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Abstract

Many persons infected with HIV-1 (PWH) and opioid-dependent individuals experience deficits in 

sociability that interfere with daily living. Sociability is regulated by the prefrontal cortico-

hippocampal-amygdalar circuit. Within this circuit HIV-1 trans-activator of transcription (HIV-1 

Tat) and opioids can increase dendritic pathology and alter neuronal firing. Changes in sociability 

are also associated with dysregulation of hypothalamic neuropeptides such as oxytocin or 

corticotropin releasing factor (CRF) in the prefrontal cortico-hippocampal-amygdalar circuit. 

Accordingly, we hypothesized that the interaction of Tat and morphine would impair inter-male 

social interactions and disrupt oxytocin and CRF within the PFC and associated circuitry. Male 

mice were exposed to HIV-1 Tat for 8 weeks and administered saline or escalating doses of 

morphine twice daily (s.c.) during the last 2 weeks of HIV-1 Tat exposure. HIV-Tat attenuated 

aggressive interactions with an unknown intruder, whereas morphine decreased both non-

aggressive and aggressive social interactions in the resident-intruder test. However, there was no 

effect of Tat or morphine on non-reciprocal interactions in the social interaction and novelty tests. 

Tat, but not morphine, decreased oxytocin levels in the PFC and amygdala, whereas both Tat and 
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morphine decreased the percentage of oxytocin-immunoreactive neurons in the hypothalamic 

paraventricular nucleus (PVN). In Tat(+) or morphine-exposed mice, regional levels of CRF and 

oxytocin correlated with alterations in behavior in the social interaction and novelty tests. Overall, 

decreased expression of oxytocin in the prefrontal cortico-hippocampal-amygdalar circuit is 

associated with morphine- and HIV-Tat-induced deficits in social behavior.
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1. Introduction

Social cognition — the process of perceiving, processing, and responding to dynamically 

changing social interactions is an under-recognized neurocognitive domain (Sachdev et al., 

2014) that is impaired in persons infected with HIV-1 (PWH) (Homer et al., 2013). Deficits 

in recognizing facial emotions in others are exhibited in PWH (Gonzalez-Baeza et al., 2014; 

Grabyan et al., 2018) and are correlated with a decreased ability to communicate socially 

(Grabyan et al., 2018). In particular, PWH have difficulty recognizing negative facial 

emotions (e.g., fear, sadness, anger) (Baldonero et al., 2013; Clark et al., 2010; Clark et al., 

2015; Gonzalez-Baeza et al., 2014), correlating with decreased memory (Baldonero et al., 

2013) and anterior cingulate cortex volume (Clark et al., 2015). Furthermore, PWH with 

cognitive impairments exhibit decreased quality of life, including deficits in social 

functioning (Tozzi et al., 2003), and higher levels of social anxiety compared to the 

seronegative population (Brandt et al., 2017). In PWH, psychological variables such as 

social functioning and anxiety are stronger predictors of successful cognitive aging than HIV 

disease severity or treatment (Malaspina et al., 2011; Moore et al., 2014).

Substance use disorders, including opioid dependence, increase the likelihood that PWH will 

also experience difficulties engaging in mental and physical activities of daily living 

(Christensen et al., 2017). Opioid abuse exacerbates neuropsychological deficits and central 

nervous system (CNS) damage in PWH, including patients maintained on combination 

antiretroviral therapy (cART) (Anthony et al., 2005; Bell et al., 1998; Byrd et al., 2012; Byrd 

et al., 2011; Paydary et al., 2016). Opioid dependence in seronegative individuals is also 

associated with social anxiety (Shand et al., 2010) and impairments in recognizing facial 

emotions in others (Kornreich et al., 2003). Patients on opioid maintenance therapy have 

smaller gray matter volume in multiple frontal cortex areas, including the insula, which is 

correlated with increased social anxiety and feelings of social rejection (Bach et al., 2019). 

In both diseases, there is a complex interaction between feedback responses to social 

rejection from others and changes in social behavior and emotionality (Frischknecht et al., 

2011; Smith et al., 2008). PWH on methadone maintenance are more likely to reinitiate 

heroin-taking and have social anxiety than non-infected patients (Applebaum et al., 2010), 

and PWH that use intravenous drugs are more likely to have increased anxiety and 

depression (Korthuis et al., 2008).
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Endocrine dysregulation may play a role in opioid- and HIV-induced social anxiety and 

decreased social cognition. The neuropeptide oxytocin is highly conserved across animal 

species, synthesized in the paraventricular (PVN) and supraoptic (SON) nuclei of the 

mammalian hypothalamus, and plays an important role in social cognition and anxiety, as 

well as in parturition. In mammals, oxytocinergic axon terminals and oxytocin receptors are 

present in the prefrontal cortico-hippocampal-amygdalar circuit and other regions associated 

with social bonding, social reward, social recognition, and aggression (Marlin and Froemke, 

2017). Oxytocin administration increases sociability in human patients (Hollander et al., 

2007; Pedersen et al., 2011) and in preclinical rodent models (Ferguson et al., 2001; Lee et 

al., 2005; Teng et al., 2013) of autism, schizophrenia, and social anxiety disorder. In HIV+ 

women, oxytocin moderates the interactions among stress and CD4+ cell count, and social 

support and quality of sleep (Fekete et al., 2011; Fekete etal., 2014). Further, patients with 

AIDS, Huntington’s disease, or Parkinson’s disease exhibit decreased expression of 

hypothalamic oxytocin (Purba et al., 1993; Purba et al., 1994; Vercruysse et al., 2018). 

Chronic exposure to opioids in humans and rodents decreases oxytocin synthesis and release 

(Vuong et al., 2010).

Corticotropin releasing factor (CRF) is a neuropeptide, synthesized in the PVN of the 

hypothalamus and released in brain regions associated with stress and sociability, including 

the PFC, amygdala, and hippocampus (Backstrom and Winberg, 2013; Hostetler and 

Ryabinin, 2013). CRF mRNA expression is increased in the PVN of depressed patients and 

acutely socially isolated adult prairie voles — although hypothalamic CRF mRNA 

expression is not altered in adult male prairie voles isolated for 4 weeks (Grippo et al., 2007; 

Pournajafi-Nazarloo et al., 2011; Wang et al., 2008). CRF administered into the CNS of 

rodents decreases social interactions (Bagosi et al., 2017; Elkabir et al., 1990; Mele et al., 

1987). Impairments in the hypothalamic pituitary adrenal (HPA) axis of PWH include 

increased basal plasma cortisol levels despite cART treatment (Bons et al., 2013), decreased 

HPA response to CRF (Biglino et al., 1995), and glucocorticoid resistance (Norbiato et al., 

1997; Norbiato et al., 1994). Opioid abuse blunts the HPA axis response to CRF, 

adrenocorticotropic hormone, cortisol, and psychosocial stressors (Fountas et al., 2018).

