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Abstract

The problem of estimating high-dimensional network models arises naturally in the analysis

of many biological and socio-economic systems. In this work, we aim to learn a network

structure from temporal panel data, employing the framework of Granger causal models under

the assumptions of sparsity of its edges and inherent grouping structure among its nodes. To

that end, we introduce a group lasso regression regularization framework, and also examine a

thresholded variant to address the issue of group misspecification. Further, the norm consistency

and variable selection consistency of the estimates are established, the latter under the novel

concept of direction consistency. The performance of the proposed methodology is assessed

through an extensive set of simulation studies and comparisons with existing techniques. The

study is illustrated on two motivating examples coming from functional genomics and financial

econometrics.
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1. Introduction

We consider the problem of learning a directed network of interactions among a number

of entities from time course data. A natural framework to analyze this problem uses

the notion of Granger causality (Granger, 1969). Originally proposed by C.W. Granger

this notion provides a statistical framework for determining whether a time series X is

useful in forecasting another one Y, through a series of statistical tests. It has found

wide applicability in economics, including testing relationships between money and income

(Sims, 1972), government spending and taxes on economic output (Blanchard and Perotti,

2002), stock price and volume (Hiemstra and Jones, 1994), etc. More recently the Granger

causal framework has found diverse applications in biological sciences including functional
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genomics, systems biology and neurosciences to understand the structure of gene regulation,

protein-protein interactions and brain circuitry, respectively.

It should be noted that the concept of Granger causality is based on associations

between time series, and only under very stringent conditions, true causal relationships

can be inferred (Pearl, 2000). Nonetheless, this framework provides a powerful tool for

understanding the interactions among random variables based on time course data.

Network Granger causality (NGC) extends the notion of Granger causality among two

variables to a wider class of p variables. Such extensions involving multiple time series are

handled through the analysis of vector autoregressive processes (VAR) (Lütkepohl, 2005).

Specifically, for p stationary time series X1
t , …, Xp

t , with Xt = (X1
t , …, Xp

t )′, one considers the

class of models

Xt = A1Xt − 1 + … + AdXt − d + ϵt, (1)

where A1, A2, … , Ad are p × p real-valued matrices, d is the unknown order of the VAR

model and the innovation process satisfies ϵt ~ N(0, σ2I). In this model, the time series

{Xj
t} is said to be Granger causal for the time series {Xi

t} if Ai, j
ℎ ≠ 0 for some h = 1, … ,

d. Equivalently we can say that there exists an edge Xj
t − ℎ Xi

t in the underlying network

model comprising of (d + 1) × p nodes (see Figure 1). We call A1, … , Ad the adjacency

matrices from lags 1, … , d. Note that the entries Aij
ℎ  of the adjacency matrices are not

binary indicators of presence/absence of edges between two nodes Xi
t and Xj

t − ℎ. Rather,

they represent the direction and strength of influence from one node to the other.

The temporal structure induces a natural partial order among the nodes of this network,

which in turn simplifies significantly the corresponding estimation problem (Shojaie and

Michailidis, 2010a) of a directed acyclic graph. Nevertheless, one still has to deal with

estimating a high-dimensional network (e.g., hundreds of genes) from a limited number of

samples.

The traditional asymptotic framework of estimating VAR models requires observing a long,

stationary realization {X1, … , XT, T → ∞, p, d fixed} of the p-dimensional time series.

This is not appropriate in many biological applications for the following reasons. First, long

stationary time series are rarely observed in these contexts. Second, the number of time

series (p) being large compared to T, the task of consistent order (d) selection using standard

criteria (e.g., AIC or BIC) becomes challenging. Similar issues arise in many econometric

applications where empirical evidence suggests lack of stationarity over a long time horizon,

although the multivariate time series exhibits locally stable distributional properties.

A more suitable framework comes from the study of panel data, where one observes several

replicates of the time series, with possibly short T, across a panel of n subjects. In biological

applications replicates are obtained from test subjects. In the analysis of macroeconomic

variables, households or firms typically serve as replicates. After removing panel specific

fixed effects one treats the replicates as independent samples, performs regression analysis
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under the assumption of common slope structure and studies the asymptotic properties under

the regime n → ∞. Recent works of Cao and Sun (2011) and Binder et al. (2005) analyze

theoretical properties of short panel VARs in the low-dimensional setting (n → ∞, T, p
fixed).

The focus of this work is on estimating a high-dimensional NGC model in the panel

data context (p, n large, T small to moderate). This work is motivated by two application

domains, functional genomics and financial econometrics. In the first application (presented

in Section 6) one is interested in reconstructing a gene regulatory network structure from

time course data, a canonical problem in functional genomics (Michailidis, 2012). The

second motivating example examines the composition of balance sheets of the n = 50 largest

US banks by size, over T = 9 quarterly periods, which provides insight into their risk profile.

The nature of high-dimensionality in these two examples comes from both estimation of p2

coefficients for each of the adjacency matrices A1, … , Ad, but also from the fact that the

order of the time series d is often unknown. Thus, in practice, one must either “guess” the

order of the time series (often times, it is assumed that the data is generated from a VAR(1)

model, which can result in significant loss of information), or include all of the past time

points, resulting in significant increase in the number of variables in cases where d ⪡ T.

Thus, efficient estimation of the order of the time series becomes crucial.

Latent variable based dimension reduction techniques like principal component analysis or

factor models are not very useful in this context since our goal is to reconstruct a network

among the observed variables. To achieve dimension reduction we impose a group sparsity

assumption on the structure of the adjacency matrices A1, … , Ad. In many applications,

structural grouping information about the variables exists. For example, genes can be

naturally grouped according to their function or chromosomal location, stocks according

to their industry sectors, assets/liabilities according to their class, etc. This information can

be incorporated to the Granger causality framework through a group lasso penalty. If the

group specification is correct it enables estimation of denser networks with limited sample

sizes (Bach, 2008; Huang and Zhang, 2010; Lounici et al., 2011). However, the group lasso

penalty can achieve model selection consistency only at a group level. In other words, if

the groups are misspecified, this procedure can not perform within group variable selection

(Huang et al., 2009), an important feature in many applications.

