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Abstract

The elevated presence of opioid receptors and their ligands throughout the developing brain points 

to the existence of maturational functions of the endogenous opioid system that still remain poorly 

understood. The alarmingly increasing rates of opioid use and abuse underscore the urgent need 

for clear identification of those functions and the cellular bases and molecular mechanisms 

underlying their physiological roles under normal and pathological conditions. This review is 

focused on current knowledge on the direct and indirect regulatory roles that opioids may have on 

oligodendrocyte development and their generation of myelin, a complex insulating membrane that 

not only facilitates rapid impulse conduction but also participates in mechanisms of brain 

plasticity and adaptation. Information is examined in relation to the importance of endogenous 

opioid function, as well as direct and indirect effects of opioid analogues, which like methadone 

and buprenorphine are used in medication-assisted therapies for opioid addiction during pregnancy 

and pharmacotherapy in neonatal abstinence syndrome. Potential opioid effects are also discussed 

regarding late myelination of the brain prefrontal cortex in adolescents and young adults. Such 

knowledge is fundamental for the design of safer pharmacological interventions for opioid abuse, 

minimizing deleterious effects in the developing nervous system.
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Introduction

Opioid abuse and misuse continues to represent a problem of major epidemic proportions. 

This is particularly alarming when considering the large number of babies exposed to 

opioids during pregnancy, and in addition, the significant percentage of these infants that 

require opioids after birth for the pharmacological treatment of neonatal abstinence 

syndrome (NAS)1. Newborns affected by NAS exhibit different symptoms of variable 

magnitude that may include central nervous system dysfunction reflected in tremors and 

seizures, inconsolable crying, excessive irritability, poor sleep, and elevated muscle tone; as 

well as autonomic nervous system effects resulting in various digestive and respiratory 

problems and altered temperature regulation2–6. Opioids and their metabolites have the 

capacity of crossing the placenta7–9 and blood-brain barrier10,11. Thus, NAS symptoms are 

logically considered to be the result of abrupt discontinuation of maternal opioid supply after 

birth. Current successful and necessary medication-assisted therapies for opioid addiction 

during pregnancy involve the administration of the synthetic long-lasting opioid analogue 

and full mu-opioid receptor agonist methadone; and more recently, buprenorphine, a partial 

mu-opioid agonist and kappa-opioid receptor antagonist that not only successfully prevents 

the maternal abuse of opioids but also exhibits higher efficacy than methadone in reducing 

the incidence and severity of NAS12–16. However, an increasing number of reports suggest 

that some of these opioid-based therapeutic approaches may also exert neurodevelopmental 

effects. While much is known about opioids and their role in pain regulation, the high 

expression levels of different opioid receptors and their endogenous opioid ligands 

throughout the developing brain point to the existence of maturational functions that still 

remain poorly understood. This raises the question of whether interference with the 

endogenous opioid system by exogenous opioids, including those used in pharmacotherapy 

treatments, could also alter important developmental brain processes. A recent large 

prospective study in which potential effects of other drug co-exposures and compounding 

factors were carefully controlled and periodically monitored, concluded that gestational 

opioid exposure sufficient to result in NAS also increased the proportion of neonates with 

reduced head circumference17. Notably, the great majority of those infants were born from 

mothers that were maintained under methadone or buprenorphine treatment. The 

mechanisms behind these effects remain poorly understood but different findings suggest the 

possibility of opioid actions on different neural cell types. For example, animal models 

showed that perinatal methadone exposure alters the function of dopaminergic, 

noradrenergic and serotonergic neurons in the neonatal and early postnatal period18. 

Furthermore, while human effects are difficult to evaluate, studies using cultured human 

cortical organoids indicated methadone suppressive actions on neuronal function and 

maturation19. Different lines of evidence also point to potential opioid roles on various glial 

cell populations20. This review is focused on the neurodevelopmental effects that opioids 

may have on brain oligodendrocytes and their synthesis of myelin, the remarkably complex 

multilamellar structure that not only facilitates the rapid “saltatory conduction” of nerve 

impulses21 but is also now recognized as a crucial player in brain plasticity and in active 

bidirectional neuron-glial communications22–24. As such, oligodendrocyte generation and 

myelin formation are among the most critical and vulnerable processes that take place 

during brain development.
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Developmental oligodendrocyte generation and brain myelin formation as 

direct targets of endogenous and exogenous opioids

Oligodendrocytes are generated from bipolar highly proliferative and migratory progenitor 

cells that experience several distinct stages of differentiation prior to their transformation 

into quiescent and morphologically complex multipolar cells capable of myelin formation25. 