The viral protein, HIV-trans-activator of transcription (HIV-Tat), is present in cerebrospinal 

fluid of cART treated patients (Henderson et al., 2019; Johnson et al., 2013). HIV-Tat is 

secreted by macrophages, microglia, and latently-infected astroglia within the CNS 

(Chopard et al., 2018; Debaisieux et al., 2012; Rayne et al., 2010), and induces 

neuroinflammation (El-Hage et al., 2008; El-Hage et al., 2005; Fitting et al., 2010b). HIV-

Tat disrupts the morphology and function of bystander neurons (Chopard et al., 2018; 

Hategan et al., 2017), and this can be exacerbated by co-exposure to opiates (Fitting et al., 

2014; Kim et al., 2018). These data suggest that Tat could be a major contributor to the 

social deficits and endocrine dysfunction seen in PWH.

Tat transgenic (Tat-tg) mice conditionally express Tat mRNA under the glial fibrillary acidic 

protein (GFAP) promoter, and exhibit CNS neuroinflammation, gliosis, morphological and 

functional changes in neurons (Bruce-Keller et al., 2008; Cirino et al., 2020; Fitting et al., 

2010a; Gonek et al., 2018), and many of the neurocognitive deficits seen in HIV-associated 

neurocognitive disorder (HAND) (Fitting et al., 2013; Hahn et al., 2016; Hahn et al., 2015; 
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Kesby et al., 2018; McLaughlin et al., 2017; Paris et al., 2014; Paris et al., 2016). The Tat-tg 

line used in the present study resembles a slower onset, chronic pathology typically 

exhibited by PWH (Dickens et al., 2017) that is worsened by opiate administration (Fitting 

et al., 2010a; Gonek et al., 2018; Salahuddin et al., 2020a; Salahuddin et al., 2020b). The 

effects of Tat on the oxytocin system are unknown. However, Tat decreases the level of the 

glucocorticoid precursor deoxycorticosterone in the brain (Paris et al., 2020), increases 

plasma corticosterone (Salahuddin et al., 2020a; Salahuddin et al., 2020b), induces 

glucocorticoid splenocyte resistance in male mice (Paris et al., 2020), and increases 

hypothalamic CRF levels in proestrus females (Salahuddin et al., 2020b), suggesting that Tat 

induces endocrine dysfunction similar to HIV-1 infection.

The objective of the present study was to investigate the interaction of long-term HIV-Tat 

exposure and repeated morphine administration on inter-male sociability, and changes in 

associated neuroendocrine and stress factors in the prefrontal cortico-hippocampal-

amygdalar circuit that might underlie those observations. Correlation analyses were used to 

assess the role that CNS expression of oxytocin and CRF might play in Tat- or morphine-

induced social interactions. We hypothesized that alterations in oxytocin and CRF 

expression in one or more components of prefrontal cortico-hippocampal-amygdalar 

circuitry coincide with Tat- and/or morphine-induced impaired sociability.

2. Materials and methods

The use of mice in these studies was approved by the Virginia Commonwealth University 

Animal Care and Use Committee and all experiments were conducted in accordance with 

the National Institutes of Health (NIH Publication No. 85–23) ethical guidelines.

2.1 Subjects and treatment

Adult (3-5-months-old) male doxycycline (DOX)-inducible HIV-Tat-tg mice (n = 79) 

expressing HIV-1IIIB Tat1-86 controlled by an rtTA-driven, GFAP promoter were generated 

in the vivarium of Virginia Commonwealth University as previously described (Bruce-Keller 

et al., 2008; Nass et al., 2020). Doxycycline (DOX)-inducible Tat-tg mice (Bruce-Keller et 

al., 2008; Fitting et al., 2010a) are a well characterized model of neuroHIV and express Tat 

mRNA and/or protein within 48 h of DOX administration throughout the CNS (e.g. cortex, 

hippocampus, striatum, and spinal cord) (Bruce-Keller et al., 2008; Carey et al., 2012; 

Dickens et al., 2017; Fitting et al., 2012; Fitting et al., 2010a). Mice were housed 3-4 per 

cage in a temperature- and humidity-controlled, AAALAC-accredited facility, with ad 
libitum access to food and water, on a 12:12 light:dark cycle. To establish territorial behavior 

for the social aggression tests (resident-intruder and social dominance tube tests) a cohort of 

mice (n = 39) were single-housed for 3 weeks before behavioral testing (Fig. 1) (Koolhaas et 

al., 2013; Miczek et al., 2001).

2.2 HIV-1 Tat induction and morphine treatment

To induce the expression of HIV-1 Tat (or control for off target effects), Tat(+) and Tat(−) 

mice were fed a standard chow supplemented with DOX (6 g/kg, Harlan Laboratories 

Madison, WI) for 8 weeks. Starting at 6 weeks of DOX administration mice were also 
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administered escalating doses of morphine (10 – 40 mg/kg, increasing by 10 mg/kg/2 day, 

s.c.; National Institute on Drug Abuse, Bethesda, MD) twice daily (b.i.d.) or saline vehicle 

(Fig. 1). Morphine was prepared in sterile saline and all solutions were administered at room 

temperature at a volume of 10 μl/g body weight. Previously published papers show that the 

DOX chow induces tat gene, mRNA and/or protein expression throughout the CNS in our 

model (e.g. cortex, hippocampus, striatum, hypothalamus, and spinal cord) (Bruce-Keller et 

al., 2008; Dickens et al., 2017; Duncan et al., 2008; Fitting et al., 2012; Fitting et al., 2010a) 

and in GFAP-expressing glia in the peripheral (Wodarski et al., 2018) and enteric 

(Ngwainmbi et al., 2014) nervous systems. Although Tat expression levels between 

morphine and saline administered mice have not been compared, based on the differences in 

mechanism of action and metabolism of DOX and morphine (De Gregori et al., 2012; Saivin 

and Houin, 1988) they do not appear to interact. Dox effects appear to be cumulative and tat 

expression appears to peak after about 2 weeks and is stable thereafter (Fitting et al., 2012) 

suggesting that any morphine-induced alterations in feeding behavior in the last 2 weeks of 

the 8 weeks of DOX administration should not interfere with Tat efficacy. Further, DOX 

does not alter the efficacy of morphine in the tail immersion and hot plate tests (Fitting et al., 

2012; Fitting et al., 2016).

2.2 Behavioral assays

After 8 weeks of Tat exposure and 2 weeks of escalated morphine administration, mice were 

tested in multiple assays of social interaction. On testing day, mice were habituated to the 

testing room and received morphine (40 mg/kg, s.c.) or saline at least 4 h prior to behavioral 

testing, to decrease the confound of morphine-induced hypermobility (Babbini and Davis, 

1972; Hecht and Schiorring, 1979). To minimize animal numbers, mice were subjected to 

two behavioral assays, either: (1) reciprocal social interaction, social dominance tube and 

resident-intruder, or (2) non-reciprocal social interaction and social novelty (Fig. 1). Testing 

was conducted in ascending order of presumed stress to reduce carry-over effects. 

