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Abstract

Despite the benefits of mechanical ventilators, prolonged or misuse of ventilators may lead to 

ventilation-associated/ventilation-induced lung injury (VILI). Lung insults, such as respiratory 

infections and lung injuries, can damage the pulmonary epithelium, with the most severe cases 

needing mechanical ventilation for effective breathing and survival. Damaged epithelial cells 

within the alveoli trigger a local immune response. A key immune cell is the macrophage, which 

can differentiate into a spectrum of phenotypes ranging from pro- to anti-inflammatory. To gain a 

greater understanding of the mechanisms of the immune response to VILI and post-ventilation 

outcomes, we developed a mathematical model of interactions between the immune system and 

site of damage while accounting for macrophage phenotype. Through Latin hypercube sampling 

we generated a collection of parameter sets that are associated with a numerical steady state. We 

then simulated ventilation-induced damage using these steady state values as the initial conditions 

in order to evaluate how baseline immune state and lung health affect outcomes. We used a variety 

of methods to analyze the resulting parameter sets, transients, and outcomes, including a random 

forest decision tree algorithm and parameter sensitivity with eFAST. Analysis shows that 

parameters and properties of transients related to epithelial repair and M1 activation are important 

factors. Using the results of this analysis, we hypothesized interventions and used these treatment 

strategies to modulate the response to ventilation for particular parameters sets.
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1. Introduction

Inflammation occurs in the lungs when an immune response is initiated to eliminate an 

insult. Types of insults include inhaled pathogens, such as influenza, Mycobacterium 

tuberculosis, SARS-CoV-2, and other harmful particles. In the most severe cases this leads 
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to acute respiratory distress syndrome (ARDS). Due to respiratory failure associated with 

ARDS, the clinical intervention is the use of mechanical ventilation (MV) [1].

Despite the benefits of MV, prolonged or misuse of these ventilators may lead to ventilation-

induced lung injury (VILI). In this work we will focus on the tissue damage associated with 

MV and resulting immune cell recruitment. The damage caused to alveolar sacs (clusters of 

alveolar cells) during MV can lead to volutrauma (extreme stress/strain), barotrauma (air 

leaks), atelectrauma (repeated opening and closing of alveoli), and biotrauma (general severe 

inflammatory response). If the trauma increases, it can lead to multi-system organ failure [2, 

3].

It has also been shown that the inflammatory response of the elderly is altered in the lungs 

and other areas [4, 5]. As compared to younger mice, increased levels of circulating 

inflammatory cytokines and altered macrophage function have been reported in old mice [6]. 

A 2003–2008 study conducted at Bridgeport Hospital reported that 4,238 out of 9,912 

(42.8%) patients received MV for a median of two days. Mortality or discharge to extended-

care facilities increased for each decade of age greater than 65 years [7]. Most recently, 

severe forms of COVID-19, a highly infectious respiratory disease caused by the novel 

coronavirus SARS-CoV-2, can lead to respiratory failure and death [8]. Studies report 

varying but overall relatively high rates of mechanical ventilation in response to COVID-19 

[9–11]. The case fatality rate for COVID-19 patients over 70 years old and over 80 years old 

was around 50.8% and 14.8% of the total number of deaths, respectively [12]. This is in 

agreement with other studies reporting higher rates of severe outcomes in patients with 

COVID-19 aged 65 or older [13].

The change in the inflammatory response with patient age combined with the increased need 

for ventilation and increased mortality rate among the elderly stress the need to investigate 

the influence of aging in VILI. We used mathematical modeling to investigate the role of the 

pulmonary innate immune response and interventions to alleviate ventilator-induced 

damage. At this stage of exploration of VILI, we focus on epithelial damage and immune 

system interactions. VILI is complex and the final injury pathways may involve pre-existing 

or evolving co-morbidities. However, we developed this model to explore the contribution of 

epithelial damage to the development of VILI in isolation.

It is difficult to clinically isolate the local epithelial and inflammatory response in the lung 

during VILI, and in silico modeling of experimental data from animal experiments or human 

cell lines may help us to understand this complex condition. In silico approaches provide the 

ability to explore immune responses by including various nonlinear dynamics and feedback 

loops in order to shed light on the specific mechanisms and interactions that drive diseases 

and generate hypotheses [14]. The framework we have built here addresses VILI with 

various parameters and initial conditions that can be narrowed in future studies with data 

from different age groups and/or insults to explore dynamics and driving factors in various 

diseases related to age and/or outcome.

We adapted a model developed by Torres et al. for the innate immune response to bacteria, 

which accounts for macrophage polarization along the pro- to anti- inflammatory spectrum, 
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by including epithelial dynamics and damage-induced recruitment of immune cells [15]. We 

used this model to understand the mechanisms by which the immune system responds to 

damaged epithelial cells and the sensitivity of lung health to components of this complex 

process. We began by analyzing the epithelial subsystem mathematically, since this 

component of the model was not in Torres et al.. We performed a fixed point analysis and 

bifurcation diagrams for this subsystem, which is included in the supplementary material. 

We combined the epithelial subsystem with the Torres et al. model by adapting the immune 

cell dynamics such that they are triggered by epithelial cell damage rather than an infection.

The resulting model is a system of nonlinear ordinary differential equations with a 

substantial number of parameters. We allowed the parameters in the model to vary over 

specified ranges using Latin hypercube sampling to simulate the variety of immune system 

dynamics that may be observed. We organized parameter sets into three categories, healthy, 

moderate damage, and severe damage, based on the percentage of healthy epithelial cells. 

The breakdown of the sets into these categories is shown in Figure 4, which we describe in 

greater detail in the following sections. To determine what is driving differences in lung 

health immediately after ventilation as well as after a recovery phase, we used a variety of 

methods to analyze the resulting dynamics: 1) comparison of parameters associated with 

different outcomes, 2) random forest decision tree algorithm, which parses through the 

variety of predictors that may be particularly important in the immune response to VILI and 

3) parameter sensitivity with eFAST, a variance-based method.

1.1. Biological background

The alveolar epithelium consists of alveolar type I and type II cells. Alveolar type I cells 

make up about 95% of the alveolar surface and are primarily responsible for facilitating gas 

exchange. Type II cells cover the other 5% of the surface and are important in the innate 

immune response. In the presence of damage, these cells proliferate to repair the epithelium 

and can also differentiate to type I cells [16, 17].

The immune response is divided into innate (non-specific) and adaptive (acquired) 

responses. The adaptive immune response involves cells that are effective at fighting specific 

pathogens, whereas the innate immune response lacks specificity and allows the host to 

respond to a variety of insults. Two of the most important innate immune cells are 

neutrophils and macrophages, which can be tissue-specific or recruited to the site upon 

insult. Some of the important features of the immune response to lung damage are illustrated 

in Figure 1.

Neutrophils respond quickly to pro-inflammatory signals sent from damaged epithelial cells 

and other resident cells. A small amount of neutrophils are found in the lungs in homeostasis 

[18]. Neutrophils have phagocytic capabilities in the presence of invading pathogens, but in 

the case of VILI without infection neutrophils recruit other immune cells such as 

macrophages through the production of pro-inflammatory agents such as proteinases and 

cytokines and contribute to the removal of damaged or dead tissue. An overabundance of 

neutrophils and their byproducts can cause further unnecessary damage [19]. Neutrophils are 

relatively short-lived; they become apoptotic and are removed by macrophages [18] or 

become necrotic in an uncontrolled death resulting in the release of cytotoxic material [20].
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Phenotypes of macrophages can range from “pro-inflammatory” (M1) to “anti-

inflammatory” (M2) based on their activators and byproducts [21, 22]. Their pro-

inflammatory behavior includes destroying pathogens, consuming damaged cells, and 

amplification of signaling. Their anti-inflammatory response, which counteracts pro-

inflammatory behavior, promotes repair by producing anti-inflammatory cytokines and 

removing apoptotic neutrophils. A single macrophage may produce both pro-inflammatory 

and anti-inflammatory signals concurrently [23].

An imbalance in the pro- and anti-inflammatory responses can cause complications for the 

individual during various injuries and insults. Also, macrophages play a significant role in 

the impact of aging on the immune response [6, 24, 25]. Therefore, to develop interventions 

to mitigate the effects of VILI, it is important to study the immune response to lung injury 

and the interplay between various types of cells.

1.2. Mathematical background

Mathematical modeling is used to capture the complexities of the immune response to 

epithelial cell damage, including important feedback loops and nonlinearities. Analyzing the 

resulting model gives insight into the driving mechanisms of this system. An in silico 
approach allows for simulation of scenarios and hypotheses for new interventions, especially 

when in vivo and in vitro experiments to explore possible interventions to improve patient 

outcomes are di cult to perform.