Importantly, each of these mature oligodendrocytes has the remarkable capacity of 

generating multiple extensive membrane extensions that contact numerous neurons and 

concentrically wrap around their axons generating multiple myelin internodes. This well-

defined progression along the oligodendroglial lineage assumes the orchestration of both 

extrinsic and intrinsic factors that regulate gene expression by a variety of mechanisms that 

are still the center of active investigation26–30. The presence of opioid receptors in stem cells 

and the different stages of oligodendrocyte differentiation, support the notion that the 

endogenous opioid system plays crucial roles in controlling oligodendrocyte maturation and 

suggest that interference by exogenous opioids could alter developmental brain 

myelination31–34.

This represents a problem of significant developmental importance because it is now known 

that myelin functions expand well beyond of that as an insulator facilitating the rapid 

“saltatory conduction” of nerve impulses. Myelin plays a crucial role in regulating axonal 

extension and radial growth35, and its presence is required for both the induction and 

preservation of specific localization of Na+ and K+ channel domains at nodal and paranodal 

axonal regions36. Importantly, oligodendrocytes and myelin are critical players in 

mechanisms of neuronal survival and axonal function and integrity37,38. Oligodendrocytes 

also actively participate in electrical coupling to astrocytes39; and together with myelin, are 

capable of bidirectional glial-neuronal signaling and communication22. Furthermore, both 

oligodendrocytes and myelin are actively implicated in plastic memory and 

learning23,24,40–43, setting oligodendrocyte generation and myelin formation among the 

most critical and vulnerable processes that take place during brain development. Thus, it is 

not surprising that negative effects on myelin structure and stability are known to occur with 

the abuse of various drugs; including cocaine44, cannabinoids45, alcohol45,46 and 

methamphetamines47.

As discussed above, the dramatic increase in opioid use and abuse also triggered an alarming 

rising number of newborns that are exposed in utero to maternal pharmacotherapy 

treatments48, being methadone and buprenorphine the most successful and current 

recommended opioid analogues for these therapies12–16. Yet, reports on short- and long-term 

neurodevelopmental effects of prenatal exposure to these drugs and other opioids are 

conflicting and difficult to assess as multiple interacting factors such as maternal poly-drug 

use or social and educational environment can profoundly influence cognitive development 

(recently reviewed by49). The complexity of these compounding factors is further 

emphasized by studies in rodent models indicating that adult offspring of dams chronically 

exposed to morphine during puberty exhibit anxiety-like behaviors and enhanced morphine 

sensitization50.
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In support of potential opioid effects on developmental myelination, recent imaging studies 

revealed white matter injury and abnormal myelin structure in the brain of infants prenatally 

exposed to opioids51. In this regard, examination of potential effects of perinatal exposure to 

buprenorphine and methadone indicated complex responses with significant alterations in 

the timing of rat brain myelination52,53. In these studies, pregnant rats (gestation day 7) were 

implanted with minipumps to deliver buprenorphine at doses of 0.3 (therapeutic) or 1 (supra-

therapeutic) mg/kg/day. By using this experimental paradigm, pups were first exposed to the 

drug through the placenta immediately prior to brain development; and then through 

lactation, during a neurodevelopmental period equivalent to the third trimester in human 

pregnancy. Analysis at postnatal days 12, 19, and 26 (ages that respectively correspond to 

the beginning, peak, and end of the rapid period of myelin formation in rat brain), 

demonstrated that perinatal exposure to buprenorphine significantly alters their brain content 

of myelin basic proteins (MBPs)52; important myelin components that comprise about 30% 

of the total myelin protein and are required for the formation, compaction, and stability of 

myelin multilamellar structure54. Interestingly, these buprenorphine-induced effects were 

specifically dependent on the age of the pups at the time of tissue collection and the dose of 

administered drug. Myelin formation and growth in the mammalian brain is accompanied by 

a progressive increase in the expression of four major MBP isoforms generated by 

alternative splicing of a single developmentally regulated gene55. Unexpectedly, the 

accumulation of all MBP isoforms was accelerated and increased by exposure of the pups to 