Experimenters were blinded to treatment conditions throughout. The day after behavioral 

testing, mice were humanely euthanized, and brain tissues and serum were collected to 

assess neuropeptide levels in discrete regions of the prefrontal cortico-hippocampal-

amygdalar circuitry and correlate alterations with behavioral changes. To avoid potential 

confounding effects of housing or prior behavioral test experiences, mice from each 

behavioral cohort were divided and randomly assigned to immunoblotting or 

immunohistochemistry experiments.

2.2.1 Social Dominance Tube Test—Mice were tested in assays of reciprocal social 

aggression, the social dominance tube, and resident-intruder tests, after being single-housed 

for 3 weeks to establish territorial behavior (Koolhaas et al., 2013; Miczek et al., 2001; 

Nishimura et al., 2004). The intruder mice in both the social dominance tube and resident 

intruder tests were group-housed male C57BL/6 mice that were weight-matched with test 

mice and allowed to freely interact with the test mouse. Older, group-housed mice were used 

as intruders to increase the likelihood that test mice would be aggressive, and not socially 

defeated during testing, which can increase serum corticosterone levels and induced 

glucocorticoid insensitivity (Avitsur et al., 2001; Miczek et al., 2001). Separate, comparable 

group-housed mouse cohorts were used in the social dominance tube test and were treated 
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uniformly across assays. In the social dominance tube test, Tat(+) and Tat(−) mice entered 

the opening of a tube (28.5 cm long, 3 cm diameter) with a diameter large enough for only 

one mouse to pass. At the same time, a C57BL/6 mouse entered the opposite end of the tube. 

Mice could interact in the tube for up to 5 min. A mouse was declared dominant and the test 

was ended when it’s opponent retreated out of the tube on the same side it entered, 

indicating the dominant mouse forced the non-dominant mouse out of the tube (Nishimura et 

al., 2004).

2.2.2 Resident-Intruder Test—Mice were tested in the resident-intruder assay as 

previously described (Koolhaas et al., 2013). Briefly, an intruder mouse was placed in the 

home cage of a test mouse for 10 min and the social interactions initiated by the test mouse 

were video recorded by ANY-maze software (Stoelting Co., Wood Dale, IL, USA). A 

blinded experimenter used ANY-maze software to record non-aggressive (i.e., following, 

touching, sniffing, investigating) and aggressive (i.e., attacking, keep down, rearing, biting) 

social interactions initiated by the test mouse.

2.2.3 Non-Reciprocal Social Interaction Test—A separate group of mice were 

tested in assays of non-reciprocal social interaction with unfamiliar, same-sex conspecifics 

that were restrained from interacting with the test mouse as previously described (Morris et 

al., 2016; Moy et al., 2004; Nass et al., 2020). The unfamiliar, non-test mouse was placed 

underneath a mesh cup (~8 cm diameter) to allow the test mouse to smell, see, hear, 

approach, and interact with the non-test mouse without the non-test mouse being able to 

reciprocate the approach or interaction. Mice were individually habituated to a Plexiglas test 

chamber (40 × 40 × 35 cm; Stoelting Co.) for 10 min with 2 mesh cups (~8 cm diameter) at 

opposite ends of the chamber. Mice were removed and then immediately placed back in the 

chamber with an unfamiliar mouse that was restrained under one of the mesh cups for 5 min. 

Percentage of time spent interacting with the mesh cup with the mouse underneath versus 

the empty cup was video-recorded and coded by a blinded experimenter using ANY-maze 

software (Stoelting Co.). Distance traveled was also digitally recorded and coded by ANY-

maze software (Stoelting Co.).

2.2.4 Non-Reciprocal Social Novelty Test—The social novelty test immediately 

followed the social interaction test. Test mice were removed from the chamber after social 

interaction testing and a novel unfamiliar mouse was restrained under the previously empty 

cup. The test mice were promptly placed back into the chamber for 5 min (Moy et al., 2004). 

ANY-maze software (Stoelting Co.) was used to digitally record and code distance traveled, 

and to allow a blinded experimenter to video-record and code the percentage of time spent 

interacting with the mesh cup with the novel unfamiliar mouse underneath versus the cup 

with the previously unfamiliar mouse.

2.3 Oxytocin and CRF Assessments

2.3.1 Immunoblotting—Immunoblotting was performed as previously described 

(Fitting et al., 2013; Nass et al., 2020) to assess the oxytocin and CRF levels in the PFC, 

hippocampus, and amygdala of Tat(+) and Tat(−) mice with or without morphine. The day 

after behavioral testing, PFC, hippocampus, and amygdala tissue were grossly dissected 
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from whole brains, snap-frozen in liquid nitrogen, and stored at −80 °C until assay. Tissue 

samples were homogenized in Pierce IP lysis buffer (Thermo Fisher Scientific, Waltham, 

MA), containing Halt phosphatase inhibitor cocktail (Thermo Fisher Scientific). The protein 

concentration in each tissue lysate was quantified using the bicinchoninic acid (BCA) assay 

(Pierce Biotechnology, Rockford, IL). Lysates were boiled in 4× Laemmli buffer for 5 min, 

40 μg per well were loaded into 4-20% Criterion TGX Stain-Free gels (Bio-Rad, Hercules, 

CA), and transferred to Immuno-Blot PVDF membranes (Bio-Rad). To probe the blots, 

antibodies to oxytocin (rabbit monoclonal ab212193, Abeam, Cambridge, MA; 1:1000) and 

CRF (rabbit monoclonal ab184238, Abeam; 1:1000) were used. Membranes were incubated 

with HRP-conjugated secondary antibodies (Southern Biotech, Birmingham, AL; 1:10000) 

and Alexa 488 (goat-anti-rabbit, Invitrogen, Carlsbad, CA; 1:500), respectively, visualized 

on a ChemiDoc MD imaging system, and analyzed using Image Lab 6.0.1 (Bio-Rad). 

Protein levels were normalized to GAPDH (mouse 6C5 ab8245, Abeam; 1:2500).