Over the past few years, several authors have adopted the framework of network Granger

causality to analyze multivariate temporal data. For example, Fujita et al. (2007) and Lozano

et al. (2009) employed NGC models coupled with penalized ℓ1 regression methods to learn

gene regulatory mechanisms from time course microarray data. Specifically, Lozano et al.

(2009) proposed to group all the past observations, using a variant of group lasso penalty,

in order to construct a relatively simple Granger network model. This penalty takes into

account the average effect of the covariates over different time lags and connects Granger

causality to this average effect being significant. However, it suffers from significant loss

of information and makes the consistent estimation of the signs of the edges difficult (due

to averaging). Shojaie and Michailidis (2010b) proposed a truncating lasso approach by
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introducing a truncation factor in the penalty term, which strongly penalizes the edges from

a particular time lag, if it corresponds to a highly sparse adjacency matrix.

Despite recent use of NGC in applications involving high dimensional data, theoretical

properties of the resulting estimators have not been fully investigated. For example, Lozano

et al. (2009) and Shojaie and Michailidis (2010b) discuss asymptotic properties of the

resulting estimators, but neither addresses in depth norm consistency properties, nor do they

examine under what vector autoregressive structures the obtained results hold.

In this paper, we develop a general framework that accommodates different variants of group

lasso penalties for NGC models. It allows for the simultaneous estimation of the order

of the times series and the Granger causal effects; further, it allows for variable selection

even when the groups are misspecified. In summary, the key contributions of this work

are: (i) investigate in depth sufficient conditions that explicitly take into consideration the

structure of the VAR(d) model to establish norm consistency, (ii) introduce the novel notion

of direction consistency, which generalizes the concept of sign consistency and provides

insight into the properties of group lasso estimates within a group, and (iii) use the latter

notion to introduce an easy to compute thresholded variant of group lasso, that performs

within group variable selection in addition to group sparsity pattern selection even when the

group structure is misspecified.

All the obtained results are non-asymptotic in nature, and hence help provide insight into the

properties of the estimates under different asymptotic regimes arising from varying growth

rates of T, p, n, group sizes and the number of groups.

2. Model and Framework

Notation.

Consider a VAR model

Xt

p × 1
= A1

p × p
Xt − 1 + … + AdXt − d + ϵt, ϵt ∼ N(0p × 1, σ2Ip × p), (2)

observed over T time points t = 1, … , T, across n panels. The index set of the variables

ℕp = {1, 2, …, p} can be partitioned into G non-overlapping groups Gg, i.e., ℕp = ∪g = 1
G Gg

and Gg ∩ Gg′ = ϕ if g ≠ g′. Also kg = ∣ Gg ∣ denotes the size of the gth group with

kmax = max
1 ≤ g ≤ G

kg. In general, we use λmin and λmax to denote the minimum and maximum

of a finite collection of numbers λ1, … , λm.

For any matrix A, we denote the ith row by Ai:, jth column by A:j and the collection of rows

(columns) corresponding to the gth group by A[g]: (A:[g]). The transpose of a matrix A is

denoted by A′ and its Frobenius norm by ∥A∥F. For a symmetric/Hermitian matrix Σ, its

maximum and minimum eigenvalues are denoted by Λmin(Σ) and Λmax(Σ), respectively. The

symbol A1:h is used to denote the concatenated matrix [A1 : ⋯ : Ah], for any h > 0. For any

matrix or vector D, ∥D∥0 denotes the number of non-zero coordinates in D. For notational

convenience, we reserve the symbol ∥.∥ to denote the ℓ2 norm of a vector and/or the spectral
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norm of a matrix. For a pre-defined set of non-overlapping groups G1, …, GG on {1, … ,

p}, the mixed norms of vectors v ∈ ℝp are defined as ‖v‖2, 1 = ∑g = 1
G ‖v[g]‖ and ∥v∥2,∞ =

max1≤g≤G∥v[g]∥. Also for any vector β, we use βj to denote its jth coordinate and β[g] to

denote the coordinates corresponding to the gth group. We also use supp(v) to denote the

support of v, i.e., supp(v) = {j ∈ {1, … , p}∣vj ≠ 0}.

Network Granger causal (NGC) estimates with group sparsity.

Consider n replicates from the NGC model (2), and denote the n × p observation matrix at

time t by Xt. In econometric applications the data on p economic variables across n panels

(firms, households etc.) can be observed over T time points. For time course microarray data

one typically observes the expression levels of p genes across n subjects over T time points.

After removing the panel specific fixed effects one assumes the common slope structure

and independence across the panels. The data are high-dimensional if either T or p is large

compared to n. In such a scenario, we assume the existence of an underlying group sparse

structure, i.e., for every i = 1, … , p, the support of the ith row of A1:T−1 = [A1 : ⋯ : AT−1]

in the model (2) can be covered by a small number of groups si, where si ⪡ (T − 1)G. Note

that the groups can be misspecified in the sense that the coordinates of a group covering the

support need not be all non-zero. Hence, for a properly specified group structure we shall

expect si ≪ ‖Ai:
1:T‖0. On the contrary, with many misspecified groups, si can be of the same

order, or even larger than ‖Ai:
1:T‖0.