Many models have examined the within-host immune response to bacterial and viral 

infections, such as influenza, tuberculosis, pneumonia [26–31] and, most recently, 

COVID-19 [32–34]. Additionally, models related to non-infectious injury such as smoking 

and asthma [35–38] and general inflammatory stress [4, 39] have been developed. We have 

published a review of mathematical models that focus generally on the immune response in 

the lungs [40].

Models of MV and VILI generally deal with the mechanics of the airways, including 

airflow, pressure, and gas exchange to inform and optimize machine settings and assess 

stress [41–49]. Fluid-structure interactions (FSI) can be incorporated into such models [47, 

50, 51]. Aghasafari et al. [50] and Ibrahim et al. [52] incorporate the epithelium and immune 

cells into cellular automata models linked to tissue-scale mechanics. Previous models that 

include epithelial damage have been developed for wound healing [53], infection [54, 55], 

and other applications using a variety of methods [56, 57]. Several infection models identify 

parameters related to bacterial growth that delineate between healthy and infected states, or 

high and low pathogenicity [40].

Models have also been developed to understand and analyze the subcellular pathways that 

govern the phenotype switch that macrophages undergo from pro-inflammatory to anti-

inflammatory, as well as other important subcellular pathways [58–63]. Other mathematical 

models have described macrophage polarization in the context of infection [64], cancer [65], 

and other injuries [66, 67]. However, to our knowledge, no mathematical models have 

described M1/M2 interactions specifically in the context of VILI. We modeled the 

inflammatory response to VILI, specifically the resulting damage to epithelial cells, using a 

Minucci et al. Page 4

J Theor Biol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set of coupled ordinary differential equations (ODEs), which we describe further in the 

following section. Systems of ODEs are often used to model complex biological systems 

because of their ability to reproduce a variety of dynamics with reasonable computation 

times.

To perform a global assessment of a large parameter space such as that described in this 

work, other methods are needed aside from traditional parameter estimation techniques. 

Latin hypercube sampling (LHS), a Monte Carlo-based method, evenly samples the 

parameter space and can quantify uncertainty in model output. Sensitivity analysis methods 

identify how changes in parameters affect model output. Partial rank correlation measures 

the linear relationship between input and output and is useful in cases where the relationship 

is monotonic; when monotonicity is not the case, variance-based techniques such as the 

Sobol method and eFAST are advantageous [68]. These and similar methods have been 

applied to various models of inflammation, infection, and others to explore parameter space 

and identify sensitive parameters that contribute to damage, disease, and recovery [69–72].

2. Methods & Model Development

The primary focus of this model is to examine the effects of damage on the alveolar 

epithelium, in particular alveolar type II cells, since they are responsible for restoration of 

the epithelium. The physical forces of ventilation such as overdistention and tears in the 

epithelial membrane cause epithelial cells to release various mediators that elicit an immune 

response [3]. Epithelial barrier damage is one of the main features of VILI [73], and the 

extent to which the alveolar epithelium is damaged is a useful indicator of the overall effects 

of a lung insult [17, 74]. We began with a small three-dimensional system of differential 

equations of epithelial cell dynamics and analyzed this model using stability analysis and 

bifurcations. This became the basis for our lung compartment dynamics in our multi-

compartmental model for ventilator-induced lung injury.

The full model is a system of coupled ordinary differential equations based on the 

interactions between immune cells, epithelial cells, and other mediators, shown in Fig 2. 

This model captures dynamics in two compartments, the local lung and the blood. Damaged 

lung epithelial cells release mediators that activate local cells and recruit nonresident 

immune cells from the bloodstream. These activated cells interact with the lung epithelial 

cells.

2.1. Model equations

A system of ODEs was used to model these interactions because of its ability to capture 

distinct nonlinearities and feedback loops with relatively few computational requirements. 

However, one of the drawbacks of an ODE model is that it assumes a well-mixed 

environment, in which all elements of the model are evenly distributed throughout the given 

space. One way to include aspects of the spatial heterogeneity without explicitly modeling 

space is to use a compartmental model. Each compartment represents a well-mixed 

environment and, when biologically appropriate, cells and mediators can move between 

compartments. The model includes a variable for each cell or mediator for each 

compartment in which it can be located.
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Here we chose to model two compartments. The first is the site of inflammation in the lungs, 

specifically the epithelial cells which provide a barrier lining in the alveolar region of the 

lung. The second compartment is the adjacent blood vessel that provides additional immune 

support to the site of damage. Differentiating between these two compartments allows us to 

determine the concentrations of various immune cells and other mediators in each separate 

area. This is necessary so that in future work this model can be calibrated with blood and 

local data, which are often measured by different means and with different frequencies.

Fig 2 gives a detailed breakdown of the dynamics in the lung. The dynamics are similar for 

the same cells and mediators in the blood. Cell types tracked in each compartment are stated 

in Table 1. In the following subsections, we develop the equations for these variables. The 

parameters used in the equations are given in Table 2 with their description and range used 

during parameter sampling. Since data is not yet available to estimate these model 

parameters, we use Latin hypercube sampling and exploratory simulations to determine 

initial acceptable ranges. This process is described in further detail in Section 2.2.

2.1.1. Epithelial cells—We modeled the local lung epithelial cells as the percentage of 

cells in three subpopulations, healthy (Eh), damaged (Ed), and dead epithelial cells/empty 

space needing be replaced by healthy cells (Ee). We define this “local space” to be a 

simplified approximation of the entire alveolar space. Since we track the percentages in each 

subpopulation, we have that Ee + Eh + Ed = 1. Thus, Eh, Ed, and Ee are dimensionless and 

we determine time to be in hours. We depict these populations using Eqs (1), (2), and (3). 

These equations track proliferation and interactions between the epithelial and immune cells 

that are recruited in response to VILI. The first term in Eq (1) is a logistic growth, 

representing epithelial cells that spread and replicate to fill Ee. The factors Eh +Ed and Ee 

delineate the areas taken up by cells and the empty space that can be filled by new cells. This 

term appears negated in Eq (3), modeling the removal of empty space. The proliferation rate 

is assumed to be bp at baseline and it is modulated at a rate proportional to the pro-

inflammatory mediator level, kepp. Nearby epithelial cells and progenitor cells, stem cells 

that can differentiate into specific types of epithelial cells only, perform this task. These cells 

spread and replicate to fill the empty space left by dead epithelial cells [75–77]. In this 

model we do not account for the progenitor cells. Therefore, we attribute all proliferation to 

the local epithelial cells.

The next term in Eq (1) and the first term of Eq (2) represents repair of damaged cells back 

to a healthy state. Epithelial cells are prone to self-repair [75], represented by a baseline rate 

br, and repair at a faster rate in the presence of repair mediators variable R, which tracks the 

level of mediators that promote epithelial repair such as fibronectin and other epithelial 

growth factors [77–79]. The third term in Eq (1) and second in Eq (2) represents collateral 

damage to epithelial cells by the influx and activity of the immune system. This mechanism 

is modeled via a nonlinear term, which is dependent on macrophage and neutrophil levels 

[80–82]. We also model damage due to ventilator-induced injury as sdEh, the fourth term in 

Eq (1) and fifth term in Eq (2), in which injury occurs at a rate proportional to the amount of 

healthy epithelial cells at a given time. This general term covers over-distention for any 

mode of ventilation.
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(1)

(2)

(3)

M1 macrophages and neutrophils clear debris from the inflammation site to make room for 

healthy epithelial cells to divide and fill the empty space [18, 75, 76]. The third and fourth 

terms in Eq (2) represent this phagocytosis of damaged cells by M1 macrophages and 

activated neutrophils, respectively. Regulation of M1 is modeled by the last multiplier in the 

term, representing inhibition by anti-inflammatory mediators (AIM), such as IL-10 [77, 80, 

83]. The negative feedback loop of AIM inhibiting further pro-inflammatory functions 

occurs multiple times in our model. We will heretofore refer to this multiplier as inhibition 

by AIM. Depending on the compartment, the term may utilize the variable ab (bloodstream) 

or a (local). The anti-inflammatory and regulatory role of M2 macrophages and the balance 

between M1 and M2 phenotypes is critical for a successful and rapid recovery [22, 77]. The 

last term of Eqs (2) and (3), bdEd, represents the death of Ed (negative in Eq 2) and the 

associated gain in the Ee population (positive in Eq 3)).

2.1.2. Pro- and anti-inflammatory mediators—As a signal to the immune cells, 

damaged epithelial cells release pro-inflammatory cytokines and other mediators, including 
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TNF-α and matrix metalloproteinases (MMPs) [21, 75, 76]. In our equations, we track these 

pro-inflammatory mediators (PIM) in both compartments: p in the lungs and pb in the blood. 