the therapeutic buprenorphine dose of 0.3mg/kg/day. In contrast, supra-therapeutic levels 

delayed MBP expression. Furthermore, although MBP isoforms in pups exposed to elevated 

doses of buprenorphine finally reached control values by day 19, histological analysis of the 

corpus callosum fibers at 26 days of age still indicated a reduced number of axons that were 

myelinated52. Because MBPs are only synthesized when oligodendrocytes reach maturity, 

those findings suggested direct dose-specific effects of buprenorphine on oligodendrocyte 

development, a possibility supported by studies in which cultured cells directly isolated from 

the postnatal brain were treated with different drug concentrations34. Buprenorphine indeed 

exerts direct dose-dependent effects on oligodendrocyte differentiation, with low 

concentrations (0.5 μM) accelerating the transformation of immature pre-oligodendrocytes 

into morphologically complex MBP-making multipolar mature cells, an effect found to be 

mediated by mu-opioid receptor activation. In remarkable contrast, elevated drug 

concentrations (3 μM) block oligodendrocyte maturation, an inhibitory effect mediated by 

concomitant buprenorphine-dependent activation of the nociceptin/orphanin FQ receptor 

(NOR). Also known as opioid receptor like-1 (ORL-1), NOR is the most recently discovered 

member of the opioid receptor family, and while this G-protein coupled receptor shares a 

high degree of homology with the classical opioid receptors, it does not bind any of the 

endogenous opioid peptides and it is only specifically activated by the endogenous 

heptadecapeptide nociceptin56. Antagonist effects of the mu-opioid receptor and NOR were 

originally identified as responsible for the characteristic bell-shaped dose-response of 

buprenorphine effects on pain regulation57–59. Importantly, a number of recent publications 

point to the involvement of NOR and its ligand nociceptin as regulators in a variety of 

important processes that span from behavior, learning and memory60–62 to drug addiction 

control63,64. Together with the in vivo findings, buprenorphine effects on cultured cells 

pointed to a model in which this drug induces direct effects by binding to two receptors with 
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different drug affinities and opposing roles on oligodendrocyte development. Activation of 

the high affinity mu-opioid receptor by low buprenorphine concentrations results in 

stimulation of oligodendrocyte maturation, while this positive action is counteracted by an 

inhibitory effect induced by high drug doses and simultaneous signaling through the low 

affinity NOR. Consistent with this idea, oligodendrocyte maturation is also stimulated by the 

mu-opioid receptor agonist methadone53. As observed for the low concentrations of 

buprenorphine, direct exposure of post-mitotic but still immature pre-oligodendrocytes to 

methadone results in a significant increase in the expression of different myelin specific 

proteins and morphological complexity. [3H]Thymidine incorporation into DNA, showed 

that methadone also stimulates the proliferation of cultured oligodendrocyte progenitor 

cells53, a finding that is in agreement with earlier reports indicating that mu-receptor 

activation can increase the mitogenic capacity of these still immature cells31,65. In 

agreement with those findings, electron microscopic analysis of the corpus callosum in 2-

week-old pups perinatally exposed to therapeutic doses of methadone indicated accelerated 

myelination with abnormally elevated number of axons with already highly compacted 

myelin sheaths53. These effects of methadone and buprenorphine support an important role 

of the endogenous mu-opioid and NOR signaling systems in the control of oligodendrocyte 

maturation and the precise timing of brain myelination. In support of physiological 

developmental functions of the mu-opioid receptor and NOR, male and female rat brain 

expression levels of their respective endogenous ligands, endomorphin-1 and nociceptin are 

also developmentally regulated66. Nociceptin concentrations exhibit a significant and 

progressive decrease from postnatal day 9 and thereafter, reaching background levels of 

detection by one month of age, a pattern of expression that inversely correlates with the 

progression of rat brain myelination. Endomorphin-1 levels are still elevated at postnatal day 

9 but gradually decrease from day 13. Just like methadone and low buprenorphine 

concentrations, endomorphin-1 stimulates oligodendrocyte maturation and morphological 

complexity. Interestingly, this stimulation is abolished by co-incubation of the cultures with 

nociceptin. An inhibitory effect of nociceptin in oligodendrocyte maturation and myelinating 

activity is further supported by the observation that in vivo inhibition of NOR signaling 

results in accelerated myelination. Surprisingly, these effects of endomorphin-1 and 

nociceptin are most significantly observed for the female rat oligodendrocytes and the 

female brain66.

