0.0002) (Supplementary Table 1) and annotated in or nearby a gene were
selected for genotyping in replication cohort 2. One SNP per gene in
NFKBIA, CACNA1S, PALLD, LOC10537883, ENPP2, and PKHD1L1 and two SNPs
in BANK1 and ITGA1 were successfully genotyped. Replication cohort 2 was
genotyped using the iPLEX chemistry on a MassARRAY system (Agena
Bioscience). QC included a minimum SNP and individual call rate of 90%.
Variants with differential missingness (p < 0.01) or HWE (p < 0.01, in
controls) were excluded. Ten SNPs and 833 patients passed QC and had
available information on LN occurrence according to ACR criteria (Denmark
n= 547, Norway n= 286) [45].

The regional association plot was generated in LocusZoom software
(Fig. 2). Linkage disequilibrium (LD) r2 values were derived from the 1000
Genomes Project CEU population (Northern Europeans from Utah) and
extracted from the LDlink service [52] using the LDlinkR package [53]
(Supplementary Fig. 1).

Methylation quantitative trait loci (meQTL) analysis
We performed a cis-meQTL analysis investigating DNA methylation levels
in whole blood from LN patients from the discovery cohort (n= 180 with
DNA methylation data available) against the genotypes of SNPs with a
nominal p-value <0.001 in LN versus SLE without nephritis analysis in the
discovery cohort (n= 110 SNPs) and SNPs in genes that had been
previously associated to LN (n= 482, n= 592 SNPs in total) [6]. DNA
methylation data were generated on the HM450k methylation array,
normalized and quality controlled as previously described [11]. All CpG
sites located within a 100 kb flanking region of these SNPs were included,
and methylation levels were tested in PLINK for genotype association in LN
patients assuming an additive model.

Definitions
LN was defined according to the ACR nephritis criteria or a biopsy
confirmed LN in the presence of ANA or anti-dsDNA antibodies, according
to the SLICC classification [44, 45]. Biopsies were classified according to the
WHO or ISN/RPS 2003 classification systems [3]. Proliferative nephritis was
defined as class III or IV nephritis in either classification system. Data on
renal function were collected from patient charts at the latest available
time of sampling, and glomerular filtration rate (GFR) was calculated using
the modification of diet in renal disease study (MDRD) formula [54].
Patients with LN and ESRD, defined as either dialysis or transplantation,
were identified.

Statistical analysis
Allele frequencies were compared between patients with LN, proliferative
nephritis, and ESRD respectively, using SLE patients without LN as a control
group. Logistic regression was performed in PLINK software v 1.07 [50]. Sex
and disease duration were included as covariates.
All SNPs with a nominal p-value of <0.001 in LN versus SLE without

nephritis (n= 139 SNPs), proliferative nephritis versus SLE without
nephritis (n= 198 SNPs), and ESRD versus SLE without nephritis (n= 182
SNPs) analyses in the discovery cohort were selected for analysis in
replication cohort 1. Logistic regression was performed in PLINK, adjusting
for sex, disease duration, and the first principal component for population
stratification. Meta-analyses of the discovery cohort and replication cohort
1 were performed for LN, proliferative nephritis, and ESRD versus SLE
without nephritis patients, using all SNPs that passed QC in both cohorts.
Random-effects meta-analysis p-values are reported. A Bonferroni
corrected p-value of <1.0 × 10−6 adjusting for 48,000 independent SNPs
on the Immunochip was considered significant.
In replication cohort 2, logistic regression was performed in PLINK for

patients with LN (n= 354) versus SLE without nephritis patients (n= 479).
Sex and disease duration were used as covariates. A meta-analysis was
performed using the logistic regression analyses of LN versus SLE without
nephritis patients from all three cohorts. Random-effects meta-analysis
p-values are reported.
The top SNP from association analysis of LN vs SLE patients without LN

in the discovery cohort was further investigated in case-control analyses of
patients with SLE and LN vs healthy controls (n= 2707), respectively. Allele
frequencies were compared between patients and controls in a logistic
regression analysis with age and sex as covariates.
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