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Abstract

Hematopoietic stem cells are the most illustrious inhabitants of the bone marrow. Direct 

visualization of endogenous hematopoietic stem cells in this niche is essential to study their 

functions. Until recently this was not possible in live animals. Recent studies, using state-of-the-art 

technologies, including sophisticated in vivo inducible genetic approaches in combination with 

two-photon laser scanning microscopy, allow the follow-up of endogenous hematopoietic stem 

cells’ behavior in their habitat. Strikingly, the new findings reveal that quiescent hematopoietic 

stem cells are more mobile than previously thought, and link their retained steady state within the 

niche to a mobile behavior. The arising knowledge from this research will be critical for the 

therapy of several hematological diseases. Here, we review recent progress in our understanding of 

hematopoietic stem cell biology in their niches.
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INTRODUCTION

HEMATOPOIETIC STEM CELLS

The bone marrow is, presently, well-established as the primary postnatal site of new blood 

cells formation, generating approximately 10 billion leukocytes, 200 billion red cells, and 

400 billion platelets daily during our whole life [1]. Nevertheless, this bone marrow’s 

capacity was only first experimentally discovered at the second half of the 19th century by a 

German pathologist Ernst Neumann [2]. He also proposed the controversial, at that time, 

concept that one cell type may originate all other blood cells in the bone marrow [2]. This 

pioneer theory introduced the field of hematopoietic stem cell biology. Early works from the 

50s demonstrated that transplantation of bone marrow cells could protect the organism from 

some of the damages caused by irradiation, avoiding hematopoietic failure [3–6], suggesting 

the existence of a cell with reconstitutive ability in the middle of bone marrow cells. In the 

60s, James Till, Ernest McCulloch, and their colleagues brought the initial experimental 

proof of the existence of hematopoietic stem cells. They demonstrated that there were cells 

in the bone marrow with capacity to generate all blood cell types and make more of 

themselves [7–12]. Since then, in the clinic, intravenous transplantation of bone marrow 

cells has proven to be effective to treat patients with several blood-related diseases, such as 

leukemia [13–15]. In leukemic patients, bone marrow transplantation has revolutionized 

therapeutic options, and now is widely used in the clinic, allowing bone marrow cells from 

healthy donors to repopulate the bones of patients with leukemia after aggressive 

chemotherapy [16–20].

Nowadays, hematopoietic stem cells can be isolated from the bone marrow highly enriched 

by using multiple specific molecular markers [21]. Scientists are constantly searching for 

new markers to isolate subsets of purified hematopoietic stem cells. It is well accepted that 

stem cells capable of hematopoietic reconstitution are positive for Sca-1, a membrane 

glycoprotein [22] and c-Kit, a tyrosine kinase receptor (CD117), concomitantly being 

negative for lineage markers (Lin-), including Gr-1, Ter119, Mac-1, B220, CD4 and CD8 

[23–25]. Additionally, these characteristics are combined with strategies stablished by 

different groups to isolate purified hematopoietic stem cells [24, 26], such as their status of 

expression of Thy1.1, Flk2, CD34, Endoglin (CD105) [27], Tie-2 [28], endothelial protein C 

receptor (EPCR) [29], CD244, CD48, and/or CD150 [24]. The exclusion of fluorescent dyes 

is an additional method that has proven advantageous to select for cells enriched with 

hematopoietic stem cells activity [22, 23, 30, 31].

One obstacle in the hematopoietic stem cells’ isolation is that the number of available 

compatible bone marrow donors still limits the usage of hematopoietic stem cells for 

transplantation. Although hematopoietic stem cells are maintained throughout all our life in 

their niche in vivo, we still are unable to multiply and expand effectively hematopoietic stem 

cells in vitro under suitable conditions. Therefore, a deeper understanding of hematopoietic 

stem cells biology will be essential for the better efficiency of bone marrow transplantation 

in the future. In this review, we discuss the recent progress in our understanding of 

hematopoietic stem cell biology in their niches, focusing on hematopoietic stem cells’ 
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heterogeneity and interactions with other cells in the context of recent findings. Furthermore, 

we shed light on the gaps in the field and highlight important open questions.

HEMATOPOIETIC STEM CELLS WITHIN THE BONE MARROW NICHE

Hematopoietic stem cells reside predominantly within the bone marrow [32]. The 

hematopoietic stem cells’ bone marrow niche regulates the behavior of those cells [33]. 