Learning the network of Granger causal effects {(i, j) ∈ {1, … , p} : Aij
t ≠ 0 for some t} is

equivalent to recovering the correct sparsity pattern in A1:(T−1) and consistently estimating

the non-zero effects Aij
t . In the high-dimensional regression problems this is achieved by

simultaneous regularization and selection operators like lasso and group lasso. The group

Granger causal estimates of the adjacency matrices A1, … , AT−1 are obtained by solving the

following optimization problem

A1:T − 1 = argmin
A1, ⋯, AT − 1

1
2n XT − ∑

t = 1

T − 1
XT − t (At)′

F

2
+ λ ∑

t = 1

T − 1
∑
i = 1

p
∑

g = 1

G
wi, gt

‖Ai: [g]
t ‖,

(3)

where Xt is the n × p observation matrix at time t, constructed by stacking n replicates

from the model (2), wt is a p × G matrix of suitably chosen weights and λ is a common

regularization parameter. The optimization problem can be separated into the following p
penalized regression problems:

Ai:
1:T − 1 = argmin

θ1, ⋯, θT − 1 ∈ ℝp
1
2n‖X: i

T − ∑
t = 1

T − 1
XT − tθt‖2 + λ ∑

t = 1

T − 1
∑

g = 1

G
wi, gt ‖θ[g]

t ‖, i

= 1, ⋯, p .
(4)

The order d of the VAR model is estimated as d = max
1 ≤ t ≤ T − 1

{t :At ≠ 0}.
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Different choices of weights wi:gt  lead to different variants of NGC estimates. The regular

NGC estimates correspond to the choices wi, gt = 1 or kg, while for adaptive group NGC

estimates the weights are chosen as wi, gt = Ai: [g]
t −1

, where At are obtained from a regular

NGC estimation. For Ai: [g]
t = 0, the weight wi, gt  is infinite, which is interpreted as discarding

the variables in group g from the optimization problem.

Thresholded NGC estimates are calculated by a two-stage procedure. The first stage involves

a regular NGC estimation procedure. The second stage uses a bi-level thresholding strategy

on the estimates At. First, the estimated groups with ℓ2 norm less than a threshold (δgrp =

cλ, c > 0) are set to zero. The second level of thresholding (within group) is applied if the

a priori available grouping information is not entirely reliable. Aij
t  within an estimated group

Ai: [g]
t  is thresholded to zero if Aij

t ∕ Ai: [g]
t  is less than a threshold δmisspec ∈ (0,1). So,

for every t = 1, … , T − 1, if j ∈ Gg, the thresholded NGC estimates are

Aij
t = Aij

t I Aij
t ≥ δmisspec Ai: [g]

t I Ai: [g]
t ≥ δgrp .

The tuning parameters λgrp and δmisspec are chosen via cross-validation. The rationale

behind this thresholding strategy is discussed in Section 4.

3. Estimation Consistency of NGC estimates

In this section we establish the norm consistency of regular group NGC estimates. The

regular NGC estimates in (3) are obtained by solving p separate group lasso programs with

a common design matrix Xn × p(T − 1) = [X1 :⋯:XT − 1]. This design matrix has p̄ = (T − 1)p
columns which can be partitioned into Ḡ = (T − 1)G groups {G1, …, GḠ}. We denote the

sample Gram matrix by C = X′X ∕ n. For the ith optimization problem, these Ḡ = (T − 1)G
groups are penalized by λ(t − 1)G + g ≔ λ wi, gt , 1 ≤ t ≤ T − 1, 1 ≤ g ≤ G, with the choice of

weights wi, gt  described in Section 2. Following Lounici et al. (2011) one can establish a non-

asymptotic upper bound on the ℓ2 estimation error of the NGC estimates At under certain

restricted eigenvalue (RE) assumptions. These assumptions are common in the literature

of high-dimensional regression (Lounici et al., 2011; Bickel et al., 2009; van de Geer and

Bühlmann, 2009) and are known to be sufficient to guarantee consistent estimation of the

regression coefficients even when the design matrix is singular. Of main interest, however, is

to investigate the validity of these assumptions in the context of NGC models. This issue is

addressed in Proposition 3.2.

For L > 0, we say that a Restricted Eigenvalue (RE) assumption RE(s, L) is satisfied if

there exists a positive number ϕRE = ϕRE(s) > 0 such that
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min
J ⊂ ℕG‒, ∣ J ∣ ≤ s

Δ ∈ ℝp‒ ∖ {0}

‖XΔ‖
n‖Δ[J]‖

: ∑
g ∈ Jc

λg‖Δ[g]‖ ≤ L ∑
g ∈ J

λg‖Δ[g]‖ ≥ ϕRE . (5)

The following proposition provides a non-asymptotic upper bound on the ℓ2-estimation error

of the group NGC estimates under RE assumptions. The proof follows along the lines of

Lounici et al. (2011) and is delegated to Appendix C.

Proposition 3.1 Consider a regular NGC estimation problem (4) with smax = max1≤i≤p si and

s = ∑i = 1
p si. Suppose λ in (3) is chosen large enough so that for some α > 0,

λg ≥ 2σ
n C[g][g] kg + π

2 α log Ḡ for every g ∈ ℕḠ, (6)

Also assume that the common design matrix X = [X1 :⋯ :XT − 1] in the p regression

problems (4) satisfy RE(2smax, 3). Then, with probability at least 1 − 2pḠ1 − α,

A1:T − 1 − A1:T − 1
F ≤ 4 10

ϕRE
2 (2smax)

λmax
2

λmin
s . (7)

Remark. Consider a high-dimensional asymptotic regime where Ḡ ≍ nB for some B > 0,

kmax/kmin = O(1), s = O(na1) and kmax = O(na2) with 0 < a1, a2 < a1 + a2 < 1 so that the

total number of non-zero effects is o(n). If {‖C[g][g]‖, g ∈ ℕḠ} are bounded above (often

accomplished by standardizing the data) and ϕRE
2 (2smax) is bounded away from zero (see

Proposition 3.2 for more details), then the NGC estimates are norm consistent for any choice

of α > 2 + a2/B.