Altogether, these findings suggest that a complex balance between opposing functions of 

mu-opioid receptor and NOR signaling may play a crucial role in controlling the timing of 

brain myelination. Importantly, nociceptin also appears to have an important stimulatory role 

on neuronal development, as this peptide was shown to exert a supportive effect on rat 

cerebellar granule neurons67 as well as positive actions on neurite outgrowth in mouse 

hippocampal cells68. Thus, it is possible that nociceptin may play a crucial double function 

stimulating on one side neuronal maturation while on the other hand deterring premature 

myelination, a situation that could interfere with early axonal elongation and neuronal 

connectivity. Such a situation may in part underlie the still puzzling finding from earlier 

studies indicating that, regardless of the dose, the brain of rat pups perinatally exposed to 

buprenorphine exhibited increased caliber of myelinated axons with disproportionally 

thinner myelin sheaths52. Since no differences could be found for nonmyelinated axons, that 
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observation suggested that buprenorphine could perhaps interfere with the mechanisms 

coordinating axonal outgrowth with myelin formation. Methadone-induced enhanced 

proliferation of oligodendrocyte progenitors and acceleration of cell differentiation and 

myelination may also derail the delicate balance between opposing functions of mu-opioid 

receptor and NOR signaling, thus altering the proper timing of brain myelination and 

neuronal connectivity (Figure 1).

Precocious oligodendrocyte maturation may also ultimately result in a long-term reduced 

pool of differentiated cells, a possibility that could at least in part explain the decreased 

amount of myelin protein recently reported in a different model of perinatal methadone 

exposure69.

Oligodendrocyte maturation and developmental myelination as secondary 

targets of opioid effects

The previous section of this review focused on physiological functions of endogenous opioid 

systems in oligodendrocyte development and the consequences of their direct interference by 

exogenous opioids. However, as a logical reflection of the multiple roles and integrative 

functions of oligodendrocytes and myelin, important consideration should also be given to 

potential indirect effects mediated by primary opioid actions on other diverse cell targets. 

Understanding of such secondary effects could be of critical importance in the design of 

treatments for opioid pharmacotherapy during pregnancy and NAS. It is conceivable that 

effects of methadone, buprenorphine, and morphine on oligodendrocyte and myelination 

may also be mediated through their actions on the other two major glial cell types, astrocytes 

and microglia. Although this possibility remains to be examined, several lines of evidence 

indicate that both of these cells exhibit functional opioid receptors70–74. Studies with 

cultured cells demonstrated that morphine inhibits astrocyte proliferation75, thus a reduction 

in the size of astrocyte pools at developmental times of active myelination may decrease the 

availability of multiple astrocyte-secreted factors which as platelet-derived growth factor 

(PDGF)76–78 and neurotrophins79–82 are known to exert modulatory effects on the 

oligodendroglial lineage and myelination. A decreased number of astrocytes could also limit 

the concentration of leukemia inhibitory factor (LIF), a molecule that controls the self-

renewal and proliferation of neural stem cells and subsequent generation of oligodendrocyte 

progenitors83. Moreover, studies in neuronal-glial co-cultures showed that astrocyte-secreted 

LIF could directly stimulate oligodendrocytes to support myelination in response to neuronal 

electrical impulses84. It is also possible to speculate that reduced pools of astrocytes would 

result in decreased brain concentrations of nociceptin85, an endogenous peptide that as 

described in the previous section was shown to play a function counteracting the stimulatory 

mu-opioid signaling effect on oligodendrocytes and thus precluding untimely precocious 

brain myelination34,66

Importantly, microglial cells could mediate negative effects of morphine on myelination. 

Studies in cultured cells showed that mu-opioid receptor activation by morphine stimulates 

the microglial secretion of interleukin-1β72, a pro-inflammatory cytokine that disrupts 

developmental myelination86. Strongly supporting the importance of neuroinflammatory 
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effects, recent studies in which pups were exposed to methadone (8–16 mg/kg) from 

embryonic day 16 to postnatal day 21, showed a dose-dependent increased in serum 

inflammatory biomarkers and microglia activation, accompanied by decreased myelin 

protein expression87. This may represent a mechanism of critical importance as microglial 

activation and neuroinflammation have been linked to the pathogenesis of 

neurodevelopmental diseases such as schizophrenia88 and autism89.