Hematopoietic stem cell fate is decided by the pro-quiescence, pro-renewal, or pro-

differentiation intrinsic and extrinsic regulators inside the niche [34]. Multiple genetically 

engineered mouse models have been extensively used to explore the complexity of the 

hematopoietic stem cell niche within the bone marrow. These investigations established 

diverse components as niche-supporting cells for hematopoietic stem cells, providing many 

molecules, such as cytokines, to control hematopoietic stem cell function [35]. Experimental 

proof has revealed that intervention in the key niche regulators may lead to various 

hematologic pathologic processes [32, 36]. Thus, understanding hematopoietic stem cells’ 

behavior in their niche, as well as their interactions with other niche constituents, is of 

crucial significance.

Direct visualization of hematopoietic stem cells in their niche is necessary to study their 

activity in vivo. This was possible with the advancement of deep confocal microscopic 

imaging that helped determine hematopoietic stem cell niche architecture. Several studies 

analyzed the localization of hematopoietic stem cells relative to distinct niche components 

[37–39]. In most studies, the hematopoietic stem cells behavior was analyzed in bone 

marrow biopsies, in which hematopoietic stem cells can be precisely identified using a 

combination of molecular markers by immunohistochemistry [37–39]. Nevertheless, 

remains the open question whether hematopoietic stem cell behavior is the same within the 

bones of live animals. Other works analyzed the behavior of pre-labeled hematopoietic stem 

cells in recipient live mice [40–42]. Nevertheless, it is not clear whether the non-

physiological behavior of these introduced hematopoietic stem cells is the same as of 

endogenous stem cells. Additionally, for the efficiency of transplantation, recipient animals 

receive treatments that affect the bone marrow microenvironment, bringing the possibility of 

changes in hematopoietic stem cell behavior due to niche disruption.

Now, in a recent article in Cell Stem Cell, Upadhaya and colleagues demonstrated elegantly 

how endogenous adult hematopoietic stem cells behave in the bone marrow in live animals 

[43]. Using state-of-the-art technologies, including sophisticated in vivo inducible genetic 

approaches, such as lineage-tracing Cre/loxP mediated technologies, in combination with 

two-photon laser scanning microscopy, the authors selectively followed the behavior of 

single adult hematopoietic stem cells for several hours. The authors analyzed the bone 

marrow of a mouse model in which specifically endogenous hematopoietic stem cells 

produce red fluorescence, Pdzk1ip1-CreER/TdTomato mice. Behaviors of hematopoietic 

stem cells and macrophages, which were detected by their autofluorescence, were compared. 

These experiments revealed that hematopoietic stem cells present a constantly changing not-

rounded shape extending cytoplasmatic projections, in contrast to the perfectly round cells 

as previously thought. Surprisingly, hematopoietic stem cells moved 7.5 times more than 

resident macrophages in steady state conditions [43]. Importantly, the authors confirmed that 
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Pdzk1ip1-expressing cells were bona fide hematopoietic stem cells by confirming that the 

investigated cells were also Fgd5+ in Pdzk1ip1-CreER/TdTomato/Fgd5-ZsGreen mice. 

Upadhaya and colleagues also reported, as previously known, that hematopoietic stem cells 

are located in the perivascular space, and physically interact with stem cell factor (SCF)-

expressing pericytes in the bone marrow. Strikingly, mobilization of the hematopoietic stem 

cells from the bone marrow niche by drugs that block C-X-C chemokine receptor type 4 

(CXCR4) receptor and integrin signaling inhibited hematopoietic stem cell mobility as well 

as its form fluctuations within the niche [43]. This study reveals that hematopoietic stem 

cells are more mobile than previously thought, and links their retained steady state within 

the niche to a mobile behavior. Here, we discuss the findings from this work and evaluate 

recent advances in our understanding of the hematopoietic stem cell microenvironment.

PERSPECTIVES / FUTURE DIRECTIONS

HEMATOPOIETIC STEM CELLS HETEROGENEITY

Hematopoietic stem cells are not homogeneous. There have been shown subpopulations 

based on their life span [44], specific surface markers [45], differentiation capacities [46], 

and level of self-renewal [47]. Although great advances were made regarding our knowledge 

of the bone marrow niche components, how extrinsic regulators act on hematopoietic stem 

cell subsets remains completely unknown. Interestingly, Upadhaya and colleagues analyzed 

only about one-fifth of hematopoietic stem cells, as this is approximately the amount labeled 

in Pdzk1ip1-CreER/TdTomato mice [43]. It remains unclear whether in these transgenic 

mice a subpopulation of rapidly moving hematopoietic stem cells is selected or whether all 

hematopoietic stem cells display approximately the same rate of movement. Future studies 

should study the behavior of not-expressing Pdzk1ip1 hematopoietic stem cells.

