
CT-based multi-organ segmentation using a 3D self-attention U-
net network for pancreatic radiotherapy

Yingzi Liu*, Yang Lei*, Yabo Fu, Tonghe Wang
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 
30322, USA

Xiangyang Tang
Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, 
Atlanta, GA 30322, USA

Xiaojun Jiang, Walter J. Curran, Tian Liu, Pretesh Patel, Xiaofeng Yanga)

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 
30322, USA

Abstract

Purpose: Segmentation of organs-at-risk (OARs) is a weak link in radiotherapeutic treatment 

planning process because the manual contouring action is labor-intensive and time-consuming. 

This work aimed to develop a deep learning-based method for rapid and accurate pancreatic multi-

organ segmentation that can expedite the treatment planning process.

Methods: We retrospectively investigated one hundred patients with computed tomography (CT) 

simulation scanned and contours delineated. Eight OARs including large bowel, small bowel, 

duodenum, left kidney, right kidney, liver, spinal cord and stomach were the target organs to be 

segmented. The proposed three-dimensional (3D) deep attention U-Net is featured with a deep 

attention strategy to effectively differentiate multiple organs. Performance of the proposed method 

was evaluated using six metrics, including Dice similarity coefficient (DSC), sensitivity, 

specificity, Hausdorff distance 95% (HD95), mean surface distance (MSD) and residual mean 

square distance (RMSD).

Results: The contours generated by the proposed method closely resemble the ground-truth 

manual contours, as evidenced by encouraging quantitative results in terms of DSC, sensitivity, 

specificity, HD95, MSD and RMSD. For DSC, mean values of 0.91 ± 0.03, 0.89 ± 0.06, 0.86 ± 

0.06, 0.95 ± 0.02, 0.95 ± 0.02, 0.96 ± 0.01, 0.87 ± 0.05 and 0.93 ± 0.03 were achieved for large 

bowel, small bowel, duodenum, left kidney, right kidney, liver, spinal cord and stomach, 

respectively.

Conclusions: The proposed method could significantly expedite the treatment planning process 

by rapidly segmenting multiple OARs. The method could potentially be used in pancreatic 

adaptive radiotherapy to increase dose delivery accuracy and minimize gastrointestinal toxicity.
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1. INTRODUCTION

Pancreatic cancer is a highly aggressive malignancy with poor prognosis. In the US, while it 

only accounts for 3% of all cancer cases, pancreatic cancer is the fourth leading cause of 

cancer-related mortality. The current 5-yr overall survival rate of pancreatic cancer is only 

9%.1 Although surgery provides the best curative option, the majority of patients are 

unresectable at diagnosis because they present with either locally advanced pancreatic 

cancer (LAPC) or with distant metastasis.2 Radiotherapy approaches, with or without 

chemotherapy, have been frequently used to treat the patients with LAPC. The challenge of 

controlling pancreatic cancer with radiation is the coexistence of tumor radio-resistance with 

the radio-sensitivity of the surrounding organs-at-risk (OARs) in the immediate 

neighborhood such as duodenum and stomach. Thus, high dose is needed but must be 

carefully controlled. Both standard fractionation in terms of simultaneous-integrated boost 

(SIB) and stereotactic body radiotherapy (SBRT) have been used for dose escalation. At the 

site of abdomen, there is considerable patient motion induced by respiration and organ 

peristalsis, with the complexity compounded by daily variability in stomach filling and 

bowel gas patterns. Due to the challenges induced by daily anatomical variation, pancreatic 

radiotherapy is often associated with severe gastrointestinal (GI) toxicities such as nausea, 

vomiting and diarrhea. Partly due to these GI toxicities, notable weight loss is common in 

patients who underwent pancreatic radiotherapy, which could in turn degrade the radiation 

dose delivery accuracy by overdosing the surrounding OARs within the radiation fields. 

Careful clinical practice of pancreatic radiotherapy treatment planning and delivery are thus 

crucial to reduce GI toxicities and achieve optimal treatment outcomes.