The release of PIM by damaged epithelial cells leads to diffusion of PIM into the 

bloodstream to recruit additional immune cells [76]. Movement from one compartment to 

another is assumed to be due to passive diffusion driven by the difference of the PIM 

concentrations between both compartments, first term in Eqs (4) and (5). This type of 

diffusion term will be used for all variables in our model that move bidirectionally from one 

compartment to the other.

M1 macrophages produce PIM, which upregulate the activation and migration of 

macrophages to the site of injury; see the second term in Eqs (4) and (5) [21, 77]. The 

macrophage population self-regulates by releasing AIM such as IL-10, thus inhibiting 

further production of PIM [59]. Therefore the production terms for PIM by M1 macrophages 

in both the blood and lung compartments include an inhibition multiplier. Therefore, the rate 

of PIM production by M1 macrophages decreases with increased concentrations of ab or a.

Neutrophils are also important producers of pro-inflammatory mediators such as TNF-α, 

IL-1, IL-6, LTB4, and chemokines, which stimulate the activation of macrophages toward an 

M1 phenotype [18, 19, 79, 81, 84]. Low levels of PIM exist in the absence of damage, 

accounted for by the source term sp in the second to last term of Eq (4) [85, 86]. The final 

terms of this equation and Eq (5) model the natural decay of these mediators.

(4)

(5)

Anti-inflammatory mediators, such as the anti-inflammatory signaling caused by IL-4 and 

IL-10 [87], are represented by Eq (6) in the bloodstream and Eq (7) at the site of damage. 

The first term in each equation models diffusion. AIM are released by both M1 and M2 

macrophages [21, 77, 83]. Similarly to pb, background levels of ab are present in the absence 
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of an immune response, represented by term four in Eq (6) [85]. Natural decay of AIM is 

accounted for by the last term in each equation.

dab
dt = da a − ab

Diffusion 
+ kam1M1b

Production
via M1

+ kam2M2b

Production
via M2

+ sa

Background
production 

− μabab
Decay (6)

da
dt = −da a − ab

Diffusion
+ kam1M1

Production
via M1

+ kam2M2

Production
via M2

− μaa
Decay  (7)

2.1.3. Macrophages—M0 macrophages, also called naive or undifferentiated, are 

present both locally and in the blood. The diffusion term, seen in Eqs (8) and (9), represents 

movement between compartments. The baseline diffusion between compartments is 

modeled in the same manner as with other variables, but the rate at which this diffusion 

occurs is modulated by mediators. Increased PIM and AIM levels cause undifferentiated 

macrophages in the bloodstream to be recruited at a higher rate to the damaged site, where 

they differentiate and perform phagocytic, pro-inflammatory, and pro-resolving roles [21]. 

This increased flux between compartments due to the presence of pb and ab is modeled by 

adding to the baseline diffusion rate (dm0). The added term is a Michaelis-Menten-type term 

to capture the increasing rate as mediators rise, with a maximum rate at which these cells 

can diffuse, (dm0 + km0pd + km0ad).

The equations also account for activation in the bloodstream by PIM and AIM given a high 

enough concentration of these mediators [80]. Although there is still debate on the types of 

macrophages that exist in the bloodstream after being released from the bone marrow, there 

is evidence that populations of both M1 and M2 exist in the bloodstream before being 

recruited to the site of injury [21, 83]. Thus, we include this process in our equations in the 

second term of Eqs (8) and (9). Undifferentiated macrophages in the bloodstream can 

change phenotype to M1 or M2 after interacting with PIM or AIM, respectively, modeled by 

a Hill-type term. This nonlinearity accounts for the sufficient amount of PIM or AIM needed 

to activate M0 and that this process saturates to a maximum rate of km0pb and km0ab for 

activation by pro- and anti-inflammatory mediators, respectively.

MV induces epithelial cells to produce pro-inflammatory mediators such as TNF-α, 

chemokines, and interleukins (ILs) [2]. Undifferentiated macrophages receive these signals 

and differentiate into the M1 phenotype [88]. The second term in Eqs 8 and 9 represent 

activation of undifferentiated macrophages to the pro-inflammatory phenotype, 

downregulated by the anti-inflammatory response through an inhibition multiplier. In this 

term, M2 macrophages can also be activated directly from the naive phenotype by various 

repair and anti-inflammatory mediators involved in the repair of epithelial cells [76, 77].

Using the same inhibition multiplier as previously, AIM inhibit differentiation to M1 as part 

of their regulatory role in the inflammatory process, although a complete understanding of 
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these mechanisms is yet to be uncovered [21, 59, 76]. In the absence of injury, lungs contain 

a low number of undifferentiated macrophages which patrol the surrounding area [75]. 

“Patrolling” macrophages are also prevalent in the bloodstream. The third term in Eq (8) 

represents a constant source of undifferentiated macrophages into circulation [77]. We also 

account for natural decay of all macrophage phenotypes in the last term of Eqs (8) through 

(13).

(8)

(9)

Similarly to naive macrophages, M1 macrophages move between compartments. The 

presence of pro-inflammatory mediators, which act as recruiters, increases the rate of 

diffusion, shown in the first term of Eq (10) [21]. The second term represents differentiation 

from the naive state, as described for the associated term in M0.

Macrophages exhibit high plasticity, and based on the mediators and other immune cells 

they encounter, they can switch phenotype and perform different or enhanced functions; this 

plasticity is not yet fully understood [77, 80]. M1 macrophages are primarily responsible for 

producing PIM, thereby recruiting other immune cells to the damaged area [83]. M2 

macrophages are considered pro-resolving and downregulate PIM. Both M1 and M2 

macrophages phagocytize apoptotic cells such as neutrophils [79]. The shift from an overall 

pro-inflammatory phase to an anti-inflammatory phase in the course of the immune response 

is highly dependent upon a shift in macrophage behavior, specifically the shift from a mainly 

M1 response to a mainly M2 response [21, 76, 83].
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One of the primary ways this shift is achieved is through the inhibition of M0 to M1 

differentiation by anti-inflammatory mediators, as described previously. Additionally, when 

pro-inflammatory macrophages phagocytize apoptotic neutrophils, they shift towards a more 

anti-inflammatory phenotype. This results in suppression of the release of pro-inflammatory 

mediators and production of pro-resolving mediators [81, 82]. We account for this shift by 

including the third term in Eq (11) to account for M1 macrophages shifting to the M2 

phenotype when they phagocytize apoptotic neutrophils. This term is proportional to the 

term in the apoptotic neutrophil equation, Eq(17), modeling the phagocytosis of apoptotic 

neutrophils by M1. This term also includes inhibition of M1 function by AIM. It has been 

shown in some studies that M2 macrophages can switch to an M1 phenotype [89], although 

this idea is not currently widely accepted. Thus, we choose to include only the shift from M1 

to M2.

(10)

(11)

M2 macrophages, associated with an anti-inflammatory response, can be activated directly 

from undifferentiated macrophages by specific anti-inflammatory signals in addition to 

switching phenotype from M1. They diffuse between compartments modeled in the first 

terms of Eqs (12) and (13). M2 macrophages produce anti-inflammatory mediators which 

recruit and promote differentiation to more M2 macrophages, described in the second term 

of both equations. They release cytokines that trigger the repair phase of the immune 

response [21, 77]. This repair phase includes repair mediators (discussed in Eq (18)), which 
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play a direct role in the reconstruction of healthy epithelial cells and resolution of damage 

[77].

dM2b
dt = M2 − M2b dm2 + km2rR

xm2r + R + km2aa
xm2a + a

Diffusion

+ M0b
km0abab

2

xm0ab
2 + ab

2

Differentiation
to M2

− μM2bM2b
Decay 

(12)

dM2
dt = − M2 − M2b dm2 + km2rR

xm2r + R + km2aa
xm2a + a

Diffusion

+ M0
km0aa2

xm0a
2 + a2

Differentiation
to M2

+ kman kanm1ANM1

M1 switch to M2 
by phagocytosis

1
1 + a

a∞
2

 Inhibition 
 by AIM 

− μM2M2

Decay

(13)

2.1.4. Neutrophils—Neutrophils are considered the first responders to injury [19, 76]. 

Generated in the bone marrow, free-flowing neutrophils, described as N0b, circulate in the 

lung vasculature at baseline levels [18] and are represented by the first term in Eq (14). In 

the presence of injury, neutrophils are activated and recruited to the damaged site through 

pro-inflammatory mediators such as TNF-α, IL-1β, and other chemokines and cytokines 

[19, 84]. This recruitment is represented by the first term in Eqs (14) and (15). On the other 

hand, anti-inflammatory mediators, including macrophage-produced resolvins and 

protectins, inhibit further recruitment of neutrophils [82]. Similarly to the differentiation of 

macrophages, it is assumed that a neutrophils activation is nonlinear and that it saturates. 