Hematopoietic stem cells modify their differentiation capacity during aging, losing gradually 

their self-renewal ability, becoming increasingly myeloid-biased [48, 49]. The changes 

perceived in old hematopoietic stem cells were speculated to be exclusively due to 

hematopoietic stem cell-intrinsic alterations [50, 51]. Nonetheless, recent results show the 

critical function of several extrinsic molecules inducing hematopoietic stem cell aging as 

well [52]. It will be interesting to explore how hematopoietic stem cells’ behavior changes in 

live animals with aging, and whether myeloid-biased hematopoietic stem cells behave 

differently from the others.

OTHER HEMATOPOIETIC STEM CELL NICHES

During embryonic development, hematopoiesis occurs at specific anatomical sites that 

change with the developmental age [53–56]. This happens because of the migration of 

hematopoietic stem cells throughout the embryo [57]. The hematopoietic activity starts in 

the extraembryonic yolk sac at embryonic day 7.5; then, at day 9, it advances to the dorsal 

aorta-gonad-mesonephros (AGM region), the para-aortic splanchnopleura, and 

chorioallantoic placenta [58]; at day 10, it arrives to vitelline and umbilical arteries, spleen, 

skeletal muscle surrounding the developing long bones, and the fetal liver, where 

hematopoietic stem cells expand exponentially [54, 55, 59–70]. Lastly, at day 15, 

hematopoietic stem cells from the fetal liver move through the circulation to the bone 
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marrow cavity, which turns into the dominant niche for hematopoietic stem cells throughout 

the whole adult life [53, 62]. Hematopoietic stem cells in adults can also appear outside the 

medullary spaces. This phenomenon is termed extramedullary hematopoiesis. was reported 

in adults in the periosteum, spleen, liver, heart, kidney, adrenal glands, fatty tissue, intra-

spinal tissue, para-vertebral regions, pre-sacral region, nasopharyngeal region, paranasal 

sinuses, and in multiple types of cancers [71–81]. Although it normally indicates a 

pathologic state of the organ, recent works show the extramedullary hematopoiesis may 

occur under physiologic conditions as well. Elegant studies have shown the presence of 

hematopoietic stem cells in the pulmonary microenvironment under physiologic 

circumstances [36, 82]. Future studies using modern technologies such as two-photon laser 

scanning microscopy adapted to the specific organs will reveal how hematopoietic stem cells 

behave in these extramedullary niches.

THE QUIESCENT STATE

The definition of quiescence emerged from the perception that each cell in a population 

proliferates at its own rate [83]. Thus, cells that are in a non-proliferative state are termed 

quiescent, even under certain stimuli they can enter the cell cycle and start proliferating. 

Unicellular organisms, which survive in adverse habitats, enter the quiescent state to not be 

extinct [84]. Similarly, stem cells exist in a quiescent state throughout our life to keep for as 

long as possible a reserve pool. Despite quiescence being considered as a dormant static 

state, quiescence seems to portray a state in which the stem cell is ready to be activated. 

Upadhaya and colleagues demonstrate that quiescent hematopoietic stem cells are not so 

“dormant”, being rather “awake” based on the movement that they present within the niche 

[43]. The reason for this augmented mobility of hematopoietic stem cells should be 

examined in future studies. It is interesting to explore the molecular mechanisms involved in 

this movement. It remains uncertain whether this migration is caused by active molecules 

that promote hematopoietic stem cell mobility or by the lack of specific anchoring factors. 

Are hematopoietic stem cells searching for a higher gradient of specific limited factors 

within the niche? Are other quiescent stem cells also behaving like hematopoietic stem cells 

in live mice? Also, as circadian rhythms influence hematopoietic stem cells [85], it will be 

attractive to examine whether hematopoietic stem cell behavior varies during light cycles.

INTERACTIONS WITHIN THE BONE MARROW NICHE

The bone marrow microenvironment defines the hematopoietic stem cell fate [34]. 

Experimental data has revealed that small changes in niche regulatory mechanisms affect 

directly hematopoietic stem cells [45]. Understanding exactly how hematopoietic stem cells 

are controlled by their niche is of fundamental importance. Upadhaya and colleagues 

showed the proximity of hematopoietic stem cells to the perivascular zones [43], as it has 

been previously reported [45]. Nevertheless, the perivascular niche itself is complex. 