2.3.2 Histological processing—After 8 weeks of DOX and 2 weeks of morphine, 

mice were deeply anesthetized with isoflurane (Baxter, Deerfield, IL, USA) and perfused 

with 4 % paraformaldehyde (PFA, pH 7.4; Sigma-Aldrich Co., St. Louis, MO) in phosphate-

buffered saline (PBS). Brains were immediately removed and post-fixed in fresh PFA 

overnight at 4 °C, washed in PBS, incubated in 10% sucrose followed by 20% sucrose for at 

least 24 h. Brains were then embedded in Tissue-Tek O.C.T. compound (Sakura Finetek, 

Torrance, CA), and stored at −80 °C. Coronal sections were cut at a thickness of 16 μm on a 

Leica CM1850 cryostat and mounted on SuperFrost Plus Gold slides (Thermo Fisher 

Scientific). Slides were dried for 5 min, incubated with citrate-based antigen unmasking 

solution (pH 6.0; Vector Laboratories, Burlingame, CA) in a rice cooker for 20 min, allowed 

to cool, rinsed in DI H20, and then rinsed in PBS for 5 min. Sections were incubated for 30 

min in permeability solution (0.1% Triton X-100 in PBS) followed by blocking solution (5% 

normal goat serum in PBS) for 2 h, and primary antibodies against oxytocin (rabbit 

monoclonal ab184238, Abeam; 1:500), CRF (sheep polyclonal cat. no. NB110-81721, 

Novus Biologicals Littleton, CO; 1:1000), and NeuN (Mouse monoclonal cat. no. MAB377, 

Millipore, Burlington, MA; 1:200) diluted in blocking buffer overnight at 4 °C. Sections 

were rinsed in PBS and solutions containing appropriate, fluorescently labeled secondary 

antibodies Alexa 594 (donkey anti-sheep, Invitrogen; 1:100), Alexa 488 (goat anti-rabbit, 

Invitrogen; 1:500), and Alexa 647 (goat anti-mouse, Invitrogen; 1:100) were applied to 

sections for 1 h at room temperature. Tissue sections were again rinsed in PBS, incubated 

with Hoechst (Invitrogen; 1:20,000) for 10 min, repeatedly rinsed, and mounted in ProLong 

Gold Antifade reagent (Invitrogen). The hypothalamic PVN in the tissue sections were 

imaged using a Keyence VHX-7000 digital microscope at 40× magnification (Keyence, 

Itasca, IL). Images were stitched together (11x15) using the BZ-X800 Analyzer (Keyence).

2.3.2.1 Stereology: Cavalieri’s principle was used to stereologically assess the volume of 

the hypothalamic PVN (Gundersen et al., 1988; Mouton, 2002). Starting at a random point, 

images from histologically processed sections were sampled throughout the hypothalamic 

PVN based on The Mouse Brain in Stereotaxic Coordinates atlas (3rd edition; Franklin and 

Paxinos) and Allen Institute Mouse Brain Reference Atlas, Version 3. Non-uniform 

systematic sampling was used due to the variability in shape across the sagittal plane and 
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small size of the PVN (Dorph-Petersen et al., 2000; Gardi et al., 2008). A standardized grid 

was randomly laid over PVN images and the number of points that hit the PVN were 

counted by a blinded experimenter. Then the volume was estimated by multiplying the point 

sum, average interval, section thickness, and grid point area (Gundersen et al., 1988; 

Mouton, 2002).

2.3.2.2 Immunohistochemistry: Immunohistochemistry was performed to assess the 

percentage of neurons, as measured by NeuN immunoreactivity, that were also 

immunoreactive for oxytocin and/or CRF in the PVN of the hypothalamus. Images from 

histologically processed sections were exported to Image J and counted by a blinded 

experimenter using the cell counter plugin software. At least 200 neurons were counted per 

animal in corresponding coronal planes based on The Mouse Brain in Stereotaxic 

Coordinates atlas (3rd edition; Franklin and Paxinos). All cell count data are presented as a 

percent of the total NeuN-immunoreactive population in the PVN.

2.4 Statistical Analyses

All data met the parametric assumption of homogeneity of variance as measured by 

Levene’s test. Data were also assessed for parametric assumption of normality of variance 

by the Kolmogorov-Smirnov test. If the data were not normally distributed, they were 

analyzed by the non-parametric Kruskal-Wallis test. Data that met the assumptions for 

parametric analysis were analyzed by two-way analysis of variance (genotype x drug 

treatment), followed by the Tukey’s HSD post hoc test using Prism version 9.0.0 (GraphPad 

Software, Inc.). The social dominance tube test behavioral data was analyzed by the Chi-

square test for independence (treatment x dominant/subordinate). Pearson’s correlation 

analyses were performed to assess the relationship between oxytocin or CRF levels and 

behavior in Tat(+) or morphine treated mice. All data are presented as the mean ± the S.E.M. 

Differences were considered statistically significant if p < 0.05.

3. Results

3.1 HIV-1 Tat and morphine decreased social interactions in the resident-intruder test

Tat(+) and Tat(−) mice were administered DOX for 8 weeks and escalated morphine (10 – 

40 mg/kg, s.c., b.i.d.) or saline for 2 weeks to assess the effects of HIV-1 Tat and repeated 

morphine injections on aggressive-like behavior in reciprocal social interaction 

environments. In the social dominance tube test, there was no difference in Tat(+) and Tat(−) 

mice with or without morphine exposure [X2(1, N = 39) = 0.19, p = 0.66; n.s.; Fig. 2A]. 

When measuring the total time interacting with the unknown intruder in the resident-intruder 

test there was a main effect of Tat [F(1,35) = 4.20, p < 0.05; η2= 0.08; Fig. 2B] and morphine 

[F(1,35) = 12.62, p < 0.01; η2= 0.24; Fig. 2B], but no interaction (p = 0.28) indicating that Tat 

and morphine independently decreased the total amount of time spent interacting with the 

intruder mouse. We next broke the data down into the percentage of time engaging in non-

aggressive and aggressive interactions with the unknown intruder. The latency to interact in 

a non-aggressive (p = 0.31; Fig. 2C) or aggressive (p = 0.67 Fig. 2E) manner was not 

significantly different across groups, as measured by the non-parametric Kruskal-Wallis test. 

However, morphine (main effect [F(1,35) = 6.25, p < 0.05; η2= 0.15; Fig. 2D]), decreased the 
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percentage of non-aggressive social interactions with no significant interaction (p = 0.57) or 

main effect of Tat (p = 0.65). Both Tat (main effect [F(1,35) = 9.70, p < 0.01; η2= 0.19; Fig. 

2F]) and morphine (main effect [F(1,35) = 5.30, p < 0.05; η2 = 0.10; Fig. 2F]) but not the 

interaction of Tat and morphine (p = 0.38), decreased the percentage of aggressive 

interactions with the intruder mouse.

3.2 HIV-1 Tat and morphine did not significantly alter non-reciprocal social interactions in 
a novel environment

To assess the influence of HIV-1 Tat and repeated morphine on sociability in a non-

reciprocal environment, where the non-test mouse was restrained from approaching the test 

mouse, a separate group of Tat(+) and Tat(−) mice were administered DOX for 8 weeks and 

escalated morphine (10 – 40 mg/kg, s.c.) or saline for 2 weeks and then tested in the non-

reciprocal social interaction and novelty assays in a novel environment. In the social 

interaction test, neither Tat nor morphine exposure altered the latency to approach the mesh 

cup with an unfamiliar mouse (p = 0.75; Fig. 3A) or the amount of time the test mice spent 

with the unfamiliar mouse (p = 0.36; Fig. 3B) as measured by the Kruskal-Wallis test. 