Therefore, a Hill-type term with a maximum rate of kn0p and a constant of xn0p is used to 

model activation of neutrophils by PIM. To model the inhibition of neutrophil activation by 

AIM, we include the same inhibition multiplier as previously described. The effectiveness of 

AIM to inhibit this process is controlled by ab∞. We also account for intrinsic decay of 

neutrophils in the last term of Eqs (14) through (17).

(14)
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(15)

Neutrophils go through a multi-step process of rolling along and subsequently adhering to 

the surface of the endothelium. Then neutrophils transmigrate to the injury site either 

through or between endothelial cells [18, 19]. This process is assumed to be driven not by a 

concentration difference in neutrophils between the compartments but rather is a direct 

consequence of activation. Therefore, neutrophil transmigration, the first term in Eq (16), is 

modeled from the bloodstream to the site of injury by a linear term with rate kn.

Activated neutrophils that have transmigrated through the endothelium and reached the site 

of injury release pro-inflammatory mediators, as discussed previously in Eq (5). During 

infection, neutrophils play an important role by phagocytizing pathogens [81], but during 

VILI a main role of neutrophils is the recruitment of macrophages, particularly to promote a 

more pro-inflammatory environment for the clearance of damaged and dead cells [19].

Neutrophils become apoptotic, modeled by the second term of Eq (16) [76]. In this state, 

they are phagocytized by M1 and M2 macrophages (second and third terms of Eq (17), 

respectively) and no longer contribute to the production of PIM [18, 79, 90]. Phagocytosis 

by M1 macrophages is inhibited by AIM using our standard functional form for the 

inhibition multiplier. AIM do not inhibit phagocytosis by M2 macrophages since AIM 

support the function of anti-inflammatory cells. Intrinsic decay is modeled in the last term of 

Eq (16).

dN
dt = knNb

Migration
− kanN

Transition to
apoptotic 

− μnN
Decay

(16)

(17)

2.1.5. Repair mediators—The direct contribution of alveolar macrophages to the repair 

of epithelial cells is not completely understood, although macrophage involvement in the 

repair process has been widely demonstrated [77]. M2 macrophages produce various 

mediators such as prostaglandin E2, chemokines such as CCL2, TGF-β, fibronectin 1 and 

other epithelial growth factors [77–79] that promote repair of epithelial cells and recruit 

fibroblasts, key cells involved in tissue repair [91]. We do not model each of these 
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components, instead grouping them together in one variable called R, which can be thought 

of as the downstream effects of fibroblasts and other mediators. If the recovery phase is the 

focus of a future study this model could be adapted to include these dynamics explicitly. The 

production of R by M2 macrophages is modeled by the first term in Eq (18). The second 

term models intrinsic decay of these mediators.

dR
dt = krm2M2

Upregulation
by M2

− μRR
Decay 

(18)

These equations form a system of ODEs that captures the most important aspects of the 

immune response to VILI. In the following sections we describe various computational 

approaches used to explore parameter space, determine the parameters the model is most 

sensitive to and establish influential predictors of model outcomes. We end with case studies 

in which we modulated particular parameters and then evaluated long-term epithelial 

damage.

2.2. Sampling method for parameters: Latin hypercube sampling

Because of the large number of variables and parameters, mathematical and statistical 

techniques needed to be used to analyze the system and find parameter sets that generate a 

variety of dynamics and outcomes of immune cell populations included in this model. At 

this stage we analyzed the model with various parameters without utilizing data; in future 

work this model can be coupled with ventilation experiments to narrow parameter ranges. 

As an initial step we determined initial conditions and parameters for this model through 

Latin hypercube sampling (LHS), which generates random, unique parameter sets according 

to user-defined distributions [92]. As suggested by Marino et al. [68], we initially chose 

uniform distributions since we had no prior knowledge of the parameter values, and sampled 

on a logarithmic scale to cover a span of several magnitudes. For LHS with uniform 

distributions assumed for each parameter, to generate n desired parameter sets, the algorithm 

splits the determined range into n evenly-spaced subintervals and each interval is sampled 

exactly once [68]. We also sampled using log-normal distributions for each parameter with 

the same means and variances as the uniform distributions to see whether restriction of the 

parameter space by bounded intervals, as enforced by the uniform distributions, affected our 

results. We sampled using log-normal, rather than normal, distributions to ensure the 

parameters were positive.

Using MATLAB functions adapted from Kirschner et al. [93], all parameters were sampled 

except the rate of damage sd due to ventilation to ensure the same insult during all 

simulations. We began to explore parameter space by sampling near transients associated 

with different outcomes. Ranges were set such that that the resulting sampling gave rise to a 

variety of behaviors and outcomes. Table 2 shows the final ranges used for the LHS sweep 

that constructed the collection of parameter sets used in this work. Using LHS in these 

ranges we generated 100,000 parameter sets. Future work could calibrate parameter sets to 

data from different experimental or clinical groups and then use the analysis methods in this 
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manuscript to compare dynamics and parameters that drive differences between 

experimental or clinical groups.

2.3. Parameter Set Collections: Healthy, Moderate Damage, & Severe Damage

Our goal was to understand the effects of baseline lung health, represented by initial 

conditions and unique parameter sets, on the response to ventilation and post-ventilation 

recovery. Therefore we needed to start our simulation from initial conditions associated with 

a steady state, so that when ventilation was simulated we were seeing changes in the 

dynamics only due to the ventilator. For all 100,000 parameter sets we simulated the model 

for 800 hours, without any ventilation (sd = 0), to determine if a numerical steady-state 

condition was reached in the absence of ventilation. Our numerical steady state condition 

was that the l2-norm of the difference between each meshpoint in the last 100 hours of the 

simulation and the last point (hour 800) was less than 0.1. By examining simulation results, 

we confirmed that this ensured minimal change in all variables at the tail end of the 

simulation.

Three different initial conditions were used with the sampled parameter sets for the 800-

hour, non-vent simulation, in order to find sets that have steady states. The first set of initial 

conditions was associated with initial simulations used to develop the sampling ranges, but 

was not associated with a particular set in our final round of sampling. The second initial 

condition we chose was associated with an insult to the epithelial cells with no initial 

immune response, all variables set to zero except for Eh(0) = 0.75 and Ed(0) = 0.25. The 

third and final initial condition had all variables set to zero except for M1(0) = 50, which is 

starting with an activated immune response and healthy tissue. If our numerical steady-state 

condition was satisfied with any of these initial conditions, the parameter set was accepted 

and the associated initial conditions were set to the variable values at 800 hours. A total of 

27,836 sets satisfied our numerical steady state condition. Any parameter set that did not 

result in an equilibrium state by 800 hours from these three initial conditions was not 

simulated with ventilation. Since we did not perform a complete analysis on all 100,000 sets, 

we do not mathematically conclude that the remaining parameters cannot reach a steady 

state. However, given the robustness of the resulting dynamics and the number of parameter 

sets that reached our condition for numerical steady state, we assumed that actual biological 

dynamics were well represented by simulating these 27,836 unique parameter sets. The 

same process was applied to the log-normally-distributed collection of parameter sets, 

generating a total of 33,812 sets that reached a steady state. Results throughout this 

manuscript were similar for the sets generated using log-normal distributions, see 

supplementary materials.

Some parameter sets gave rise to initial conditions where the percent of empty space in the 

epithelium was significantly high. Therefore, we eliminated some sets based on their initial 

condition for Ee (empty/dead cells). In this paper we focus on the 24,432 parameters sets 

that had a steady state for Ee < 50% and show a summary of all results for steady states with 

Ee < 25% and Ee < 75% in the supplementary materials. We did not find any major 

differences when varying this inclusion threshold.
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These 24,432 sets were then simulated for 200 hours with ventilation for the first two hours 

(a nonzero damage rate), a duration comparable with murine experiments [94, 95]. Given 

that all mice do not survive ventilation, we adjusted our model to account for extensive lung 

damage due to ventilation, leading to severe inflammation. Without this adjustment, the 

model assumes survival in all scenarios and allows for a recovery phase. Instead, we 

assumed that a high percentage of empty space Ee is not survivable; therefore, we set a 

threshold for Ee. Ideally this threshold’s value would be derived from data. However, in the 

absence of data related to epithelial integrity, we used a threshold of 75% given that we had 

set a threshold of 50% for Ee(0). These two thresholds combined map the arbitrary 0 to 

100% epithelial population to metrics of overall lung health. Ee more than 50% without 

ventilation is not survivable and more than 75%, even with MV, is not survivable. Therefore, 

if Ee rises above 75% at any time, variables are set to 0 at that time.