Note that group lasso achieves faster convergence rate (in terms of estimation and prediction

error) than lasso if the groups are appropriately specified. For example, if all the groups

are of equal size k and λg = λ for all g, then group lasso can achieve an ℓ2 estimation

error of order O s( k + log Ḡ) ∕ n . In contrast, lasso’s error is known to be of the order

O ‖A1:d‖0 log p̄ ∕ n , which establishes that group lasso has a lower error bound if s ⪡

∥A1:d∥0. On the other hand, lasso will have a lower error bound if s ≍ ∥A1:d∥0, i.e., if the

groups are highly misspecified.

Validity of RE assumption in Group NGC problems.

In view of Theorem 3.1, it is important to understand how stringent the RE condition

is in the context of NGC problems. It is also important to find a lower bound on the

RE coefficient ϕRE, as it affects the convergence rate of the NGC estimates. For the panel-

VAR setting, we can rigorously establish that the RE condition holds with overwhelming

probability, as long as n, p grow at the same rate required for ℓ2-consistency.
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The following proposition achieves this objective in two steps. Note that each row of the

design matrix X (common across the p regressions) is independently distributed as N(0,

Σ) where Σ is the variance-covariance matrix of the (T − 1)p-dimensional random variable

((X1)′, … , (XT−1)′)′. First, we exploit the spectral representation of the stationary VAR

process to provide a lower bound on the minimum eigenvalue of Σ. In the next step, we

establish a suitable deviation bound on X − Σ to prove that X satisfies RE condition with

high probability for sufficiently large n.

Proposition 3.2 (a) Suppose the VAR(d) model of (2) is stable, stationary. Let Σ be the
variance-covariance matrix of the (T−1)p-dimensional random variable ((X1)′, … , (XT−1)′)
′. Then the minimum eigenvalue of Σ satisfies

Λmin(Σ) ≥ σ2 max
θ ∈ [ − π, π]

‖A(e−iθ)‖
−2

≥ σ2 1 + ∑
t = 1

d
‖At‖

−2
≥ σ2 1 + 1

2(vin + vout)
−2

,

where A(z) ≔ I − A1z − A2z2 − … − Adzd is the reverse characteristic polynomial of the

VAR(d) process, and vin, vout are the maximum incoming and outgoing effects at a node,
cumulated across different lags

vin = ∑
t = 1

d
max

1 ≤ i ≤ p
∑

j = 1

p
∣ Aijt ∣ , vout = ∑

t = 1

d
max

1 ≤ j ≤ p
∑

j = 1

p
∣ Aijt ∣ .

(b) In addition, suppose the replicates from different panels are i.i.d. Then, for any s > 0,

there exist universal positive constants ci such that if the sample size n satisfies

n >
Λmax2 (Σ)

Λmin
2 (Σ)

(2 + Lλmax ∕ λmin)4 c0s(kmax + c1 log(eḠ ∕ 2s)),

then X satisfies RE(s, L) with ϕRE
2 ≥ Λmin(Σ) ∕ 2 with probability at least 1 − c2 exp(−c3 n).

Remark. Proposition 3.2 has two interesting consequences. First, it provides a lower bound

on the RE constant ϕRE which is independent of T. So if the high dimensionality in the

Granger causal network arises only from the time domain and not the cross-section (T →
∞, p, G fixed), the stationarity of the VAR process guarantees that the rate of convergence

depends only on the true order (d), and not T. Second, this result shows that the NGC

estimates are consistent even if the node capacities vin and vout grow with n, p at an

appropriate rate.

4. Variable Selection Consistency of NGC estimates

In view of (4), to study the variable selection properties of NGC estimates it suffices to

analyze the variable selection properties of p generic group lasso estimates with a common

design matrix.
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The problem of group sparsity selection has been thoroughly investigated in the literature

(Wei and Huang, 2010; Lounici et al., 2011). The issue of selection and sign consistency

within a group, however, is still unclear. Since group lasso does not impose sparsity within

a group, all the group members are selected together (Huang et al., 2009) and it is not

clear which ones are recovered with correct signs. This also leads to inconsistent variable

selection if a group is misspecified, i.e., not all the members within a group have non-zero

effect. Several alternate penalized regression procedures have been proposed to overcome

this shortcoming (Breheny and Huang, 2009; Huang et al., 2009). The main idea behind

these procedures is to combine ℓ2 and ℓ1 norms in the penalty to encourage sparsity at both

group and variable level. These estimators involve nonconvex optimization problems and are

computationally expensive. Also their theoretical properties in a high dimensional regime

are not well studied.

We take a different approach to deal with the issue of group misspecification. Although the

group lasso penalty does not perform exact variable selection within groups, it performs

regularization and shrinks the individual coefficients. We utilize this regularization to detect

misspecification within a group. To this end, we formulate a generalized notion of sign

consistency, henceforth referred as “direction consistency”, that provides insight into the

properties of group lasso estimates within a single group. Subsequently, these properties are

used to develop a simple, easy to compute, thresholded variant of group lasso which, in

addition to group selection, achieves variable selection and sign consistency within groups.

We consider a generic group lasso regression problem of the linear model y = Xβ0 + ϵ with

p variables partitioned into G non-overlapping groups {G1, …, GG} of size kg, g = 1, … , G.

Without loss of generality, we assume β[g]
0 ≠ 0 for g ∈ S = {1, 2, … , s} and β[g]

0 = 0 for all g

∉ S and consider the following group lasso estimate of β0:

β = argmin
β ∈ ℝp

1
2n‖Y − Xβ‖2 + ∑

g = 1

G
λg‖β[g]‖, (8)

β0

p × 1
= [ β[1]

0 , …, β[s]
0

k1 + … + ks = q
, 0, …, 0

p − q
] = [β(1)

0 : β(2)
0 ],

(9)

X
n × p

= [X(1)
n × q

: X(2)
n × (p − q)

], C = 1
nX′X =

C11 C12
C21 C22

. (10)

Direction Consistency.