Last but not least, there is also the important possibility that secondary opioid effects on 

myelination could be mediated by various primary neuronal effects. Developing 

oligodendrocytes express neurotransmitter receptors and are responsive to different 

neurotransmitter signals90,91, therefore opioid addiction treatments could affect cell 

maturation and myelination through the disruption of oligodendroglial-neuronal signaling. 

Pioneer studies demonstrated that perinatal exposure to methadone delays the expression of 

the cholinergic phenotype in the striatum92–95, reducing striatal acetylcholine (Ach) levels in 

neonatal rats regardless of whether or not drug exposure continues into the early postnatal 

period95. Perinatal methadone exposure also alters the function of dopaminergic, 

noradrenergic and serotonergic neurons in the neonatal and early postnatal period with some 

of these changes even persisting into adulthood18. Abnormal neuronal signaling to 

developing oligodendrocytes may also result from exposure to buprenorphine. Similar to 

methadone, therapeutic doses of buprenorphine were shown to accelerate the development of 

righting reflex96 and prenatal drug exposures reduce striatal Ach content during the first 

week of life. Such altered cholinergic development may reflect methadone or buprenorphine 

effects on the expression of nerve growth factor (NGF), a neurotrophin that stimulates 

expression of the cholinergic phenotype in striatal neurons97.

Additional support for a disruption of glial-neuronal communication by perinatal 

buprenorphine exposure is the observation that the corpus callosum of rat pups perinatally 

exposed to buprenorphine exhibited an increased proportion of high caliber axons with 

disproportionally thinner myelin sheaths. As discussed before, such a situation may be in 

part mediated by interference with the normal function of nociceptin. Interestingly, this 

abnormal axonal diameter/myelin thickness ratio was accompanied by increased levels of 

the myelin associated glycoprotein (MAG)52, a protein that is majorly localized in the 

periaxonal myelin layer and may play a crucial function as a mediator of glial-axonal 

communication98. In addition, the previously described acceleration of myelination in pups 

exposed to therapeutic doses of buprenorphine was accompanied by increased interaction of 

MAG with the Src-family tyrosine kinase Fyn, a signaling molecule that mediates axonal-

oligodendroglial interactions leading to myelination52. Thus, it is clear that much remains to 

be investigated to fully understand the direct and indirect effects that endogenous and 

exogenous opioids may have on developmental brain myelination.

Discussion

The findings described in this review point to significant opioid modulatory effects on 

perinatal oligodendrocyte differentiation and brain myelination. Cell culture studies and 

animal models of perinatal opioid exposure suggest that a complex balance between 

opposing effects of the mu-opioid- and nociceptin receptor activities control the precise 
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timing of oligodendrocyte maturation and myelinating activity34,66. Such balance may play 

and important function preventing precocious myelination, a situation that could interfere 

with early axonal elongation. Exogenous opioids like methadone and buprenorphine may 

alter this balance, a situation that would affect the time-dependent coordination of 

myelination with axonal outgrowth and connectivity. Furthermore, recent imaging studies 

determined the presence of white matter injury and abnormal myelin structure in the brain of 

infants that were prenatally exposed to opioids51, supporting potential effects of these drugs 

on developmental human myelination.

While most of the review included evidence regarding the effects of methadone and 

buprenorphine, it is also particularly concerning the administration of morphine for sedative 

purposes in preterm neonates99. While little is still known about opioid effects at such young 

age in the human brain, studies investigating the consequences of morphine administration 

in the developing rat brain demonstrated about 30% reduced myelin basic protein mRNA 

expression induced by daily morphine administration during the first postnatal week100. 