Simulations were separated into three different categories based on percentage of healthy 

epithelial cells at time of classification T:

• Eh(T) ≥ 90%: Healthy epithelial cells sufficiently cover the alveoli to function 

normally

• 50% ≤ Eh(T) < 90%: Moderate tissue damage

• 0% ≤ Eh(T) < 50%: Severe tissue damage and non-survivable ventilation

Sets were classified into the three categories based on their initial conditions and again at 

two other time points: immediately after ventilation (2 hours) and after ventilation with a 

recovery period (200 hours). Classification at these two time points allowed us to understand 

the immediate effects of VILI as well as the long-term effects after a period of recovery. 

These parameter sets, their corresponding transients, and the outcomes they generate were 

used to develop a collection of parameter sets representing a variety of immune system 

dynamics. The collection was then used to analyze outcomes in terms of their associated 

transient variables and underlying parameters.

2.4. eFAST

We used several tools to perform a sensitivity analysis of model parameters. A common 

method is calculating partial rank correlation coefficients (PRCCs), but results are only 

reliable for monotonic relationships between parameters and variables. Our model output 

does not fit this criteria. Marino et al. suggest the extended Fourier amplitude sensitivity test 

(eFAST), a variance-based method for non-linear, non-monotonic relationships [68]. The 

greatest drawback of eFAST compared to PRCC is the computation time.

eFAST varies parameters and the resulting variation in model output is calculated using 

statistical variance. The algorithm varies each parameter at different frequencies by creating 

a sinusoidal function, called a search curve, and then sampling parameter values along the 

function. Fourier analysis measures the influence of the parameter’s frequency on model 

output. First-order sensitivity Si for a parameter i is calculated by varying only i and leaving 

the rest constant. Total-order sensitivity STi is calculated by varying i using a unique, higher 

frequency and varying the other parameters using lower non-unique frequencies. This total-

order sensitivity captures non-linear interactions between parameters in addition to changes 
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in model output. We implemented the method by Marino et al. [68] to calculate Si and STi 

and determined the statistical significance of each parameter. A “dummy parameter” was 

included in the parameter set and its eFAST index was compared to the other parameters 

found in the model.

MATLAB functions by Kirschner et al. [93] to perform eFAST are available online. We 

obtained 257 values of each parameter on a search curve and repeated this process for five 

unique search curves since different ones can generate slightly different samples. Sensitivity 

can be calculated at specific time points for the desired variable.

2.5. Random forest decision tree

Aside from more conventional sensitivity analysis measures, we chose a few alternative 

methods that require less computation time and can include other features of the model 

besides parameters. One of these alternatives is a random forest decision tree [96, 97]. Each 

parameter set in the collection has a number of predictors and outputs: parameters and any 

other characteristics from the transients that can be quantified. The decision tree algorithm 

determines the parameter/predictor values that best partition the collection into categories of 

healthy, moderate damage, and severe damage. Each member of the collection answers a 

series of questions, i.e. nodes on the tree, based on the predictor values of that parameter set, 

eventually being classified into a particular outcome. This process is repeated to obtain a 

“forest” of decision trees.

Since a decision tree simply takes value for each predictor and is not dependent on the 

model itself, measures besides parameters can be used. We included supplementary 

predictors calculated from the transients. These predictors are: maximum and minimum M1 

and M2 (percent of total macrophages and raw values), time at which M1 and M2 

maximums occur (M1/M2 peak time), ratio of M1 peak to M1 initial condition, percent M2 

macrophages at 10 hours, ratio of Eh initial condition to Eh at 30 minutes, 2 hours, and 6 

hours, and the difference between Eh initial condition and Eh at 200 hours. Adding these 

predictors allowed for the possibility that the best classifiers of outcome could be not only 

parameters but also properties of the transients. This knowledge could provide additional 

information about metrics for experimentalists and clinicians to track in order to identify 

early warning signs for undesirable results.

One metric generated by the random forest is the importance value of each parameter or 

characteristic, calculated from the Gini Index [98]. The importance value is a measure of 

how important any given parameter was in determining the outcome of each set in the 

collection. Because of the large number of parameters in the model, this can provide 

intuition about which parameters and other characteristics of the transients are most 

influential in determining outcomes. The R and MATLAB code used for this method are 

provided in the supplementary materials.

3. Results

Our aim is to understand how recruitment of the immune response and its interactions with 

epithelial cells translate to specific outcomes and what dynamics are driving this process. 
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Using the techniques described in the previous section, we determined predictors of outcome 

and/or processes that could be targeted to modulate outcome.

3.1. Sample Transients and Collection Breakdown

This model can generate a variety of dynamics, similar to the mixed responses of patients on 

a ventilator [99]. Our model generates a variety of dynamics which reflects this spectrum of 

responses. There is significant variability between outcomes as well as within them. Fig 3 

shows examples of these different dynamics for healthy epithelial cells and M0, M1, and M2 

macrophages using a case of each of the three outcomes as determined at 200 hours: healthy, 

moderate damage, and severe damage. All three can be classified as “severe damage” at 2 

hours. Each case has a unique set of initial conditions and parameters, giving rise to three 

very different immune responses and epithelial cell health. Simulations were run in 

MATLAB using the code provided in the supplementary materials.

We generated 100,000 parameter sets using LHS with parameter ranges given in Table 2. Fig 

4 shows the breakdown of these parameter sets based on whether or not the dynamics led to 

a steady-state system and whether the steady state value had Ee ≤ 50% in the absence of 

ventilation. Their classification before ventilation and the resulting classification 

immediately after a 2-hour ventilation and after a 2-hour ventilation plus a recovery period 

(200 hours total) are also shown. The top number in each box is the total number of 

parameter sets in that category, and that number is further broken down by the category in 

which they started (column 1) and ended (column 2). The number in parentheses in the first 

column is the number of sets that started in that category but ended in a different one. 

Conversely, the number in parentheses in the second column shows the sets that ended in a 

certain outcome but did not start there. These numbers serve as a summary of how damage 

may affect outcome directly after ventilation as well as after a recovery period for the variety 

of behaviors in the collection of parameter sets. We will analyze all 24,432 sets that reach 

steady state (with steady state Ee < 50%) to understand the full array of responses that could 

occur.

3.2. Determining Predictors and Driving Dynamics

In this section we examine and compare the results of multiple methods that determine the 

parameters and other predictors that help differentiate or predict model dynamics and 

outcomes.

3.2.1. Correlations and Significance Testing Highlight Specific Parameters—
As an initial step towards understanding relationships between parameters and model output, 

we calculated the correlations of parameters and predictors with one another for each 

outcome. There were some correlations between predictors that were very high, but were 

measuring similar things; for example, maximum M1 and minimum M1. We excluded these 

since they did not provide new or useful information. Aside from these, there were only a 

few correlations between parameters or between parameters and predictors that were higher 

than R = 0.3. The pair with the highest correlation, for outcome determined at both 2 and 

200 hours, is shown in Fig 5 using a random sample from each classification group for better 

visibility of the points. For kmne, the rate of collateral damage to epithelial cells by 
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macrophages and neutrophils, parameter sets that resulted in moderate and severe damage 

outcomes had a significant correlation with the Eh ratio at 0.5 hours. The Eh ratio and kmne 

had the following correlations for each group with classification at 2 hours: healthy R = 0.24 

(not shown), moderate damage R = 0.43, and severe damage R = 0.73. For classification at 

200 hours, the correlations were: healthy R = 0.1 (not shown), moderate damage R = 0.66, 

and severe damage R = 0.87. These high correlations suggest that the parameter kmne may 

play a key role in determining outcome, which we explored further in the following sections.

We also performed hypothesis testing for predictors. We were not able to use ANOVA, a 

common statistical model used to examine the difference between group means, because the 

resulting distributions for the accepted parameter sets were not necessarily normal. The 

Kruskal-Wallis test is an alternative to ANOVA when the variable distributions are not 

normal [100]. We categorized all parameter sets by their outcome (healthy, moderate 

damage, severe damage) and compared them. If any of the three groups had a statistically 

significant difference (p-value less than 0.05), a Wilcoxon test was performed on each pair 

(healthy and moderate damage, healthy and severe damage, moderate and severe damage) to 

determine which groups were different from one another. P-values for the Kruskal-Wallis 

and Wilcoxon tests were adjusted using the Benjamini–Hochberg procedure to control for 

the false discovery rate [101]. Knowledge of which parameters and other predictors were 

different between groups based on outcome provides insight into predicting outcomes and 

which predictors might best influence the immune response to damage.

When classification occurred at 2 hours, 52 out of 81 parameters and other predictors 

returned results for a statistically significant difference between at least two groups and 30 

gave statistically significant differences between all three groups. For classification at 200 

hours, statistically significant differences occurred for at least two groups and all three 

groups for 40 and 13 predictors, respectively. Table 3 shows a summary of the results from 

the various methods used to examine predictors’ significance in determining model output. 