At the initial radiation treatment planning process, professional expertise is needed in organ 

contouring. But manual organ contouring is a labor-intensive and time-consuming process 

that places a heavy demand on the physician. Besides the initial treatment planning, online 

image guided adaptive pancreatic radiotherapy has been proposed to account for the inter-

fractional anatomical variations,3,4 such as MRI-guided3,5 and computed tomography (CT)-

on-rails-based6,7 adaptive radiotherapy. For the latter approach, online CT-based multi-organ 

segmentation is required. In the off-line evaluation work carried out by Liu et al.6 and Loi et 

al.,7 CT-on-rails-based scans were acquired during the course of pancreatic SBRT7 and 

standard-fractionated radiotherapy.6 In their studies, a series of abdominal organs were 

delineated on the daily CT, either manually or using atlas-based auto-segmentation followed 

by manual modification. In both cases, their results demonstrated notable benefits of 

implementation online pancreatic adaptive radiotherapy in OAR dose sparing. However, 

slow manual/registration-based OAR contouring is impractical for online plan adaptation as 

it would decrease patient comfort, limit machine throughput and cost much medical 

resources. In addition, it has shown that human decision-making abilities could be degraded 

under time pressure,8 possibly resulting in inaccurate organ delineation. It is thus of primary 

interest to develop a fully automated tool for simultaneous multi-organ segmentation to 
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overcome the temporal and logistical pressure. To summarize, either in the current general 

clinic practice of treatment planning or the future implementation of online adaptive 

radiotherapy, an automatic CT-based multi-organ segmentation tool that can rapidly and 

accurately delineate the upper abdominal organs is desirable to achieve optimal outcome of 

pancreatic radiotherapy.

Multi-organ segmentation has been the subject of extensive study.9–19 A thorough review of 

CT-based multi-organ segmentation methods on different body sites can be found in the 

recent publication of Cerrolaza et al.’s review work.20 In this paper, we reviewed some 

closely related work on multi-organ segmentation at the site of abdomen. There are some 

well-known challenges of CT-based abdominal multi-organ segmentation, including motion 

artifacts and low contrast organ boundaries such as at the pancreatic head and the 1st portion 

of duodenum. Additionally, the shapes, positions and appearances of the abdominal organs 

are subject to large variations due to respiratory motion, bowel movement and fillings. 

Previously, statistical-shape-models12,13,17 and multi-atlas label fusion14,15 were used for 

multi-organ segmentation, both relying on image registration to establish (atlas) anatomical 

correspondence. Statistical-shape-model-based methods are constructed from spatially 

aligned training atlas CT-contours pairs, producing statistical models which contain 

information about the expected shape and appearance of the organ of interest. The statistical-

shape-models are then used to regularize the shapes of the target image segmentation results.
16 For multi-atlas label fusion methods, multiple atlases are registered to the target image, 

propagating the atlas contours to the target image using either averaging or statistical label 

fusion. Both methods are limited by the accuracies and performances of the underlying 

image registration algorithm. Moreover, inter-patient registration is much less accurate for 

abdominal imaging than other more stationary body sites such as brain, due to the highly 

variable inter-subject anatomies.

Recently, machine learning-based methods have also been proposed for the task of 

abdominal multi-organ segmentation. Models were trained to directly predict organ contours 

after learning the comprehensive relationship between the CT images and the corresponding 

contours. Compared to the atlas-based methods, machine learning-based methods would be 

more suitable for upper abdominal organ delineation because of their no need for inter-

patient registration. For the abdominal multi-organ segmentation, machine learning-based 

methods can be mainly grouped into dictionary learning21 and deep learning-based methods.
10,22,23 The main difference between dictionary learning- and deep learning-based methods 

is that the latter can learn useful features of the data by itself, eliminating the need for 

handcrafted features such as atlas selection in dictionary learning.21 Deep learning-based 

methods are therefore registration-free, requiring neither explicit anatomical 

correspondences nor handcrafted image features. There are different categorization methods 

for deep-learning-based multi-organ segmentation depending on the properties such as 

network architecture, training process (supervised, semi-supervised, unsupervised or transfer 

learning), input size [patch-based, whole volume-based, two-dimensional (2D) or three-

dimensional (3D)], etc. In terms of the architecture, it can be categorized as auto-encoder 