For an m-dimensional vector τ ∈ ℝm ∖ {0} define its direction vector D(τ) = τ/∥τ∥ , D(0) = 0.

In the context of a generic group lasso regression (10), for a group g ∈ S of size kg, D(β[g]
0 ))

indicates the direction of influence of β[g]
0  at a group level in the sense that it reflects the
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relative importance of the influential members within the group. Note that for kg = 1 the

function D(·) simplifies to the usual sgn(·) function.

Definition.

An estimate β  of a generic group lasso problem (8) is direction consistent at a rate δn, if

there exists a sequence of positive real numbers δn → 0 such that

ℙ ‖D(β [g]) − D(β[g]
0 )‖ < δn, ∀g ∈ S, β [g] = 0, ∀g ∉ S 1 as n, p ∞ . (11)

Now suppose β  is a direction consistent estimator. Consider the set

Sg
n ≔ {j ∈ Gg : ∣ β j

0 ∣ ∕ ‖β [g]
0 ‖ > δn}. Sg

n can be viewed as a collection of influential group

members within a group Gg, which are “detectable” with a sample of size n. Then, it readily

follows from the definition that

ℙ(sgn(β j) = sgn(βj), ∀j ∈ Sg
n, ∀g ∈ {1, …, s}) 1 as n, p ∞ . (12)

The latter observation connects the precision of group lasso estimates to the accuracy of a
priori available grouping information. In particular, if the pre-specified grouping structure

is correct, i.e., all the members within a group have non-zero effects, then for a sufficiently

large sample size we have Sg
n = Gg for all g ∈ S. Hence, if the group lasso estimate is

direction consistent, it will correctly estimate the sign of all the variables in the support.

On the other hand, in case of a misspecified a priori grouping structure (numerous zero

coordinates in βg for g ∈ S), group lasso will correctly estimate only the signs of the

influential group members. This argument on zero vs. non-zero effects can be generalized to

strong vs. weak effects, as well.

Example. We demonstrate the property of direction consistency using a small example.

Consider a linear model with 8 predictors

y = 0.5x1 − 3x2 + 3x3 + x4 − 2x5 + 3x8 + e, e ∼ N(0, 1) .

The coefficient vector β0 is partitioned into four groups of size 2, viz., (0.5, −3), (3, 1),

(−2, 0) and (0, 3). The last two groups are misspecified. We generated n = 25 samples from

this model and ran group lasso regression with the above group structure. Figure 2 shows

the true coefficient vectors (solid) and their estimates (dashed) from five iterations of the

above exercise. Note that even though the ℓ2 errors between β[g]
0  and β [g] vary largely across

the four groups, the distance between their projections on the unit circle, D(β[g]
0 ) − D(β [g]) ,

are comparatively stable across groups. In fact, Theorem 4.1 shows that under certain

irrepresentable conditions (IC) on the design matrix, it is possible to find a uniform (over

all g ∈ S) upper bound δn on the ℓ2 gap of these direction vectors. This motivates a natural

thresholding strategy to correct for the misspecification in groups (cf. Proposition 4.2). Even

though a group β[g]
0  is misspecified (i.e., lies on a coordinate axis), direction consistency

Basu et al. Page 10

J Mach Learn Res. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensures, with high probability, that the corresponding coordinate in D(β [g]) will be smaller

than a threshold δn which is common across all groups in the support.

Group Irrepresentable Conditions (IC).

Next, we define the IC required for direction consistency of group lasso estimates.

Irrepresentable conditions are common in the literature of high-dimensional regression

problems (Zhao and Yu, 2006; van de Geer and Bühlmann, 2009) and are shown to be

sufficient (and essentially necessary) for selection consistency of the lasso estimates. Further

these conditions are known to be satisfied with high probability, if the population analogue

of the Gram matrix belongs to the Toeplitz family (Zhao and Yu, 2006; Wainwright, 2009).

In NGC estimation the population analogue of the Gram matrix Σ = Var(X1:(T−1)) is block

Toeplitz, so the irrepresentable assumptions are natural candidates for studying selection

consistency of the estimates. Consider the notations of (8) and (10). Define K = diag (λ1Ik1,

λ2Ik2, … , λsIks).

Uniform Irrepresentable Condition (IC) is satisfied if there exists 0 < η < 1 such that for

all τ ∈ ℝq with ‖τ‖2, ∞ = max
1 ≤ g ≤ s

‖τ[g]‖2 ≤ 1,

1
λg

C21(C11)−1Kτ [g] < 1 − η, ∀g ∉ S = {1, …, s} . (13)

Note that the definition reverts to the usual IC for lasso when all groups correspond are

singletons.

The IC is more stringent than the RE condition and is rarely met if the underlying model

is not sparse. It can be shown that a slightly weaker version of this condition is necessary

for direction consistency. We refer the readers to Appendix D for further discussion on the

different irrepresentable assumptions and their properties. Numerical evidence suggests that

the group IC tends to be less stringent than the IC required for the selection consistency of

lasso. We illustrate this using three small simulated examples.

Simulation 1. We constructed group sparse NGC models with T = 5, p = 21, G = 7, kg = 3

and different levels of network densities, where the network edges were selected at random

and scaled so that ∥A1∥ = 0.1. For each of these models, we generated 100 samples of size

n = 150 and calculated the proportions of times the two types of irrepresentable conditions

were met. The results are displayed in Figure 3a.

Simulation 2. We selected a VAR(1) model from the above class and generated samples

of size n = 20, 50, … , 250. Figure 3b displays the proportions of times (based on 100

simulations) the two ICs were met.

Simulation 3. We generated n = 200 samples from the VAR(1) model of example 2 for T =

2, 3, 4, 5, 10, … , 40. Figure 3c displays the proportions of times (based on 100 simulations)

the two ICs were met.
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Selection consistency for generic group lasso estimates.