Columns 1 and 3 of Table 3 show the predictors in which all three groups were different 

from one another for both classification times, as determined by the Kruskal-Wallis and 

Wilcoxon tests. Results in other columns are described in the following sections. Box plots 

of a subset of predictors in which all three groups were different are shown in Fig 6 to help 

visualize these differences.

3.2.2. Parameter Sensitivity with eFAST—We calculated eFAST indexes for Eh at 30 

minutes, 2 hours (end of ventilation), 6 hours, and 200 hours (time at which outcome is 

determined). We included a few early time points since we are looking for parameters that 

could suggest early interventions to mitigate possible negative outcomes. We calculated 

first-order and total-order sensitivities Si and STi, respectively. Fig 7 shows results for the 

parameters with p-value < 0.05. Parameters xmne (Hill-type constant for effectiveness of 

macrophages and neutrophils in damaging epithelial cells), br (baseline repair of damaged 

cells), and ken (phagocytosis of damaged cells by N) were sensitive for several time points. 

There were no parameters with total-order sensitivity p-value < 0.05 for 6 hours. Parameters 

with a significant Si may be better candidates for treatment than those with a significant STi 

because first-order sensitivity measures sensitivity of Eh based only on fluctuations in a 

single parameter. For this reason and since many of the same parameters are significant for 
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first-order and total-order sensitivity, we show results for first-order sensitivity in Columns 

5–8 of Table 3, ordered from lowest p-value to highest and for the four time points specified.

3.2.3. Random forest algorithm to determine predictors—To offset any unusual 

results generated by the randomness of the decision tree algorithm, we replicated the process 

of randomly selecting a training set and generating importance values from the random 

forest 1000 times. Fig 8 shows the average and standard deviations of the top ten importance 

values generated for both 2-hour and 200-hour classifications.

Many of the same predictors are seen in both 2 and 200-hour outcomes, though in a different 

order. Notice that the small standard deviations in both figures are small and support that the 

predictors remain the same across multiple random forest simulations. Furthermore, several 

of the top ten predictors were found to be significant by the Kruskal-Wallis test, and br, 

xmne, and ken are shared by random forest and eFAST. (see Table 3). The consistency of the 

importance of these parameters and predictors using different methods supports the idea that 

they play a significant role in the sensitivity of model output and determining or 

differentiating outcomes, both immediately after ventilation and after a period of recovery, 

though they may be more important at specific times

3.3. Modulating recovery: a case study of select transients

Fig 9 shows four examples of transients that started in one category and ended in another 

after ventilation plus a recovery period. We used the information gained in the parameter 

analysis to identify key targets for interventions that could modulate damage, especially in 

the case of a patient starting in one state and ending in a different, negative outcome even 

after a recovery period. The goal was to return the percentage of healthy epithelial cells to its 

original steady-state earlier, since the inability to recover from a 2-hour vent after 200 hours 

or more could be detrimental to long-term health.

Our analysis showed that the parameters kmne, the rate of collateral damage by macrophages 

and neutrophils to epithelial cells, xmne, the Hill-type constant which regulates the 

effectiveness of macrophages and neutrophils in damaging epithelial cells, br, the rate of 

self-repair of healthy epithelial cells, and ken, the rate of phagocytosis of damaged cells by 

neutrophils, were some of the most influential parameters and thus could inform targets for 

intervention. Furthermore, in the previous section, we obtained results for classification at 2 

hours and 200 hours, showing how parameter sensitivity differs between time points. Thus, 

we examined interventions beginning at several time points (see Fig 10).

We intervened in a case that started healthy and ended in moderate damage. Note in Fig 10, 

the original Eh transient began recovery to healthy after the two-hour ventilation period, but 

by the end of the 200-hour period, was at a lower Eh value than it was initially. This was 

coupled with a transient for M1 in which the pro-inflammatory phenotype increases 

significantly and then stays in the 40–45% range.

Increasing br by various amounts had increasingly positive effects on long-term epithelial 

health. Lower values of br increased Eh slightly and an earlier intervention generated a 

higher peak of Eh around five hours, but did not continue increasing at this rate regardless of 

Minucci et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intervention time. If br was increased substantially for a significant duration of treatment 

time, healthy epithelial cells reached the healthy steady-state after ventilation and did not 

decrease again. Shown in Figures 10a and 10d, doubling br to 0.66 was not enough to 

generate recovery, but increasing br by a factor of four to 1.32 did result in a healthy 

outcome. For an insufficient treatment duration and value of br, levels of Eh were higher 

until treatment ended and then decreased back to the same level as the original simulation. 

For a long enough treatment duration, the proportion of healthy epithelial cells remained 

high even after treatment ended. For br = 0.66, the intervention time did not improve health 

in the long run, whereas for br = 1.32, intervention at either 0 or 2 hours was sufficient to 

bring about recovery while intervention at 4 hours was not.

The parameter kmne has an inverse relationship with epithelial health; thus, decreasing the 

parameter provided better results. Decreasing kmne slightly increased the rate of recovery but 

not enough to change the outcome to resolved. However, with a significant enough decrease 

of kmne, M1 activation peaked around hour 10 and decreased back to its original level. The 

original simulation shows M1 activation leveling off at a high percentage of activation (Fig 

10e). The modulated return to baseline levels was paired with a healthy outcome for 

epithelial cells (Fig 10b). For higher values of kmne, results were about the same for any 

intervention time 4 hours or less after the beginning of ventilation. Note in Fig 10 that the 

time at which intervention begins mattered somewhat for changes in br but not for kmne. 

Figures 10b and 10e show that half of the original value of kmne (0.38 to 0.19) was not low 

enough to change the outcome; multiplying by a factor of 0.1 to kmne = 0.04, on the other 

hand, was sufficient to change the outcome to healthy.

We also increased the parameter xmne. Increasing this value caused the presence of 

macrophages and neutrophils to be less effective in damaging epithelial cells. Similarly to 

the other treatments, sufficient changes to xmne brought about long-term recovery and the 

time at which intervention began was not as important. Figures 10c and 10f show doubling 

xmne to 1.85 was insufficient to change the outcome, and increasing xmne by a factor of four 

to 3.69 was sufficient.

Finally, we increased ken. This increased the rate at which neutrophils phagocytize damaged 

cells, making room for new, healthy cells. Interestingly, although ken was shown to be an 

important parameter in our analysis, even increasing the parameter by a factor of ten to 1.52 

was insufficient to make any real changes in the epithelial and macrophage populations. 

Since there was no significant change, we do not show this treatment in Fig 10.

We also examined the results of combination therapy that could include regulation of two or 

three parameters. Together, changes in parameter values that would be insufficient on their 

own were able to regulate macrophage activation and bring epithelial cells back to a healthy 

state. Additionally, higher values of br and xmne and lower values of kmne precipitated a 

quicker recovery from damage. Intervention time was important for parameter values near 

the threshold, but not for parameter values sufficiently above or below the threshold. 

Intervention time may make a difference in the ending values of Eh or M1, depending on the 

parameters. Many combinations could be formulated; Fig 11 shows two cases in which two 

parameter changes were insufficient to bring about recovery individually but were sufficient 
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when combined. The orange curves show br = 0.99 and kmne = 0.19 and the blue curves 

show xmne = 2.31 and ken = 1.52, which brought about long-term recovery for all three 

intervention times.

For other cases starting in a healthy state and ending in moderate or severe damage, a high 

enough br can bring about resolution in some cases. In general, earlier intervention times 

resulted in a faster rate of recovery, but there were varied responses to changes in kmne, xmne, 

and ken. Even for transients with similar Eh and M1 dynamics, reactions to interventions 

may be different, reinforcing the uniqueness of each parameter set, mirroring the variety of 

patient responses to MV.

4. Discussion

MV is a widely-used short-term life support technique. However, despite its life-saving uses, 

it often comes with serious complications. Decades of work have contributed to our 

understanding of the physiology and management of MV, though additional research is 

needed to best care for patients during and after the period of ventilation, including 

interventions that target inflammation triggered by ventilator-induced lung injury [99]. 

Within the immune response, the spectrum of macrophage activation has been a recently 

growing field of research [15, 23] and with recent findings regarding differences in 

macrophage polarization linked to age [6, 102], a better understanding of and treatment for 

VILI is of great concern. Additionally, mortality rates for MV patients increase with age 

[103, 104]. Mathematical models have studied a host of causes of lung inflammation, 

including bacterial and viral infections and allergic reactions [40]. Our model includes 

macrophage polarization with a more detailed epithelial subsystem to model ventilator-

induced lung injury. These features provide a better understanding of how the components of 

the immune response, including those associated with the different macrophage phenotypes 

and baseline lung health (steady state values), play a role in post-ventilation outcomes both 

immediately after ventilation as well as after a period of recovery.