Distance traveled was also digital coded by ANY-maze software (Stoelting Co.) in the social 

interaction and novelty tests to assess potential morphine-induced psychomotor confounds. 

In the social interaction test, there was a significant interaction in the distance traveled 

[F(1,36) = 6.64, p < 0.05; η2 = 0.15; Fig. 3C], but no main effect of Tat (p = 0.24) or 

morphine (p = 0.67). Post hoc tests reveal a non-significant increase in distance traveled in 

Tat(+)/saline mice compared to Tat(−)/saline (p = 0.054; d = 1.47) mice.

In the social novelty test, when the empty cup was replaced by a novel unfamiliar mouse, 

HIV-1 Tat, morphine, or the interaction did not change the latency of the test mouse to 

approach the mesh cup with the novel unfamiliar mouse (p = 0.25, p = 0.42, p = 0.42, 

respectively; Fig. 3D). Similarly, Tat and morphine did not alter the amount of time spent 

with the novel mouse (p = 0.11; Fig. 3E) as measured by the Kruskal-Wallis test. Tat tended 

to increase distance traveled (main effect [F(1,36) = 4.06, p = 0.0514; η2= 0.09; Fig. 3F]), but 

there was no significant effect of morphine (p = 0.23) or the interaction of both (p = 0.09) 

during the social novelty test.

3.3 HIV-1 Tat, but not morphine, decreased oxytocin levels within discrete regions of the 
prefrontal cortico-hippocampal-amygdalar circuit

We first assessed oxytocin levels in the PFC, hippocampus, and amygdala as a possible 

underlying neural substrate of the Tat- and morphine-induced decreases in aggressive social 

interactions in the resident-intruder test. Oxytocin is released centrally and peripherally in 

response to stress (Babygirija et al., 2012) and is important in different types of social 

behaviors (Duarte-Guterman et al., 2020; Lim and Young, 2006; Resendez et al., 2020). 

Western blots showed that Tat reduced the levels of oxytocin in the PFC (main effect [F(119) 

= 7.99, p < 0.05; η2 = 0.29; Fig. 4A]) and amygdala (main effect [F(1,18) = 4.62, p < 0.05; 

η2= 0.19; Fig. 4B]). However, morphine or the interaction of Tat and morphine did not alter 

oxytocin levels in the PFC (p = 0.64, p = 0.50, respectively) or amygdala (p = 0.93, p = 0.21, 

respectively). There was no effect of Tat, morphine, or their interaction on hippocampal 

oxytocin levels (p = 0.38, p = 0.93, p = 0.54, respectively; Fig. 4C).
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3.4 HIV-1 Tat and morphine do not alter CRF levels within the prefrontal cortico-
hippocampal-amygdalar circuit or serum corticosterone

Previous research indicates HIV-1 Tat increases anxiety-like behavior (Hahn et al., 2016; 

Hahn et al., 2015; Paris et al., 2014; Paris et al., 2016), and Tat and morphine alter the HPA 

axis (Paris et al., 2020; Salahuddin et al., 2020a; Salahuddin et al., 2020b). Therefore, we 

investigated CRF levels in the PFC, hippocampus, and amygdala and circulating serum 

corticosterone. Western blots showed that Tat, morphine, and the interaction did not alter 

CRF levels in the PFC (p = 0.96, p = 0.96, p = 0.96, respectively; Fig. 5A), amygdala (p = 

0.93, p = 0.47, p = 0.26, respectively; Fig. 5B), or hippocampus (p = 0.63, p = 0.37, p = 

0.84, respectively; Fig. 5C). Similarly, serum corticosterone levels were not affected by Tat, 

morphine, nor the interaction (p = 0.65, p = 0.90, p = 0.88, respectively; Fig. 5D).

3.5 HIV-1 Tat and morphine decrease the percentage of oxytocin, but not CRF-expressing 
neurons in the hypothalamic paraventricular nucleus (PVN)

Since oxytocin and CRF are synthesized in the PVN of the hypothalamus, we assessed the 

nuclei volume and the vulnerability of oxytocin and CRF neurons in PVN sections 

immunolabeled for oxytocin, CRF, and NeuN (Fig. 6-7). Point grid stereology assessment 

showed HIV-1 Tat (p = 0.90), morphine (p = 0.85), nor the interaction (p = 0.27) altered the 

volume of the PVN (Fig. 6A-E). The quantification of PVN neuron subtypes showed Tat 

(main effect [F(1,17) = 4.81, p < 0.05; η2= 0.15]) and morphine (main effect [F(1,17) = 7.35, p 
< 0.05; η2 = 0.23]), decreased the percentage of oxytocin-immunoreactive neurons (Fig. 6A-

D, F), without a significant interaction (p = 0.07). However, neither Tat, morphine, nor the 

interaction affected the percentage of CRF-positive cells (p = 0.23, p = 0.16, p = 0.56, 

respectively Fig. 6A-D, G). Similar to previous reports, the percentage of NeuN positive 

cells co-expressing oxytocin and CRF was low (Dabrowska et al., 2013). Further, neither 

Tat, morphine, nor the interaction altered the percentage of CRF- and oxytocin-positive 

colocalized neurons (p = 0.85, p = 0.43, p = 0.53, respectively Fig. 6A-D, H).

3.6 Regional oxytocin or CRF levels in Tat(+)- or morphine-treated mice correlate with 
non-reciprocal social interaction and novelty behavior

We used correlation analyses to investigate the relationship between oxytocin or CRF levels 

within the PFC, amygdala, hippocampus, or hypothalamic PVN and social behaviors after 

Tat or morphine exposure. In morphine-exposed mice, the time spent with the unknown 

mouse in the social interaction test inversely correlated with oxytocin-immunoreactive cells 

in the PVN [r(6) = −0.824, p < 0.01; Fig. 8A]. Despite a lack of Tat-induced changes in the 

social interaction and novelty tests or in neurohormone levels, the latency to interact with the 

novel mouse in the social novelty test inversely correlated with hippocampal oxytocin levels 

in Tat(+) mice [r(6) = 0.931, p < 0.01; Fig. 8B]. Similarly, in the social interaction test, the 

latency to interact [r(6) = 0.726, p < 0.05; Fig. 8C] and time spent [r(6) = −0.73, p < 0.05; 

Fig. 8D] with the unknown mouse positively and negatively correlated, respectively, with 

amygdala CRF levels in Tat(+) mice. Additionally, in Tat(+) mice, the latency to interact [r(6) 

= 0.726, , p < 0.05; Fig. 8E] and time spent [r(6) = 0.719, p < 0.05; Fig. 8F] with the 

unknown mouse in the social interaction test also positively correlated with PFC and 

hippocampal CRF levels, respectively.
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4. Discussion

The ability to properly engage in social interactions with others is an important aspect of 

everyday life that is impaired in PWH and opioid-dependent individuals (Homer et al., 