(AE), convolutional neural network (CNN) and fully convolutional network (FCN). More 

specifically, AE usually consists a single neural network encoder layer that transforms the 

input into a latent or compressed representation and a single neural network decoder layer 

Liu et al. Page 3

Med Phys. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that restores the original input from the low-dimensional latent space. Some upgraded 

networks such as stacked AE (SAE)24 and denoising AE (DAE)25 were developed for better 

higher-level representation and to extract useful features. CNN derives its name from the 

type of hidden layers it consists of. The hidden layers of a CNN typically consist of 

convolutional layers, max pooling layers, batch normalization layers, dropout layers and 

fully connected layers, and normalization layers. The last layer of a CNN is typically a 

sigmoid or softmax layer for classification and tanh layer for regression. Convolution layers 

are the core of CNN and are used for feature extraction. More recently, 3D patch-based 

CNN has been proposed to reserve more spatial information.26 Fully convolutional network 

is built based on the CNN network, whose last fully connected layer is replaced by a 

convolutional layer. Due to the major improvement of deconvolution kernels used to up-

sample the feature map, FCN allows the model to have a dense voxel-wise prediction from 

the full size whole volume instead of a patch-wise classification as in traditional CNN. FCN 

is thus well-suited to the task of multi-organ segmentation. Although widely varied in the 

detailed network design, FCN-based methods have achieved state-of-the-art outcomes.
10,22,23 Ronneberger et al. developed U-Net based on FCN to extract contextual information 

from down-sampling path and more structural information obtained from multiple up-

sampling layers.27 To minimize the adverse effect of inter-patient variation in network 

training, Oktay et al. used attention gate to highlight salient features useful for the 

segmentation task.28 In this work, we propose to use a 3D deep attention U-Net network 

with a deep supervised compound loss function to perform segmentation. There is no 

published study on abdomen multi-organ segmentation for pancreatic radiotherapy as far as 

the authors know. We retrospectively investigated one hundred patients with CT simulation 

scanned and contours delineated. Eight OARs including large bowel, small bowel, 

duodenum, left kidney, right kidney, liver, spinal cord, and stomach were target organs to be 

segmented. To overcome the low contrast between organs such as pancreas and duodenum, 

deep supervision was integrated into U-Net to force hidden layers learning deep features that 

can differentiate different organs uniformly. In addition, CT image quality may be affected 

by motion artifact and several convolution layers may also involve bias. In order to decrease 

these artifact, and further keep the U-Net focusing on differentiate multiple organs, attention 

gates were used to reduce the irrelevant features.

2. MATERIALS AND METHODS

2.A. Image acquisition and processing

The study cohort was composed of one hundred pancreatic cancer patients who underwent 

pancreatic radiotherapy at three clinical sites at our institution from the year 2015 to 2019. 

CT scans were acquired on four different CT simulators including SOMATOM Definition 

AS and SOMATOM Definition Edge (Siemens Healthcare, Erlangen, Germany), Brilliance 

Big Bore (Philips Healthcare, Best, The Netherlands) and LightSpeed RT (GE Medical 

Systems, Milwaukee, USA). Tube voltage of 100 kVp was used for eleven patients with 

intravenous contrast injection and 120 kVp were applied for the rest eighty-nine patients. 

The voxel sizes in left-right and anterior-posterior were around 1 mm (range from 0.90 to 

1.56 mm) with 512 voxels in total, and the slice thicknesses in superior-inferior direction 

range from 1.5 to 3 mm with total scan lengths ranging from 216 to 712.5 mm.
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Eight OARs including large bowel, small bowel, duodenum, left kidney, right kidney, liver, 

spinal cord and stomach were contoured on CT images by physicians in our department 

during the initial treatment planning process. In this study, two expert physicians went over 

all the contours and had an agreement with organ delineations for each patient. In other 

words, only one set of contours was delineated for each patient as a consensus achieved 

between two physicians. The OAR contours coupled with the corresponding CT images 

were used as the training dataset for our proposed deep learning-based method. Fivefold 

cross-validation was performed.