Perivascular cells have been distinguished as essential components of the hematopoietic 

stem cell microenvironment [86, 87], and in vivo genetic elimination of those cells from the 

bone marrow directly affects hematopoietic stem cells [86]. There are two main 

subpopulations of bone marrow perivascular cells in regards to their vascular positions: 

sinusoidal and arteriolar pericytes [37]. Most of the quiescent hematopoietic stem cells 

reside closer to arterioles [37]. Upadhaya and colleagues did not determine whether their 
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analyzes were done in the sinusoidal or arteriolar niches [43]. Future studies should explore 

whether hematopoietic stem cells behave differently in these two central niches within live 

mice.

Upadhaya and colleagues showed that the blockade of C-X-C motif chemokine 12 

(CXCL12) signaling abrogates hematopoietic stem cell movement in the niche [43]. It is not 

clear, however, whether this is caused by a direct or indirect effect of the drug. Is the drug 

acting directly on hematopoietic stem cells or on a niche component? Interestingly, 

sinusoidal and arteriolar niches contribute with different cytokines for the maintenance of 

hematopoietic stem cells. CXCL12-derived from the arteriolar niche is essential for 

hematopoietic stem cells, but not the one derived from the sinusoidal niche. Thus, it would 

be important to analyze hematopoietic stem cell behavior in response to CXCL12 deletion 

only from arteriolar pericytes. In contrast, SCF from the sinusoidal niche, but not from the 

arteriolar, seems to be essential for hematopoietic stem cell functioning. Thus, future 

experiments should address how distinct niche regulatory molecules affect hematopoietic 

stem cells’ behavior in live animals.

Modern technologies provide the possibility of eliminating single cells from the tissue 

microenvironment and analyzing the behavior of the remaining cells [88–90]. Thus, it is 

possible to explore the effect of eliminating single components of the niche by using 

targeted two-photon irradiation and analyzing the effect on hematopoietic stem cells’ 

behavior by two-photon laser scanning microscopy. Alternatively, it will be interesting to 

evaluate what is the effect of the death of one hematopoietic stem cell on other neighboring 

hematopoietic stem cells. Thus, longitudinal imaging studies may advance significantly our 

knowledge on hematopoietic stem cell biology in the future.

Our better understanding of hematopoietic stem cells’ behavior in their normal bone marrow 

microenvironment leads to questions on how these cells behave in the bone marrow in 

different pathologies. Changes in the normal bone marrow niche may activate the 

appearance of pre-leukemic microenvironments [91]. How leukemic stem cells may affect 

this hematopoietic stem cell behavior, as well as how the leukemia stem cells themselves 

behave in live animals within their niches remains to be discovered.

CONCLUSION

In conclusion, the study by Upadhaya and colleagues reveals how the most illustrious 

residents of the bone marrow behave within their niche in live animals [43]. However, our 

understanding of the hematopoietic stem cells’ behavior in their niches still remains limited, 

and the complexity of interactions with all niche components should be elucidated in future 

studies. Despite the powerful experimental transgenic models that provide proof of concept 

for the hematopoietic stem cell biology within the bone marrow, we are still lacking direct 

demonstration of hematopoietic stem cell behavior within the human bone marrow cavity. 

The main question for the future is whether we can translate mice research into humans. 

Improving the availability of human bone marrow biopsies will be essential to reach this 

aim. The creation of bone marrow organoids from human induced pluripotent stem cells 

(iPSCs) may in the future support the data provided by elegant mouse studies.
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Highlights

• Hematopoietic stem cell retained steady state within the bone marrow niche is 

linked to a mobile behavior.

• The heterogeneity of hematopoietic stem cells bone marrow niche

• Hematopoietic stem cells’ displacement velocity in the bone marrow faster 

than macrophages
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Figure 1. Schematic illustrating hematopoietic stem cell movement within the bone marrow 
niche.
Hematopoietic stem cells (in red) present dynamic morphology (non-spherical) and complex 

motile behavior when compared to sessile resident macrophages (in brown) within the bone 

marrow cavity. Upadhaya and colleagues demonstrated that hematopoietic stem cells’ 

displacement velocity is 7.5 times faster than macrophages [43].
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Figure 2. Hematopoietic stem cell retained steady state within the bone marrow niche is linked to 
a mobile behavior.
Mobilization of the hematopoietic stem cells from the bone marrow niche by drugs, that 

block CXCR4 (plerixafor, AMD3100) and integrin signaling [N-(Benzenesulfonyl)-L-

prolyl-L-O-(1-pyrrolidinylcarbonyl) tyrosine, (BOP)] (AMD3100 + BOP, RX), inhibits 

hematopoietic stem cell mobility as well as its form fluctuations within the niche [43].
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