2013). The findings in the present study indicate that Tat and morphine differentially alter 

distinct aspects of social interaction with an unknown con-specific in a reciprocal familiar 

environment (as measured by the resident-intruder test), but not in a non-reciprocal novel 

environment. In Tat-expressing mice there was a modest decline in overall social interactions 

(η2= 0.08) that appears to be driven by a decrease in aggressive interactions (η2= 0.19), 

suggesting that the decrease in sociability seen in Tat(+) mice in the resident-intruder test 

might be overridden in a novel environment by the increased motivation to explore. In 

support, we have previously shown that Tat increases novelty exploration in response to a 

novel environment, food, or flavor, but did not alter non-reciprocal or reciprocal social 

exploration in a novel environment (Nass et al., 2020). Together these results suggest that 

Tat increases the motivation to explore, but this effect is potentially diminished in social 

situations. Alternatively, deficits in olfaction that are essential for social behavior in male 

mice (Liebenauer and Slotnick, 1996; Ryan et al., 2008) may also play a role. Although 

olfaction has not been directly tested in Tat-tg mice, HIV-tg rats that express 7 of the 9 viral 

proteins, including Tat, have intact olfaction (Vigorito et al., 2007). Further, PWH performed 

similar to controls in tests of olfaction (Jackson et al., 2017). While these data suggest that 

the decreased social interaction is not due to altered olfaction, future studies should 

nevertheless address whether olfactory deficits contribute to Tat-dependent decreases in 

social behavior. In preclinical models of schizophrenia, autism, and early life stress, male 

mice exhibit decreased reciprocal social interactions (Hara et al., 2017; Mohn et al., 1999; 

Veenema et al., 2007), suggesting other neuropsychological diseases and stressors may also 

decrease normal social behaviors.

The opiate system is important in modulating social motivation and reward. We found that 

repeated administration of morphine decreased non-aggressive and aggressive interactions in 

the resident-intruder test. One possible explanation is that administering μ-opioid receptor 

(MOR) agonists decreases sociability, whereas antagonists increase sociability in isolated 

adult rodents, but not in grouped-housed mice (Hol et al., 1996; Puglisi-Allegra et al., 1982; 

Slamberova et al., 2016). These data suggest that MOR agonists may replace the need for 

social interaction, although in a few studies β-endorphin increased sociability in previously 

isolated rats (Niesink and van Ree, 1984; van Ree and Niesink, 1983). These contradictory 

results may be due to opioids differentially affecting behavior based on behavioral 

characteristics present before opioid use. Repeated opioid administration decreases social 

interactions in previously sociable mice, but not in mice that previously avoided socializing 

(Madison et al., 2020). In preclinical studies, opioid-induced hypermobility can be a 

potential confound in behavioral testing (Babbini and Davis, 1972). Although morphine (4h 

after administration) did not alter distance travelled in the social interaction and novelty 

tests, we cannot exclude the possibility that interacting with the unknown mouse or empty 

cups influenced locomotor distance. Previously, Tat-induction for 4 weeks was found to 

reduce the distance traveled in the open field test (Hahn et al., 2016), but in the present 

study, despite no Tat-induced changes in the social interaction test after 8 weeks of exposure, 
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there was a trend for saline-treated Tat(+) mice to travel further than Tat(−) mice. These data 

suggest that separate studies examining the effects of 8 weeks of Tat exposure and repeated 

morphine on locomotor activity independent of other tests are warranted.

This study confirmed our previous findings that Tat does not induce changes in social 

interaction time in the non-reciprocal social interaction test in a novel environment (Nass et 

al., 2020), while additionally exploring the consequences of morphine coadministration. 

However, these data do not coincide with previous data in a slightly different Tat-tg mouse 

model (Paris et al., 2014) that has more copies of tat (Kim et al., 2003) than the present 

model (Bruce-Keller et al., 2008), or with studies in which mice are exposed to a single 

intracerebroventricular (i.c.v.) injection of Tat (Lawson et al., 2011). Both previous studies 

showed a Tat-induced decrease in social interactions in a reciprocal novel environment. The 

disagreement may result from differences in (i) the duration of Tat exposure, (ii) the level of 

Tat expression, (iii) the route of exposure, or (iv) the ability of the unfamiliar con-specific to 

reciprocally interact or not with the test mouse. In addition, we previously postulated that the 

initial decrease in social interaction time seen in these studies might be due to sickness 

behavior resulting from transient increases in proinflammatory cytokines (e.g. TNFα, IL-1β, 

and IL-6) within the CNS after acute administration of Tat that are not necessarily present 

after 2 months of exposure (Gonek et al., 2018; Nass et al., 2020).

The neuropeptide oxytocin is implicated in stress and anxiety and is a well-known regulator 

of social interactions. HIV+ women with high levels of self-reported stress and low plasma 

oxytocin are more likely to have lower CD4+ cell counts (Fekete et al., 2011). Therefore, we 

assessed oxytocin as a possible underlying neural substrate for the reduction in aggressive 

interactions after Tat and morphine administration, and non-aggressive interactions after 

morphine administration. Since oxytocin has differential effects on social behaviors, 

including aggression, in males and females, we limited our study to males. Most rodent 

inter-male aggression studies have been performed in healthy wild-type rodents, and have 

shown a tendency for oxytocin-receptor agonists to decrease aggressive and increase pro-

social behavior in reciprocal social interactions (Calcagnoli et al., 2014; Calcagnoli et al., 

2015; Ferguson et al., 2001; Tan et al., 2019a). However, our study and others suggest that 

pathological states may alter the behavioral responses to oxytocin (Harony-Nicolas et al., 

2017; Resendez et al., 2020; Wang et al., 2019). Indeed, Tat exposure decreased oxytocin 

levels in the PFC and amygdala, while decreasing aggressive social interactions. However, 

social isolation can influence CNS oxytocin levels, although the effects in males separated 

as adults from same-sex littermates appear to be time and activity dependent (Bosch et al., 

2016; Grippo et al., 2007), suggesting further research is needed.

In humans with social anxiety disorder, oxytocin increases the functional connectivity 

between the amygdala and a variety of PFC subregions when observing fearful faces (Gorka 

et al., 2015). In the PFC, optical activation of oxytocin receptor-expressing projection 

neurons increases BOLD activation in the amygdala and impairs identification of novel 

conspecifics, but not overall social interactions or anxiety-like behavior (Tan et al., 2019b). 

These data suggest that Tat-induced decline in aggressive interactions in the resident-

intruder test may result from decreases in oxytocin in both the PFC and amygdala. This may 

be related to the finding that male rats exposed to a single, prolonged stressor in a model of 
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PTSD exhibited decreased social interactions accompanied by decreased oxytocin receptor 

levels in the PFC and amygdala, but not the hippocampus. Social deficits in that model were 

restored by administering oxytocin (Wang et al., 2019). Further, higher hippocampal 

oxytocin levels in Tat(+) mice correlated with a decreased latency to interact with the novel 

mouse in the social novelty test, despite the absence of Tat-induced changes in overall levels. 