2.B. 3D deep attention U-Net network for pancreatic multi-organ segmentation

For a given pair of pancreatic CT image and its corresponding manual OAR contours, the 

manual contours were used as the learning targets of the CT image. The training data were 

3D patches of CT-contour image pairs. The training patches covered 32 slices of the full 2D 

images along the superior-inferior direction (sliding window 512 × 512 × 32 voxels) with a 

step size of 16 slices between two neighboring patches. This study aimed to segment eight 

OARs, therefore the proposed method is nine-label-based (including background) 

segmentation model to simultaneously segment small bowel, large bowel, liver, stomach, 

spinal cord, left kidney, right kidney and duodenum. Figure 1 outlines the schematic 

workflow of our proposed deep attention U-Net method. The whole architecture includes a 

training stage and a segmentation stage. The training U-Net network consists of encoding 

and decoding paths. The encoding path is constructed by three down-sampling blocks, each 

block being composed of three convolution layers with the first layer followed by a max 

pooling layer. The decoding path is constructed by three up-sampling blocks, with each 

block being composed of a deconvolution layer to enhance the resolution followed by three 

convolutional layers. Long skip connection concatenates the feature maps from the encoding 

path and two former decoding paths. As is shown in the schematic flow-chart of attention 

gate demonstrated in Fig. 1(b), the feature maps extracted from the coarse scale are used in 

gating to disambiguate irrelevant and noisy responses in skip connections. U-Net with 

attention gate encourages each path to obtain both high-frequency information (such as 

textural information) and low-frequency information (such as structural information) to 

represent an image patch. At the end of the architecture, probability map of contours is 

generated by softmax operators. Binary masks are generated by using a threshold to the 

probability map, with each organ being assigned with a unique label.

To deal with limited training data, we employed a deep supervision strategy29 with a 

compound loss function.30 As shown in Fig. 1(a), deep supervision was used to supervise 

both the final prediction and each of the decoding stages. Feature maps extracted from the 

lower and middle stages pass through deconvolution, ReLU, and sigmoid functions to output 

images that have the same size as the input images. Compared with the attention U-Net 

proposed by Oktay et al.,28 this deep supervision mechanism could make the residual 

information semantically meaningful for both the early and final stages in the architecture, 

which can reduce the convergence time and improve the segmentation performance. In the 

compound loss function, weighted cross-entropy and dice similarity coefficient (DSC) were 

combined. More specifically, cross-entropy is widely used in quantifying the dissimilarity 

between two probability distributions. Let G = {g1, …, gN} be the set of ground-truth labels 
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and P = {p1, …, pN} be the set of predicted labels, where N represents the number of voxels 

in a volume. Cross-entropy and its partial derivatives used within the gradient for the j-th 

voxel of the prediction can be directly defined as follows. CE is short for cross-entropy.

CE = − ∑
i = 1

N
gi log pi − ∑

i = 1

N
1 − gi log 1 − pi

∂CE
∂pj

=
1 − gj
1 − pj

−
gj
pj

On the other hand, DSC is an overlap metric commonly used for assessing the quality of 

segmentation maps. DSC formulation and its partial derivatives providing the gradient for 

the j-th voxel of the prediction can be defined as follows, where D is short for DSC.

D =
2∑i = 1

N pigi
∑i = 1

N pi2 + gi2

∂D
∂pj

=
2gj∑i = 1

N pi2 + gi2 − 4pj∑i = 1
N pigi

∑i = 1
N pi2 + gi2

2

To enable the network to penalize dissimilarity (cross-entropy) and encourage similarity 

(DSC) between the prediction and training data simultaneously, cross-entropy and DSC were 

combined into the loss functions of all expanding stages, and the final loss function is 

defined as follows:

Lfinal(P , G) = ∑
t = 1

3
γt LCE(P, G) + βLDSC(P, G)

LCE and LDSC represent cross-entropy and DSC loss function. Parameter β was used to 

balance the two losses. γt denotes the balancing weights of loss in each stage. γt should be 

provided according to different resolution of each stage of deep supervision. We used 

relatively low weight for the stage of low resolution and the highest weight for the final 

stage. When γt is set to be γt = {0.8t−1}, t ∈ {1, 2, 3}, we can obtain the best performance in 

terms of DSC. The range of β was set to 0.5. In Lei et al.’s work on ultrasound-based 

prostate segmentation, the combination of logistic loss27 and Dice loss31 has been proved to 

be more accurate in prostate segmentation than using either loss function alone.