Our approach of developing a collection of parameter sets and identifying the important 

parameters is a first step in uncovering the driving mechanisms behind VILI and how they 

contribute to outcomes. Analysis of the model showed that properties and parameters related 

to epithelial repair and M1 activation and de-activation were especially predictive of 

outcome. We used br, the rate of self-repair of epithelial cells, kmne, the rate at which 

macrophages and neutrophils cause collateral damage to epithelial cells, xmne, the Hill-type 

coefficient that regulates the effectiveness of that collateral damage, and ken, the rate of 

phagocytosis of damaged epithelial cells by neutrophils, to simulate treatments for a 

parameter set in the collection that started healthy and ended in a moderate damage 

outcome. We found that modulating br is effective in most cases, and the other four can be 

helpful in some. The chosen case responded differently to treatments and these were paired 

with varied M1 activation dynamics, indicating that macrophage activation is tied to 

epithelial health in VILI.

The epithelial subsystem in this model is a simplified version of epithelial cell dynamics that 

reduces complexity by not accounting for each individual cell and all possible damage 
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levels. We used three categories to model epithelial cell states where a damaged epithelial 

cell corresponds to increased production of pro-inflammatory mediators. Using this model 

with data will require alignment of these variables with experimental measurements of lung 

health. Future iterations of this model would ideally be calibrated with M1/M2 activation 

and lung epithelial data in the context of VILI derived from clinical samples. However this 

would likely need measurements of macrophage phenotypes and epithelial health at multiple 

time points from various age groups. Until these types of clinical and experimental measures 

are available, biologically relevant dynamics could be determined using inflammatory 

biomarkers and macrophage recruitment from cell and tissue experimental models of VILI 

[105–107]. For example, Valentine et al. recorded inflammatory gene expression and 

monocyte recruitment in response to in vitro mechanical stretch [108].

Another area of study is determining if and when the model is bistable, identifying 

mechanisms that can transition trajectories from one steady state to another, and establishing 

when this is biologically relevant with regard to treatment. This would help address why 

some virtual cases can recover with a short intervention time while others need indefinite 

treatment. Additionally, this model can be expanded to include other types of injury and/or 

the comorbidities that lead to needing MV, such as a bacterial or viral infection or ARDS, or 

coupled with other previously published models, to study the interactions between the 

different types of injury and how they contribute to patient outcome.

In conclusion, our model contributes to the current understanding of the immune response in 

the lungs, and is an important first step for VILI. Our parameter analysis using a variety of 

methods provides new insight into potential interventions during and after ventilation to 

mediate VILI. Experimental data will greatly improve our ability to suggest treatments. 

Furthermore, the model can be extended to address specific diseases.
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Figure 1: 
An illustration of some of the important biological mechanisms and interactions included in 

our model, which is described in the following sections.
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Figure 2: Schematic describes interactions between immune system components.
Green boxes represent neutrophils: unactivated and activated neutrophils in the bloodstream 

(N0b and N0, respectively), activated and apoptotic neutrophils at the site of inflammation (N 

and AN, respectively). Circles represent M0, M1, and M2 macrophages, which perform a 

number of roles including removing debris and producing pro- and anti-inflammatory 

mediators. White boxes represent healthy, damaged, and dead epithelial cells/empty space. 

Pro- and anti-inflammatory mediators (red and blue boxes) recruit and activate immune cells 

(red and blue arrows indicate activation by pro- and anti-inflammatory mediators, 

respectively). Repair mediators (purple box) promote repair of damaged epithelial cells. 

Dynamics between cells and mediators in the blood (not shown) are similar to the detailed 

dynamics shown for local inflammation in lung tissue.
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Figure 3: Sample simulations show the variety of model-generated dynamics.
Blue, orange, and green curves indicate healthy, moderate damage and severe damage 

outcomes, respectively. (a) Proportion healthy epithelial cells. (b) Percent M0 macrophages. 

(c) Percent M1 macrophages. (d) Percent M2 macrophages.
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Figure 4: Results of 100,000 LHS runs grouped by classification.
Parameter sets are broken down by their initial conditions (Start) and ending states (End) 

and by category healthy (H), moderate damage (M), or severe damage (S). Numbers in 

parentheses in the IC columns are the number of simulations that started in the category 

associated with that row and change their state after ventilation. Numbers in parentheses in 

the ES columns are the number of simulations that ended in the category associated with that 

row, but were not in that category before ventilation. The first three rows in the table show 

classification immediately after a 2-hour period of ventilation. The last three rows show 

classification after a 2-hour vent and period of recovery. All parameter sets are associated 

with a steady-state solution with Ee < 50%.
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Figure 5: Scatter plot of predictors with notable correlations.
Parameter kmne (rate of collateral damage to epithelial cells by macrophages and 

neutrophils) versus ratio of Eh at 0.5 hours to initial Eh values. (a) Outcome was determined 

at 2 hours. Correlations: resolved to healthy R = 0.24 (not shown); moderate damage R = 

0.43; severe damage R = 0.73. (b) Outcome was determined at 200 hours. Correlations: 

resolved to healthy R = 0.1 (not shown); moderate damage R = 0.66; severe damage R = 

0.87. Points are a random sample of the total points.
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Figure 6: Predictors selected by significance testing show visible differences between injury 
groups.
Subset of parameters and predictors that showed a statistically significant difference between 

all three outcomes determined at 200 hours: healthy, moderate damage, and severe damage, 

as determined by the Kruskal-Wallis and Wilcoxon tests. These five predictors were also 

statistically significant when classification occurred at 2 hours. All are shown on a log scale 

for better visibility. Parameters/predictors: br, baseline repair rate of damaged cells; Eh ratio 

at 2h, ratio of Eh at 2 hours to Eh initial condition; kmne, rate of collateral damage to 

epithelial cells by macrophages and neutrophils; M1 peak ratio, ratio of M1 maximum to 

initial condition; xmne, regulates effectiveness of macrophages and neutrophils to damage 

epithelial cells (Hill-type constant).
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Figure 7: Parameter sensitivity analysis shows which parameters most influence model output.
Parameters determined by eFAST to be most sensitive, with p-values calculated by 

comparing eFAST sensitivity indexes to a dummy variable. Results are given for each of the 

time points tested: 0.5 (red), 2 (blue), 6 hours (purple), 200 hours (navy). (a) First-order 

sensitivity, also shown in Table 3. (b) Total-order sensitivity. Results at 6 hours are not 

shown as there were no statistically significant parameters at that time point. Parameters: 

ken, rate of phagocytosis of damaged cells by N; kpe, production rate of p by Ed; μp, decay 

rate of p; xmne, regulates effectiveness of macrophages and neutrophils to damage epithelial 

cells (Hill-type constant); kn, rate of migration of Nb to lung; kep, rate of self-resolving 

repair mediated by p; br, baseline repair rate of damaged cells; kan, rate at which neutrophils 

become apoptotic.
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Figure 8: Random forest decision tree selects top indicators of outcome.
Mean and standard deviation of importance values for the top ten highest predictors from 

1000 random forest decision trees. Results with classification at (a) 2 hours and (b) 200 

hours. Parameters: kmne, rate of collateral damage to epithelial cells by macrophages and 

neutrophils; br, baseline repair rate of damaged cells; kep, rate of self-resolving repair 

mediated by p.; xmne, regulates effectiveness of macrophages and neutrophils to damage 

epithelial cells (Hill-type constant); ken, rate of phagocytosis of damaged cells by N; sn, 

source rate of N0b. Eh ratio at 0.5, 2, and 6h represents the ratio of Eh at those time points to 

its initial condition.
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Figure 9: Some parameter sets generate transients that end in a worse outcome.
(a) Transients of Eh that started in one category and ended in a different one. (b) 

Corresponding transients of M1. We included examples of all possible worsening changes in 

classification as well as a case in which all variables were set to zero due to Ee > 0.75 at 

some time.
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Figure 10: Modulating parameters based on parameter analysis improved outcome in case study.
Starting with a parameter set that gave rise to an Eh transient that started healthy and ended 

in a moderate damage state, we applied various treatment strategies by changing three key 

parameters, br (rate at which healthy epithelial cells self-repair), kmne (rate of collateral 

damage to epithelial cells by macrophages and neutrophils), and xmne (Hill-type constant 

which regulates the effectiveness of macrophages and neutrophils in damaging epithelial 

cells). Results for various changes are shown for healthy epithelial cells (a, b, c) and percent 

of M1 macrophages (d, e, f). Treatment began at 0, 2, or 4 hours after the start of ventilation, 

denoted by solid, dotted, and dot-dashed lines, respectively, and lasted for 48 hours. The 

original parameter values are br = 0.33, kmne = 0.38, and xmne = 0.92. Black transients show 

the original dynamics without intervention. Orange transients show moderate treatment for 

each parameter, which was found to be insufficient in mediate the injury. Blue transients 

show stronger treatments, which were sufficient to bring about resolution for some 

intervention times.
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Figure 11: Treatment by combining parameter changes can result in a positive outcome.
Changes in br, kmne, xmne and ken that were insufficient on their own (Fig 10) resulted in a 

change in outcome when combined. Orange curves show a combination treatment of br = 

0.99 and kmne = 0.19 and blue curves show that of xmne = 2.31 and ken = 1.52. Duration of 

treatment in each case was 48 hours, and all intervention times (0, 2, and 4 hours) were 

successful in a long-term recovery.
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Table 1:

State variables for the model. Variables in both columns represent cells or mediators that diffuse between the 

two compartments.