This is in line with previous studies showing that increased oxytocin in the hippocampus is 

associated with increased social recognition (Cilz et al., 2019). Alternatively, oxytocin 

agonists are anxiolytic in male mice (Ring et al., 2006); whereas male oxytocin receptor-

knockout mice display decreased anxiety-like behavior in the elevated plus maze (Mantella 

et al., 2003). Since most social behaviors in the present study did not correlate with oxytocin 

levels in the Tat(+) mice, and we have previously shown that Tat expression is anxiogenic 

(Hahn et al., 2016; Hahn et al., 2015; Paris et al., 2014; Paris et al., 2016), it is also plausible 

that the decreased oxytocin levels in the PFC and amygdala may alter anxiety-like behavior 

in Tat(+) mice. Future studies will investigate the influence of oxytocin administration on 

social and anxiety-like behaviors in Tat- and morphine-exposed mice.

HIV-1 Tat and morphine decreased the percentage of oxytocin-immunoreactive neurons in 

the PVN of the hypothalamus. Further, the latency to interact with the unknown mouse in 

the social interaction test negatively correlated with oxytocin-immunoreactive cells in the 

PVN of morphine-exposed mice. The oxytocinergic system plays a role in the emotional and 

rewarding effects of opiate addiction (Zanos et al., 2018). The PVN of the hypothalamus has 

a high expression of μ-opioid receptors (Atweh and Kuhar, 1983) and 7 days of escalated 

morphine decreases oxytocin expression in the hypothalamus of male mice (Zanos et al., 

2014). Shank3b is a postsynaptic density (PSD) protein at glutamatergic synapses. Similar to 

the findings in the present study, male Shank3b KO mice, a preclinical model of autism, 

exhibit decreased oxytocin-positive neurons within the PVN of the hypothalamus. 

Furthermore, acute administration of the oxytocin agonist Way267464 or chemogenetic 

activation of oxytocin neurons in the PVN increases male Shank3b KO mice non-reciprocal 

social interactions; whereas chemogenetic inactivation decreases interaction time (Resendez 

et al., 2020). These data indicate that the oxytocin system within the PVN influences social 

behavior and suggest that the Tat- and morphine-induced decreases of PVN oxytocin-

immunoreactive neurons may mediate the decreased social interactions in the resident-

intruder test.

We also explored alterations in the HPA axis as a possible explanation for the Tat and 

morphine-induced changes in sociability in the resident-intruder test. Despite cART 

treatment many HIV patients have increased basal peripheral cortisol levels and 

glucocorticoid resistance (Bons et al., 2013). Our previous work indicates that 

glucocorticoid resistance develops following 8 weeks of Tat induction in male transgenic 

mice regardless of morphine treatment (Paris et al., 2020), which aligns with reports in PWH 

(Norbiato et al., 1997; Norbiato et al., 1994). Although changes in serum corticosterone 

levels were not evident after Tat or morphine exposure in the present study, this might result 

from length of time after behavioral assays (24 h) or injections (5 h) were conducted, or time 

of day serum was extracted. After one week of Tat induction, male transgenic mice 

administered saline or oxycodone, and Tat(+) proestrous female mice exhibit elevated 

plasma corticosterone compared to Tat(−) control mice when extracted 30 min after 
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injections and subsequent behavioral testing, but not at 2 h after injections (Salahuddin et al., 

2020a; Salahuddin et al., 2020b).

CRF decreases social interactions and aggression in rodents (Bagosi et al., 2017; Elkabir et 

al., 1990; Mele et al., 1987). In line with these prior findings, high CRF levels in the 

hippocampus and amygdala of Tat(+) mice correlated with more and less time spent with an 

unknown mouse, respectively, in the social interaction test. In Tat(+) mice, the levels of CRF 

in the amygdala and PFC also positively correlated with latency to approach in the social 

interaction test. However, we did not see any differences in overall PFC, hippocampal, or 

amygdalar CRF levels or percentage of CRF positive neurons in the hypothalamic PVN of 

Tat(+) or Tat(−) male mice irrespective of morphine. Administration of the CRF type 1 

receptor antagonist antalarmin attenuated anxiety-like behavior in male Tat(+) mice 

measured 15 min after administration, and behavior was diminished by oxycodone. 

Interestingly, antalarmin did not alter plasma corticosterone levels (Salahuddin et al., 2020a) 

suggesting that Tat and opioid-induced changes in CRF are transient and time dependent. 

Alternatively, CRF levels may have been altered by the social isolation experienced by the 

subset of mice used for aggressive behavioral assays (Hostetler and Ryabinin, 2013). 

However, the two cohorts that experienced different housing conditions and behavioral 

assays did not significantly differ in CRF levels within each treatment group.

This study provides the first empirical evidence that HIV-1 Tat alters oxytocin expression in 

males and expands on prior findings that Tat-induced decreases in social interactions might 

be time and environment dependent (Lawson et al., 2011; Nass et al., 2020; Paris et al., 

2014). Our findings suggest that decreases in aggressive behavior are associated with Tat-

induced reductions in oxytocin protein expression in the PFC, amygdala, and hypothalamic 

PVN. Thus, Tat per se may have a role in mediating the alterations in oxytocin levels and 

associated social deficits seen in PWH. We also found that morphine decreased non-

aggressive and aggressive social interactions in the resident-intruder test were accompanied 

by decreases in oxytocin-immunoreactive neurons in the hypothalamic PVN. Importantly, 

the present study does not reveal whether the loss of oxytocin antigenicity results from 

morphine- and/or Tat-dependent dynamic changes in oxytocin biosynthesis, degradation, or 

release, or the loss of a subpopulation of oxytocin-expressing neurons—although the latter 

scenario seems less likely. Surprisingly, despite findings that CRF levels in the 

hippocampus, amygdala, and PFC of Tat(+) mice correlated with social behavior in the non-

reciprocal social interaction test, plasma corticosterone levels and CRF protein expression 

throughout prefrontal cortico-hippocampal-amygdalar circuit were unaffected by Tat or 

morphine. We speculate that Tat or morphine may affect corticosterone or CRF function, 

respectively, by influencing glucocorticoid receptor or corticotropin-releasing hormone 

receptor 1 levels or function. Overall, the data suggest that oxytocin is a potential therapeutic 

target for social deficits in PWH.
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Highlights

• HIV-1 Tat reduces aggressive inter-male interactions in the resident-intruder 

test

• Morphine decreases inter-male social interactions in the resident-intruder test