For simplicity, we discuss the selection consistency properties of a generic group lasso

regression problem with a common tuning parameter across groups, i.e., λg = λ for every

g ∈ ℕG. Similar results can be obtained for more general choices of the tuning parameters.

Theorem 4.1 Assume that the group uniform IC holds with 1 − η for some η > 0. Then, for
any choice of α > 0,

λ ≥ max
g ∉ S

1
η

σ
n (C22)[g][g] kg + π

2 α log G and

δn ≥ max
g ∈ S

1
β[g]

0 λ s‖(C11)−1‖ + σ
n (C11)[g][g]

−1 kg + π
2 α log G ,

with probability greater than 1 − 4G1−α, there exists a solution β  satisfying

1. β [g] = 0 for all g ∉ S,

2. β [g] − β[g]
0 < δn β[g]

0 , and hence D(β [g]) − D(β[g]
0 ) < 2δn, for all g ∈ S. If δn < 1, then

β [g] ≠ 0 for all g ∈ S.

Remark. The tuning parameter λ can be chosen of the same order as required for ℓ2
consistency to achieve selection consistency within groups in the sense of (12). Further,

with the above choice of λ, δn can be chosen of the order of O( s( kmax + log G) ∕ n).
Thus, group lasso correctly identifies the group sparsity pattern and is direction consistent if

s( kmax + log G) ∕ n 0, the same scaling required for ℓ2 consistency.

Thresholding in Group NGC estimators.

As described in Section 2, regular group NGC estimates can be thresholded both at the

group and coordinate levels. The first level of thresholding is motivated by the fact that

lasso can select too many false positives [cf. van de Geer et al. (2011), Zhou (2010) and

the references therein]. The second level of thresholding employs the direction consistency

of regular group NGC estimates to perform within group variable selection with high

probability. The following proposition demonstrates the benefit of these two types of

thresholding. The second result is an immediate corollary of Theorem 4.1. Proof of the

first result (thresholding at group level) requires some additional notations and is delegated

to Appendix E.

Theorem 4.2 Consider a generic group lasso regression problem (8) with common tuning
parameter λg = λ.

(i) Assume the RE(s, 3) condition of (5) holds with a constant ϕRE and

define β [g]
tℎgrp = β [g]1‖β [g]‖ > 4λ. If S = {g ∈ ℕG :β [g]

tℎgrp ≠ 0}, then ∣ S ∖ S ∣ ≤ s
ϕRE

2 ∕ 12
, with

probability at least 1 − 2G1−α.
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(ii) Assume that uniform IC holds with 1 − η for some η > 0. Choose λ and δn as in
Theorem 4.1 and define

β j
tℎgrp = β j1{ ∣ β j ∣ ∕ ‖β [g]‖ > 2 δn} for all j ∈ Gg .

Then sgn(βj
0) = sgn(β j

tℎgrp) ∀ j ∈ ℕp with probability at least 1 − 4G1−α, if

min
j ∈ supp(β0)

∣ βj
0 ∣ > 2δn‖β[g]

0 ‖ for all j ∈ Gg, i.e., if the effect of every non-zero member in

a group is “visible” relative to the total effect from the group.

5. Performance Evaluation

We evaluate the performances of regular, adaptive and thresholded variants of the group

NGC estimators through an extensive simulation study, and compare the results to those

obtained from lasso estimates. The R package grpreg (Breheny and Huang, 2009) was used

to obtain the group lasso estimates. The settings considered are:

(a) Balanced groups of equal size: i.i.d samples of size n = 60, 110, 160 are generated from

lag-2 (d = 2) VAR models on T = 5 time points, comprising of p = 60, 120, 200 nodes

partitioned into groups of equal size in the range 3-5.

(b) Unbalanced groups: We retain the same setting as before, however the corresponding

node set is partitioned into one larger group of size 10 and many groups of size 5.

(c) Misspecified balanced groups: i.i.d samples of size n = 60, 110, 160 are generated

from lag-2 (d = 2) VAR models on T = 10 time points, comprising of p = 60, 120 nodes

partitioned into groups of size 6. Further, for each group there is a 30% misspecification

rate, namely that for every parent group of a downstream node, 30% of the group members

do not exert any effect on it.

Using a 19 : 1 sample-splitting, the tuning parameter λ is chosen from an interval of

the form [C1λe, C2λe], C1, C2 > 0, where λe = 2 log p ∕ n for lasso and 2 log G ∕ n for

group lasso. The thresholding parameters are selected as δgrp = 0.7λσ at the group level

and δmisspec = n−0.2 within groups. These parameters are chosen by conducting a 20-fold

cross-validation on independent tuning data sets of same sizes, using intervals of the form

[C3λ, C4λ] for δgrp and {n−δ, δ ∈ [0, 1]} for δmisspec. Finally, within group thresholding is

applied only when the group structure is misspecified.

The following performance metrics were used for comparison purposes: (i) Precision =

TP/(TP + FP), (ii) Recall = TP/(TP + FN) and (iii) Matthew’s Correlation coefficient (MCC)

defined as

(TP × TN) − (FP × FN)
((TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN))1 ∕ 2 ,
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where TP, TN, FP and FN correspond to true positives, true negatives, false positives and

false negatives in the estimated network, respectively. The average and standard deviations

(over 100 replicates) of the performance metrics are presented for each setup.

The results for the balanced settings are given in Table 1. The Recall for p = 60 shows that

even for a network with 60 × (5 − 1) = 240 nodes and ∣E∣ = 351 true edges, the group

NGC estimators recover about 71% of the true edges with a sample size as low as n =

60, while lasso based NGC estimates recover only 31% of the true edges. The three group

NGC estimates have comparable performances in all the cases. However thresholded lasso

shows slightly higher precision than the other group NGC variants for smaller sample sizes

(e.g., n = 60, p = 200). The results for p = 60, n = 110 also display that lower precision of

lasso is caused partially by its inability to estimate the order of the VAR model correctly,

as measured by ERR LAG=Number of falsely connected edges from lags beyond the true

order of the VAR model divided by the number of edges in the network (∣E∣). This finding

is nicely illustrated in Figure 4 and Table 1. The group penalty encourages edges from the

nodes of the same group to be picked up together. Since the nodes of the same group are also

from the same time lag, the group variants have substantially lower ERR LAG. For example,

average ERR LAG of lasso for p = 200, n = 160 is 19.79% while the average ERR LAGs for

the group lasso variants are in the range 3.06% – 4.21%.