After training, the 3D patches of the testing CT images are fed into the final well-trained 

model to retrieve the predicted probability maps. These probability maps were then fused to 

the whole image. Averaging fusion method on overlapped regions were used for patch 
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fusion. The final segmentations were obtained by aggregating the multi-organ probability 

maps and a consolidation via averaging.

We used fivefold cross-validation for network training and testing. The 100 patients’ datasets 

were divided into five groups, with 20 datasets in each group. One group was used as the 

testing dataset while the remaining 80 datasets were used as training sets. This process was 

repeated by five times to allow all 100 datasets to be tested once. Data augmentation such as 

flip, rotation, scaling was used to enlarge the variety of the training datasets. The 

augmentation includes rotation (0°, 30°, 60°, 90°), flipping (not flip, flip), scaling (1, 1.25, 

1.5) and affine warp (original + 2 affine warp), resulting in 72 times more training datasets. 

The learning rate for Adam optimizer was set to 2e-4, and the model was trained and tested 

on a NVIDIA Tesla V100 GPU with 32 GB memory. A batch size of 20 was used. 10 GB 

CPU memory and 29 GB GPU memory was used for each batch optimization. The 

algorithm was implemented by python3.7 and Tensor-flow 1.14. The training was stopped 

after 200 epochs. After training was finished, the automatic generation of multi-organ 

contours can be done in <1 s.

2.C. Evaluation Matrices

The performance of our method was evaluated using six commonly used metrics, including 

DSC,32 sensitivity,32 specificity,32 Hausdorff distance 95% (HD95),33 mean surface distance 

(MSD),33 and residual mean square distance (RMSD).30 Dice similarity coefficient provides 

information of spatial overlap.

DSC = 2 × X ∩ Y
X + Y

where X and Y are the manual and predicted masks, respectively.

Sensitivity/specificity measure the correct classification rate. They quantify the contour 

overlapping ratio inside the manual contour volume and the no-contour overlapping ratio 

outside the manual contour volume, respectively.

Sensitivity = X ∩ Y
X

Specificity = X ∩ Y
X

HD95/MSD/RMSD measure the boundary similarity between the manual contour and the 

predicted contour. They quantify the maximum of 95th percentile, the average and the root 

of mean square deviation distance of all distances between points in X (the predicted 

contours) and the nearest point in Y (the manual contours), respectively.

HD95 = maxk95%[d(X, Y ), d(Y , X)] .
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MSD = 1
X + Y ∑

x ∈ X
d(x, Y ) + ∑

y ∈ Y
d(y, X) .

RMSD = 1
X + Y ∑

x ∈ X
d(x, Y )2 + ∑

y ∈ Y
d(y, X)2

where d(x, Y) = miny∈Y∥x−y2∥. Doing this for all pixels in the surfaces gives the total 

surface distance between X and Y: (X, Y).

3. RESULTS

Figure 2 shows the 2D and 3D segmentation results from one representative patient using the 

proposed deep attention U-Net network, with side-by-side comparison to the corresponding 

CT and manual contours. Our method successfully delineated the eight OARs with good 

visual agreement to the manual delineation. Manual contours in the superior-inferior 

direction are often not smooth since manual contours were delineated in 2D in the axial 

plan. On the contrary, automatic segmentation results are smoother than manual contours 

since the contour was predicted in 3D.