• HIV-1 Tat decreases oxytocin levels in the PFC and amygdala, but not 

hippocampus

• Regional oxytocin levels correlate with behavior in Tat(+) or morphine 

exposed mice

• Morphine and Tat decrease the percentage of oxytocin cells in the 

hypothalamic PVN
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Fig. 1. Experimental design depicted on a timeline.
All Tat transgenic mice received DOX-containing chow for 8 weeks and were repeatedly 

injected with morphine (10 – 40 mg/kg, increasing by 10 mg/kg/2 day, s.c., b.i.d.) or saline 

for the last 2 weeks. Mice in cohort 1 were single housed starting at week 5 of DOX 

administration to establish territorial behavior. Then on day 14 of repeated morphine 

injections cohort 1 mice were tested in assays of aggressive sociability, the social dominance 

tube and resident-intruder tests. On day 14 of repeated morphine injections mice in cohort 2 

were tested in the novel environment non-reciprocal social interaction and social novelty 

assays. The day following behavioral testing, mice in both cohorts were euthanized and 

tissues were randomly assigned to immunoblotting and ELISA or immunohistochemistry 

assays.
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Fig. 2. HIV-1 and morphine decreased aggressive, while morphine decreased non-aggressive 
interactions in the resident-intruder test.
Tat(+) and Tat(−) mice were fed DOX chow for 8 weeks and administered escalated 

morphine (10 – 40 mg/kg, s.c., b.i.d.) for 2 weeks before being tested in aggressive measures 

of reciprocal social interaction. Tat and morphine did not affect dominance in the social 

dominance tube test (A), but exposure to both decreased total time spent interacting with the 

unfamiliar mouse in the resident-intruder test (B). Tat and morphine did not alter the latency 

to interact non-aggressively with the unfamiliar mouse in the test mouse’s home cage (C), 
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but morphine decreased the percentage of time spent interacting non-aggressively (D). Tat 

and morphine also did not alter the latency of the test mouse to interact aggressively with the 

novel mouse (E), but both Tat and morphine decreased the percentage of time the test mouse 

interacted aggressively (F). Data are presented as mean ± SEM; n = 9-10 mice per group. 

Main effect of Tat, *p < 0.05 vs Tat(−) mice. Main effect of morphine, #p < 0.05 vs saline 

treated mice.
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Fig. 3. HIV-1 Tat and morphine did not alter sociability in the non-reciprocal social interaction 
or social novelty tests.
Tat exposure for 8 weeks and escalated morphine (10 – 40 mg/kg, s.c., b.i.d.) administration 

for 2 weeks did not significantly affect the latency to interact (A) or percentage of time spent 

interacting (B) with the unfamiliar mouse, or distance traveled (C) in the social interaction 

test performed in a novel environment. Similarly, in the social novelty test Tat and morphine 

did not affect the latency to interact (D) or percentage of time spent interacting with the 

novel unfamiliar mouse (E), or distance traveled (F). Data are presented as mean ± SEM; n 
= 9-10 mice per group.
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Fig. 4. HIV-1 Tat, but not morphine decreased PFC and amygdalar, but not hippocampal 
oxytocin levels.
After 8 weeks of Tat, 2 weeks of morphine exposure, and behavioral testing in assays of 

sociability Tat(+) mice, regardless of morphine exposure, exhibited lower expression of 

oxytocin in the PFC (A) and amygdala (B), but not the hippocampus (C) as measured by 

western blotting. Representative blots show decreased oxytocin in Tat(+) compared to Tat(−) 

mice in the PFC (A, top) and amygdala (B, top). All oxytocin western blots are represented 

as relative intensity to GAPDH normalized to Tat(−)/Saline. Data are presented as mean ± 

SEM; n = 9-10 mice per group. Main effect of Tat, *p < 0.05 vs Tat(−) mice.
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Fig. 5. HIV-1 Tat and morphine did not alter serum corticosterone or PFC, hippocampus, or 
amygdala corticotropin releasing factor (CRF) expression.
Mice that were behaviorally tested in assays of sociability after 8 weeks of Tat and 2 weeks 

of morphine exposure did not exhibit altered levels of CRF in the PFC (A), amygdala (B), or 

hippocampus (C) of behaviorally-tested mice as measured by western blotting. Tat and 

morphine also did not alter serum corticosterone levels (D). All CRF western blots are 

represented as relative intensity to GAPDH normalized to Tat(−)/Saline. Data are presented 

as mean ± SEM; n = 9-10 mice per group.
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Fig. 6. HIV-1 Tat and morphine decrease hypothalamic paraventricular nucleus (PVN) oxytocin 
expression.
Representative images of cells immunoreactive for both oxytocin (green) and the neuronal 

marker NeuN (blue) in the PVN (A-D) imaged with Keyence VHX-7000 digital microscope 

at 40× magnification and stitched together. Mice exposed to Tat for 8 weeks, administered 2 

weeks of morphine, and tested in social interaction assays did not demonstrate changes in 

hypothalamic PVN volume (E). Tat and morphine decreased oxytocin- (F), but not 

corticotropin releasing factor (CRF)- (G) or oxytocin- and CRF-immunoreactive colocalized 

(H) neurons in the PVN of the hypothalamus. These data suggest that oxytocin-expressing 

neurons in the PVN are selectively vulnerable to morphine and Tat, but do not show if this 

vulnerability is due to changes in the metabolism or release of oxytocin, or the loss of the 

oxytocin-expressing neuron subpopulation. Data are presented as mean ± SEM; n = 4-6 

mice per group. Main effect of Tat, *p < 0.05 vs Tat(−) mice. Main effect of morphine, #p < 

0.05 vs saline treated mice. Scale bar = 200 μm.
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Fig. 7. Cellular localization of oxytocin, corticotropin releasing factor (CRF), and NeuN 
immunoreactivity in the hypothalamic paraventricular nucleus (PVN).
Representative images of oxytocin (green), CRF (red), and Hoechst (blue) positive cells 

were taken using a Zeiss LSM 700 microscope at 63× magnification (Zeiss, Oberkochen, 

Germany). Tat(−)/morphine (B), Tat(+)/saline (C), and Tat(+)/morphine (D) PVN tissue 

sections had less oxytocin immunoreactive-cells compared to Tat(−)/Saline (A) control 

sections. Scale bar = 20 μm.
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Fig. 8. In HIV-Tat- or morphine-exposed mice, oxytocin or corticotropin releasing factor (CRF) 
expression correlates with social behaviors.
Despite the lack of morphine-induced changes in the social interaction test, a higher 

percentage of oxytocin-immunoreactive neurons within the hypothalamic paraventricular 

nucleus of morphine-exposed mice correlated with decreased time spent interacting with the 

unknown mouse in the social interaction test (A). Although Tat also did not change the 

overall oxytocin or CRF levels or social behaviors, in Tat(+) mice, hippocampal oxytocin 

levels positively correlated with time spent interacting with the novel unknown mouse in the 
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social novelty test (B). In the social interaction test, higher amygdalar CRF levels in Tat(+) 

mice correlated with an increased latency to interact (C) and decreased time spent 

interacting (D) with the unknown mouse. The latency to interact and time spent interacting 

with the unknown mouse also positively correlated with PFC (E) and hippocampal (F) CRF 

levels, respectively. n = 8 mice per group.
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