The results for the unbalanced networks are given in Table 2. As in the balanced group

setup, in almost all the simulation settings the group NGC variants outperform the lasso

estimates with respect to all three performance metrics. However the performances of the

different variants of group NGC are comparable and tend to have higher standard deviations

than the lasso estimates. Also the average ERR LAGs for the group NGC variants are

substantially lower than the average ERR LAG for lasso demonstrating the advantage of

group penalty. Although the conclusions regarding the comparisons of lasso and group NGC

estimates remain unchanged it is evident that the performances of all the estimators are

affected by the presence of one large group, skewing the uniform nature of the network.

For example the MCC measures of group NGC estimates in a balanced network with p =

60 and ∣E∣ = 351 vary around 97 – 98% which lowers to 89% – 90% when the groups are

unbalanced.

The results for misspecified groups are given in Table 3. Note that for higher sample size

n, the MCC of lasso and regular group lasso are comparable. However, the thresholded

version of group lasso achieves significantly higher MCC than the rest. This demonstrates

the advantage of using the directional consistency of group lasso estimators to perform

within group variable selection. We would like to mention here that a careful choice of the

thresholding parameters δgrp and δmisspec via cross-validation improves the performance of

thresholded group lasso; however, we do not pursue these methods here as they require grid

search over many tuning parameters or an efficient estimator of the degree of freedom of

group lasso.

In summary, the results clearly show that all variants of group lasso NGC outperform the

lasso-based ones, whenever the grouping structure of the variables is known and correctly

specified. Further, their performance depends on the composition of group sizes. On the
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other hand, if the a priori known group structure is moderately misspecified lasso estimates

produce comparable results to regular and adaptive group NGC ones, while thresholded

group estimates outperform all other methods, as expected.

6. Application

Example: T-cell activation.

Estimation of gene regulatory networks from expression data is a fundamental problem in

functional genomics (Friedman, 2004). Time course data coupled with NGC models are

informationally rich enough for the task at hand. The data for this application come from

Rangel et al. (2004), where expression patterns of genes involved in T-cell activation were

studied with the goal of discovering regulatory mechanisms that govern them in response to

external stimuli. Activated T-cells are involved in regulation of effector cells (e.g., B-cells)

and play a central role in mediating immune response. The available data comprising of n =

44 samples of p = 58 genes, measure the cells response at 10 time points, t = 0, 2, 4, 6, 8,

18, 24, 32, 48, 72 hours after their stimulation with a T-cell receptor independent activation

mechanism. We concentrate on data from the first 5 time points, that correspond to early

response mechanisms in the cells.

Genes are often grouped based on their function and activity patterns into biological

pathways. Thus, the knowledge of gene functions and their membership in biological

pathways can be used as inherent grouping structures in the proposed group lasso estimates

of NGC. Towards this, we used available biological knowledge to define groups of genes

based on their biological function. Reliable information for biological functions were found

from the literature for 38 genes, which were retained for further analysis. These 38 genes

were grouped into 13 groups with the number of genes in different groups ranging from 1 to

5.

Figure 5 shows the estimated networks based on lasso and thresholded group lasso

estimates, where for ease of representation the nodes of the network correspond to groups

of genes. In this case, estimates from variants of group NGC estimator were all similar,

and included a number of known regulatory mechanisms in T-cell activation, not present

in the regular lasso estimate. For instance, Waterman et al. (1990) suggest that TCF plays

a significant role in activation of T-cells, which may describe the dominant role of this

group of genes in the activation mechanism. On the other hand, Kim et al. (2005) suggest

that activated T-cells exhibit high levels of osteoclast-associated receptor activity which may

attribute the large number of associations between member of osteoclast differentiation and

other groups. Finally, the estimated networks based on variants of group lasso estimator also

offer improved estimation accuracy in terms of mean squared error (MSE) despite having

having comparable complexities to their regular lasso counterpart (Table 4), which further

confirms the findings of other numerical studies in that paper.

Example: Banking balance sheets application.

In this application, we examine the structure of the balance sheets in terms of assets

and liabilities of the n = 50 largest (in terms of total balance sheet size) US banking

Basu et al. Page 15

J Mach Learn Res. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corporations. The data cover 9 quarters (September 2009-September 2011) and were directly

obtained from the Federal Deposit Insurance Corporation (FDIC) database (available at

www.fdic.gov). The p = 21 variables correspond to different assets (US and foreign

government debt securities, equities, loans (commercial, mortgages), leases, etc.) and

liabilities (domestic and foreign deposits from households and businesses, deposits from

the Federal Reserve Board, deposits of other financial institutions, non-interest bearing

liabilities, etc.) We have organized them into four categories: two for the assets (loans

and securities) and two for the liabilities (Balances Due and Deposits, based on a $250K

reporting FDIC threshold). Amongst the 50 banks examined, one discerns large integrated

ones with significant retail, commercial and investment activities (e.g., Citibank, JP Morgan,

Bank of America, Wells Fargo), banks primarily focused on investment business (e.g.,

Goldman Sachs, Morgan Stanley, American Express, E-Trade, Charles Schwab), regional

banks (e.g., Banco Popular de Puerto Rico, Comerica Bank, Bank of the West).