The quantitative evaluation using DSC, sensitivity, specificity, HD95, MSD, and RMSD is 

summarized in Table I and Fig. 3. For DSC, mean values of 0.91 ± 0.03, 0.89 ± 0.06, 0.86 ± 

0.06, 0.95 ± 0.02, 0.95 ± 0.02, 0.96 ± 0.01, 0.87 ± 0.05 and 0.93 ± 0.03 were achieved for 

large bowel, small bowel, duodenum, left kidney, right kidney, liver, spinal cord and 

stomach, respectively. In Fig. 3, some extreme outliers were plotted in separate figures 

showing with larger scales. Those outliers were generated by our method mainly due to: 

inter-observer variability of the training data, incomplete or over-prediction of organs in the 

most superior and inferior slices comparing to the manual contours, and error in prediction 

that can be caused by the algorithm itself and the different image acquiring protocols. The 

mean values for HD95 were 4.94 ± 2.57, 6.97 ± 5.98, 4.17 ± 1.74, 3.42 ± 2.37, 2.97 ± 2.18, 

4.38 ± 2.32, 4.22 ± 6.82, 6.40 ± 6.99 mm for large bowel, small bowel, duodenum, left 

kidney, right kidney, liver, spinal cord and stomach, respectively. Some outliers of close to 

40 mm were observed mainly due to the under- or over-prediction of the contours in the 

most superior and inferior slices. For some patients, a small extra volume of contour was 

generated by our algorithm that could significantly affect the HD95 value. Our MSD values 

were comparable to the state-of-the-art method.10

To demonstrate the effectiveness of each component that was incorporated in the U-Net-

based network, an ablation study was performed. Specifically, the performances in terms of 

DSC and HD95 were compared among U-Net, U-Net with deep supervision (Unet-DS), 

Unet-DS with compound loss function (Unet-DS-CL), and Unet-DS-CL with attention gate 

(Unet-DS-CL-AG). Table II tabulates the results. As shown in the table, the adding features 

generally improve the performance of segmentation by showing higher DSC and smaller 

HD95. Table III lists P-values of the paired-two-tailed t-test between different variants of the 
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U-Net-based methods. As shown, significant differences (P < 0.05) were found between two 

variants of U-Net-based methods for most of the organs, which means the improvement is 

statistically significant.

4. DISCUSSION

This work automatically generated eight OARs including large bowel, small bowel, 

duodenum, left kidney, right kidney, liver, spinal cord, and stomach from CT images in one 

single forward network prediction. The overall DSC scores are encouraging and have proved 

that our method is suitable for future development in its implementation in clinic. Some 

outliers were present in our results. We checked those extreme cases slice-by-slice and 

summarized the reasons as follows: (a) The network failed to predict some organs in some 

slices. It can be caused by the variations in CT image qualities. The use of contrast during 

CT acquisition can improve the accuracy of both manual delineation and automatic 

segmentation. For example, most of the patients were injected with contrast in stomach. The 

network performed less accurately to generate the stomach contour for some patients 

without stomach contrast injection. (b) Due to image noise and artifacts, some spurious 

labeling was present in the segmentation results. (c) The CT image field ranges from 216 to 

712.5 mm in superior-inferior direction. In the CT images with larger field, some of the 

organ (e.g. spinal cord) manual contours were missing at the most superior and inferior 

slices while they were automatically generated by our algorithm.

Despite some outliers, our multi-organ segmentation results were on average in good 

agreement with the manual contours. In this study, we have included eight OARs that are 

commonly used in pancreatic treatment planning in our clinic. Comparison between our 

method and the state-of-the-art methods demonstrated that our method achieved higher 

accuracy in bowel and duodenum segmentation and comparable accuracy in other organs. 

The segmentation accuracy of bowel and duodenum is important since they are the most 

concerned OARs in pancreatic radiotherapy. It is worth noting that image quality can affect 

both the manual delineation and the machine learning segmentation results. The CT images 

used by the other studies listed in Table II were acquired during the radiological process for 

disease diagnosis, which features finer voxel size and higher exposure dose than the CT 

scans used for the radiotherapy treatment planning purpose. This might partly explain why 

for some other organs such as liver and stomach, our results were not as good as the study 

done by Wang et al.10 The other reasons include that different methods may excel in 

different organ segmentation tasks, the number of training data included, and the uniformity 

of contrast injection.