Equally important is to consider the potential effects that chronic opioid abuse may have at 

later ages of brain development. Early histological analyses and imaging demonstrated that 

heroin and morphine abuse in adult humans can result in severe myelin damage and 

spongiform leukoencephalopathy101–106. Importantly, similar myelin damage in the adult 

brain could also result from acute overdose of prescription opioid painkillers. Severe 

leukoencephalopathy was observed in cases of acute Oxycodone intoxication107 and 

Fentanyl overdose108,109. While these effects may potentially involve the overlooked actions 

of multi-drug use and other compounding factors, these observations also raise the need for 

studies on the effects of some of these “newer” drugs in child brain myelination as Fentanyl 

is used within the neonatal or pediatric intensive care settings110. More recently, the 

importance of oligodendrocytes as targets of opioid addiction at later stages of brain 

maturation is further supported by recent studies in which validated single-cell RNA-

sequencing was used to profile cell-type-specific changes in the nucleus accumbens of adult 

mice four hours after acute morphine administration111. While both neurons and glial cells 

exhibited significant changes in gene expression, a remarkably strong transcriptional 

response was observed in the oligodendrocytes. In these particular cells, upregulation of 

multiple glucocorticoid receptor signaling related genes was accompanied by decreased 

expression of genes encoding heat shock- and endoplasmic reticulum (ER) chaperone 

proteins that are critical for ER quality control and the unfolded protein response (UPR). 

This is particularly significant as different studies showed that UPR control plays a very 

important role in oligodendrocyte cell survival and myelin maintenance112,113. Particularly 

disturbing in this regard are the potential deleterious effects that these drugs could have in 

teenagers and young adults, a population that represents the largest group for the use and 

abuse of prescription and non-prescription opioids114–117. This concern stems from the fact 

that a very active and extensive late wave of myelination in humans takes place in the 

adolescent and young adult prefrontal cortex (PFC)118–120, a brain region that is highly 

interconnected with other cortical and subcortical areas and it is crucially involved in 

complex cognitive control and behavior121–124. Furthermore, myelin pathology at this age 

bracket has been observed in an array of psychiatric conditions, including bipolar 

depression125,126 and schizophrenia127. Importantly, a variety of processes associated with 
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PFC function, including among others learning and memory, motivation, and self-control, 

are characteristically altered in individuals affected by drug addiction (reviewed by 

Goldstein and Volkow128).

In conclusion, the information summarized in this review supports an important role of the 

endogenous opioid system in controlling the development of oligodendrocytes and their 

myelinating activity. Studies in animal models and cultured oligodendrocytes indicate that 

interference with mu-opioid and nociceptin-receptor signaling systems by exogenous 

opioids used in drug maintenance treatments during pregnancy alters the timing of brain 

myelination and may therefore disrupt its crucial coordination with axonal outgrowth and 

synaptic connectivity. While the precise neurodevelopmental functions of endogenous opioid 

peptides in the developing human brain remain poorly understood, such possibilities deserve 

further investigation as longitudinal studies along childhood have shown a significant 

correlation between general cognitive ability and the precise timing and pattern of 

neurodevelopmental brain myelination129. Important in this regard are recent observations 

indicating abnormal microstructure of major white matter tracts in newborns exposed in 

utero to methadone130, and the existence of persistent neurocognitive alterations in teenagers 

and young adults that were prenatally exposed to opioids131. Recent information on sex-

specific responses to endogenous opioid and opioid-related peptides in oligodendrocytes and 

myelination of the female rat brain66, stresses the need for further understanding of the 

molecular events mediating these functions and future studies addressing potential sex-

related differences in the neurodevelopmental effects of both therapeutic opioid painkillers 

and opioid-pharmacotherapy treatments.
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The elevated presence of opioid receptors and their ligands throughout the developing 

brain points to the existence of maturational functions of the endogenous opioid system 

that still remain poorly understood.

The alarmingly increasing rates of opioid use and abuse underscore the urgent need for 

clear identification of those functions and the cellular bases and molecular mechanisms 

underlying their physiological roles under normal and pathological conditions

The findings described in this review point to significant opioid modulatory effects on 

perinatal oligodendrocyte differentiation and brain myelination

Studies in animal models and cultured oligodendrocytes indicate that interference with 

mu-opioid and nociceptin-receptor signaling systems by exogenous opioids used in 

pharmacological treatments during pregnancy alters the timing of brain myelination and 

may therefore disrupt its crucial coordination with axonal outgrowth and synaptic 

connectivity
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Figure 1. 
A delicate balance between opposing effects of the mu-opioid- and nociceptin receptor 

activities appears to control the precise timing of oligodendrocyte maturation preventing 

precocious myelinating activity. Exogenous opioids like methadone and buprenorphine may 

alter this balance, a situation that could affect the time-dependent coordination of 

myelination with axonal outgrowth and connectivity.
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