Skip to main content
. 2021 Jul 13;11:14358. doi: 10.1038/s41598-021-93746-z

Table 2.

Literature overview on colorectal whole slide image diagnosis.

Author Year Task Dataset Description Results
Kalkan et al.37 2012 CRC detection (normal vs cancer) 120 H&E slides (tile annotations) 1024 × 1024 px tiles; k-NN classifier + Logistic-linear classifier Acc.: 87.69%; AUC: 0.90
Korbar et al.40 2017 Polyp classification (6-class): normal, hyperplastic, sessile serrated, traditional serrated, tubular and tubulovillous/villous 697 H&E slides (annotated) 811 × 984 px ROIs (mean size); ResNet-152 + argmax of tile class frequency Acc.: 93%; Precision: 89.7%; Recall: 88.3%; F1-score: 88.8%
Yoshida et al.38 2017 CRC classification (4-class): unclassifiable, non-neoplastic, adenoma and CA 1068 H&E slides (w/ labelled tissue sections) Tissue sections crop + cytological atypia analysis + structural atypia analysis + overall classification FNR (CA): 9.3%; FNR (adenoma): 0%; FPR: 27.1%
Iizuka et al.43 2020 CRC classification (3-class): non-neoplastic, AD and ADC 4536 H&E slides (annotated) + 547 H&E slides from TCGA-COAD collection 512 × 512 px tiles at 20×; Inception-v3 + RNN AUC: 0.962 (ADC), 0.993 (AD); AUC (TCGA-COAD subset): 0.982 (ADC)
Song et al.46 2020 Colorectal adenoma detection (normal vs adenoma) 411 H&E slides (annotated) + external set: 168 H&E slides 640 × 640 px tiles at 10×; Modified DeepLab-v2 + 15th largest pixel probability AUC: 0.92; Acc. (external set): >90%
Wei et al.45 2020 Polyp classification (5-class): Normal, hyperplastic, tubular, tubulovillous/villous, sessile serrated 508 H&E slides (annotated) + external set: 238 H&E slides 224 × 224 px tiles at 40×; ResNet models ensemble + hierarchical classification Acc.: 93.5%; Acc. (external set): 87%
Xu et al.47 2020 CRC detection (normal vs cancer) 307 H&E slides (annotated) + 50 H&E slides (external set) 768 × 768 px tiles; Inception-v3 + tiles tumour probability thresholding Acc.: >93%; Acc. (external set): >87%

CRC: Colorectal Cancer; AD: Adenoma; CA: Carcinoma; ADC: Adenocarcinoma; H&E: Haemotoxylin & Eosin; px: pixels; k-NN: k Nearest Neighbours; ROI: Region of Interest CNN: Convolutional Neu- ral Network; SVM: Support Vector Machine; MLP: Multi-Layer Perceptron; MIL: Multiple Instance Learning; Acc.: Accuracy; AUC: Area Under the ROC Curve; FNR/FPR: False Negative/Positive Rate