Automatic multi-organ segmentation can significantly shorten the process of treatment 

planning and plays an important role the development of pancreatic adaptive radiotherapy. 

For adaptive radiotherapy, besides CT-on-rails-based image guided system, there is potential 

use of CBCT-guided34,35 adaptive imaging systems. In the CBCT-based scenario, the quality 

of CBCT images could be improved using correction methods to reduce image artifacts and 

restore clear organ boundaries, as well as to improve the HU accuracy that is comparable to 

the real CT. The corrected CBCT can thus be considered as the surrogate of real CT images. 
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For the future work, our deep attention U-Net method could be applied on the CBCT-based 

synthetic CT to segment OARs for adaptive radiotherapy.

The eight OARs included in this study were based on our institutional protocol for 

pancreatic radiotherapy. They were determined based on RTOG consensus panel 2012.36 

Some other organs such as spleen, pancreas and volumes of interest (VOIs) such as 

pancreatic lesion/tumor bed, portal vein (PV), superior mesenteric artery (SMA), and celiac 

artery (CA) were not included in this study. Future directions would include these organs 

and VOIs.

Since the application of machine learning in clinic has little tolerance for mistake, human 

inspection would still be required after the automatic generation of contours. But the total 

time required for inspection and modification is supposed to be much less than the time 

spent on manual contouring, providing that the model is with high accuracy and robustness.

5. CONCLUSIONS

In this study, we have developed a deep attention U-Net method for multi-organ 

segmentation for pancreatic radiotherapy treatment planning. The contours generated by our 

method closely resemble the ground-truth manual contours, as evidenced by promising 

quantitative results in terms of DSC, sensitivity, specificity, HD95, MSD and RMSD. This 

method could significantly expedite the treatment planning process. It can also facilitate the 

development of pancreatic adaptive radiotherapy, potentially increase dose delivery 

accuracy, and minimize gastrointestinal toxicity.
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Fig. 1. 
(a) Schematic flow-chart of the proposed algorithm for pancreatic multi-organ segmentation. 

The first row shows the training procedure of deep attention U-Net. The second row shows 

the segmentation of a new arrival patient. (b) Architecture of the attention gate.

Liu et al. Page 13

Med Phys. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
(a) Axial, coronal and sagittal two-dimensional visualization and (b) posterior and anterior 

three-dimensional visualization of the manual and predicted organs-at-risk contours of a 

representative patient.
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Fig. 3. 
Box and whisker plots of the evaluation matrices including of dice similarity coefficient, 

sensitivity, specificity, Hausdorff distance 95% (HD95), mean surface distance (MSD), 

residual MSD (RMSD) between the manual contours and the contours predicted by our 

proposed method. The central orange line indicates the median value, and the borders of the 

box represent the 25th and 75th percentiles. The whiskers show inliers within 1.5 inter-

quartile ranges. The outliers are plotted by the black “O” marker.
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Table III.

P-value comparison in terms of dice similarity coefficient (DSC) and Hausdorff distance 95% (HD95) between 

proposed two variants of U-Net-based methods.

U-Net vs Unet-DS Unet-DS vs Unet-DS-CL Unet-DS-CL vs Unet-DS-CL-AG

DSC HD95 DSC HD95 DSC HD95

Bowel large <0.001 <0.001 0.894 0.004 <0.001 <0.001

Bowel small 0.052 0.018 <0.001 <0.001 0.029 0.018

Duodenum 0.067 <0.001 0.258 <0.001 <0.001 <0.001

Kidney left 0.027 <0.001 0.046 <0.001 0.027 <0.001

Kidney right 0.294 0.002 0.137 0.018 0.530 0.127

Liver 0.008 <0.001 0.850 <0.001 0.284 0.035

Spinal cord <0.001 <0.001 0.332 <0.001 0.039 0.041

Stomach 0.004 <0.001 0.425 <0.001 <0.001 <0.001
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