Bloodstream Lung Description

Eh Healthy epithelial cells

Ed Damaged epithelial cells

Ee Dead epithelial cells/empty space

pb p Pro-inflammatory mediators

ab a Anti-inflammatory mediators

M0b M0 Naive macrophages

M1b M1 M1 pro-inflammatory macrophages

M2b M2 M2 anti-inflammatory macrophages

N0b Unactivated neutrophils

Nb Activated neutrophils

N Neutrophils

AN Apoptotic neutrophils

R Repair mediators
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Table 2:

Model parameters with short descriptions and ranges used in LHS.

Name Description Range used

ab∞ Relative effectiveness of ab at inhibiting M0b differentiation to M1b [0.29, 67.35]

a∞ Relative effectiveness of a at inhibiting M0 differentiation to M1 [0.13, 72.08]

bd Baseline decay of damaged cells [1.06 × 10−5, 0.07]

bp Baseline self-resolving repair of epithelial cells [0, 6.20]

br Baseline repair of damaged cells [9.79 × 10−3, 4.47]

da Rate of diffusion for a [0.19, 177.98]

dp Rate of diffusion for p [0.34, 2.3 × 103]

dm0 Rate of diffusion for M0 [0.24, 275.55]

dm1 Rate of diffusion for M1 [2.75 × 10−3, 19.8]

dm2 Rate of diffusion for M2 [0.14, 143.36]

kam1 Production rate of a by M1b & M1 [0.01, 18.01]

kam2 Production rate of a by M2b & M2 [2.43 × 10−3, 1.67]

kan Rate at which neutrophils become apoptotic [0.01, 50.04]

kanm1 Rate of M1 phagocytosis of AN [1.32 × 10−3, 0.69]

kanm2 Rate of M2 phagocytosis of AN [2.71 × 10−3, 7.36]

kem1 Rate of phagocytosis of damaged cells by M1 [0.01, 16.03]

ken Rate of phagocytosis of damaged cells by N [0.01, 16.03]

kep Rate of self-resolving repair mediated by p [0, 4.30]

ker Rate of repair of damaged cells by R [1.47 × 10−3, 1.08]

xer Regulates effectiveness of repair of damaged cells by R (Hill-type constant) [7.23 × 10−3, 4.13]

km0a Rate of differentiation of M0 by a [0.01, 89.07]

xm0a Regulates effectiveness of differentiation of M0 by a (Hill-type constant) [0.16, 136.83]

km0ab Rate of differentiation of M0b by ab [1.15, 436.59]

xm0ab Regulates effectiveness of ab differentiation of M0b (Hill-type constant) [0.16, 83.97]

km0ad Rate of recruitment of M0b by ab [0.34, 181.89]

xm0ad Regulates effectiveness of recruitment of M0b by ab (Hill-type constant) [0.01, 27.6]

km0p Rate of differentiation of M0 by p [8.99 × 10−3, 37.2]

xm0p Regulates effectiveness of differentiation of M0 by p (Hill-type constant) [1.17, 1.14 × 104]

km0pb Rate of differentiation of M0b by pb [0.05, 89.96]

xm0pb Regulates effectiveness of differentiation of M0b by pb (Hill-type constant) [41.51, 2.92 × 104]

km0pd Rate of recruitment of M0b by pb [4.57 × 10−3, 53.97]

xm0pd Regulates effectiveness of recruitment of M0b by pb (Hill-type constant) [0.24, 180.74]

km1p Rate of recruitment of M1b by pb [0.2, 92.81]

xm1p Regulates effectiveness of recruitment of M1b by pb (Hill-type constant) [9.8 × 10−3, 1.69]
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Name Description Range used

km2a Upregulation of M2b recruitment by a [0.1, 219.93]

xm2a Regulates effectiveness of M2b recruitment by a (Hill-type constant) [0.08, 94.84]

km2r Upregulation of M2b recruitment by R [3.61 × 10−3, 20.11]

xm2r Regulates effectiveness of M2b recruitment by R (Hill-type constant) [0.01, 18.70]

kman Rate of M1 switch to M2 by AN [0.01, 27.08]

kmne Rate of collateral damage to epithelial cells by macrophages and neutrophils [1.12 × 10−3, 5.17]

xmne Regulates effectiveness of macrophages and neutrophils to damage epithelial cells (Hill-type constant) [0.03, 41.06]

kn Rate of migration of Nb to lung [2.39 × 10−3, 3.54]

kn0p Rate of activation of Nb by p [0.01, 5.58]

xn0p Regulates effectiveness of activation of Nb by p (Hill-type constant) [0.03, 142.56]

kpe Production rate of p by Ed [44.02, 1.12 × 104]

kpm1 Production rate of p by M1 & M1b [0.24, 412.22]

kpn Production rate of p and pb by neutrophils [1.67 × 10−3, 2.95]

krm2 Production rate of R by M2 [0.02, 40.97]

μa Decay rate of a [5.16 × 10−4, 5.08]

μab Decay rate of ab [0.04, 12.86]

μp Decay rate of p [2.76 × 10−3, 41.04]

μpb Decay rate of pb [4.79 × 10−4, 3.71]

μm0 Decay rate of M0 [0.01, 42.67]

μm0b Decay rate of M0b [7.66 × 10−3, 329.59]

μm1 Decay rate of M1 [8.2 × 10−3, 10.16]

μm1b Decay rate of M1b [0.03, 60.32]

μm2 Decay rate of M2 [0.27, 135.37]

μm2b Decay rate of M2b [0.02, 16.51]

μnb Decay rate of Nb [2.49 × 10−3, 6.03]

μn0b Decay rate of N0b [3.94 × 10−6, 2.1 × 10−3]

μn Decay rate of N [8 × 10−3, 4.32]

μR Decay rate of R [0.72, 761.75]

sa Source rate of background ab [5.75 × 10−3, 1.11]

sd Rate of damage from ventilator 0.75

sm Source rate of M0b [1.28, 1.14 × 103]

sn Source rate of N0b [0.22, 225.45]

sp Source rate of background pb [6.5 × 10−4, 9.4]
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Table 3:

Summary of three different methods used to determine the most influential predictors, including parameters 

and other factors. Columns 1–4 show results for all 24,432 parameter sets. Columns 1–2 show results for 

analysis methods with classification into three categories (healthy, moderate damage, severe damage) after 2 

hours, and columns 3–4 show results for classification after 200 hours. Columns 1 & 3: significance testing 

results for predictors in which all three groups are statistically different (p-value < 0.05). For ease of 

comparison between columns, the predictor is listed next to its counterpart in the ordered random forest list, if 

listed in that column. Column 2 & 4: average importance values determined by random forest decision trees. 

The top ten are ordered from highest to lowest importance. Columns 5–8: first-order eFAST results (ordered 

by p-value, with p-value < 0.05) for four time points.

Classification after 2 hours Classification after 200 hours
eFAST (Ordered)

Sig. Testing Random Forest Sig. Testing Random Forest

(Not ordered) (Ordered output) (Not ordered) (Ordered output) 0.5h 2h 6h 200h

Eh ratio 2h Eh ratio 2h kmne kmne ken ken xmne xmne

Eh ratio 0.5h Eh ratio 0.5h Eh ratio 6h kpe br

Eh ratio 6h Eh ratio 6h xmne xmne μp μp

kmne kmne Eh ratio 2h Eh ratio 2h xmne kpe

br br Min M1 Min M1 kn kn

kep kep Eh ratio 0.5h Eh ratio 0.5h kep xmne

xmne Min M2 Min M2 br kep

Min M1 Min M1 M2% at 10h M2% at 10h kan

ken ken br br

sn sn ken

Max M1 M1 peak time

Min M1% kep

kan M1 peak ratio

Max M1% μp

kem1 kem1

M1 peak time

kam1

μna

Max M2%

kn

μp

Min M2%

a∞

sm

M2% at 10h
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Classification after 2 hours Classification after 200 hours
eFAST (Ordered)

Sig. Testing Random Forest Sig. Testing Random Forest

(Not ordered) (Ordered output) (Not ordered) (Ordered output) 0.5h 2h 6h 200h

μab

kpm1

bp

knn

xm0ab

μm1b
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