The raw data are reported in thousands of dollars. The few missing values were imputed

using a nearest neighbor imputation method with k = 5, by clustering them according

to their total assets in the most recent quarter in the data collection period (September

2011) and subsequently every missing observation for a particular bank was imputed by the

median observation on its five nearest neighbors. The data were log-transformed to reduce

nonstationarity issues. The data set was restructured as a panel with p = 21 variables and n =

50 replicates observed over T = 9 time points. Every column of replicates was scaled to have

unit variance.

We applied the proposed variants of NGC estimates on the first T = 6 time points (Sep 2009

- Dec 2010) of the above panel data set. The parameters λ and δgrp were chosen using a

19 : 1 sample-splitting method and the misspecification threshold δmisspec was set to zero as

the grouping structure was reliable. We calculated the MSE of the fitted model in predicting

the outcomes in the four quarters (December 2010 - September 2011). The Predicted MSE

(MSE for Dec 2010) are listed in Table 5. The estimated network structures are shown in

Figure 6.

It can be seen that the lasso estimates recover a very simple temporal structure amongst

the variables; namely, that past values (in this case lag-1) influence present ones. Given the

structure of the balance sheet of large banks, this is an anticipated result, since it can not be

radically altered over a short time period due to business relationships and past commitments

to customers of the bank. However, the (adaptive) group lasso estimates reveal a richer and

more nuanced structure. Examining the fitted values of the adjacency matrices At, we notice

that the dominant effects remain those discovered by the lasso estimates. However, fairly

strong effects are also estimated within each group, but also between the groups of the assets

(loans and securities) on the balance sheet. This suggests rebalancing of the balance sheet

for risk management purposes between relatively low risk securities and potentially more

risky loans. Given the period covered by the data (post financial crisis starting in September

2009) when credit risk management became of paramount importance, the analysis picks

up interesting patterns. On the other hand, significant fewer associations are discovered

between the liabilities side of the balance sheet. Finally, there exist relationships between

deposits and securities such as US Treasuries and other domestic ones (primarily municipal

Basu et al. Page 16

J Mach Learn Res. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fdic.gov/


bonds); the latter indicates that an effort on behalf of the banks to manage the credit risk of

their balance sheets, namely allocating to low risk assets as opposed to more risky loans.

It is also worth noting that the group lasso model exhibits superior predictive performance

over the lasso estimates, even 4 quarters into the future. Finally, in this case the thresholded

estimates did not provide any additional benefits over the regular and adaptive variants,

given that the specification of the groups was based on accounting principles and hence

correctly structured.

7. Discussion

In this paper, the problem of estimating Network Granger Causal (NGC) models with

inherent grouping structure is studied when replicates are available. Norm, and both group

level and within group variable selection consistency are established under fairly mild

assumptions on the structure of the underlying time series. To achieve the second objective

the novel concept of direction consistency is introduced.

The type of NGC models discussed in this study have wide applicability in different areas,

including genomics and economics. However, in many contexts the availability of replicates

at each time point is not feasible (e.g., in rate of returns for stocks or other macroeconomic

variables), while grouping structure is still present (e.g., grouping of stocks according to

industry sector). Hence, it is of interest to study the behavior of group lasso estimates in

such a setting and address the technical challenges emanating from such a pure time series

(dependent) data structure.
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Appendix

Appendix A. Auxiliary Lemmas

Lemma A.1 (Characterization of the Group lasso estimate) A vector β ∈ ℝp is a solution
to the convex optimization problem

argmin
β ∈ ℝp

1
2n ‖Y − Xβ‖2 + ∑

g = 1

G
λg‖β[g]‖ (14)

if and only if β  satisfies, for some τ ∈ ℝp with max1≤g≤G ∥τ[g]∥ ≤ 1,
1
n X′(Y − Xβ ) [g] = λgτ[g]∀g. Further, τ[g] = D β [g]  whenever β [g] ≠ 0.

Proof Follows directly from the KKT conditions for the optimization problem (14). ■
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Lemma A.2 (Concentration bound for multivariate Gaussian) Let Zk×1 ~ N(0, Σ). Then,
for any t > 0, the following inequalities hold:

ℙ ( ∣ ‖Z‖ − E‖Z‖ ∣ > t) ≤ 2 exp − 2t2

π2‖Σ‖
, E ‖Z‖ ≤ k ‖Σ‖ .

Proof The first inequality can be found in Ledoux and Talagrand (1991) (equation (3.2). To

establish the second inequality note that,

E‖Z‖ ≤ E‖Z‖2 = E [tr (ZZ′)] = tr (Σ) ≤ k ‖Σ‖ .

■

Lemma A.3 Let β, β ∈ ℝm {0}. Let u = β − β and r = D(β ) − D(β). Then ∥r∥ < 2δ whenever
‖u‖ < δ‖β‖.

Proof It follows from ‖u‖ < δ‖β‖ that

(1 − δ)‖β‖ < ‖β‖ − ‖u‖ ≤ ‖β‖ ≤ ‖u‖ + ‖β‖ < (1 + δ)‖β‖,

which implies that ‖β‖ − ‖β‖ < δ‖β‖. Now,

‖β‖ ‖β‖‖r‖ = β‖β‖ + (u − β )‖β‖ ≤ β ‖β‖ − ‖β‖ + ‖β‖ u < ‖β‖ ‖β‖(δ + δ),

since ‖β‖ − ‖β‖ < δ‖β‖ and ‖u‖ < δ‖β‖. ■

Lemma A.4 Let G1, … , GG be any partition of {1, …, p} into G non-

overlapping groups and λ1, … , λG be positive real numbers. Define the cone sets

C(J , L) = {v ∈ ℝp: ∑g ∉ J λg‖v[g]‖ ≤ L∑g ∈ J λg‖v[g]‖} for any subset of groups J ⊆ ℕG. Also

define the set of group s-sparse vectors D(s) ≔ {v ∈ ℝp:‖v‖ ≤ 1}, supp(v) ⊆ GJ for some

J ⊆ ℕG, ∣J∣ ≤ s}. Then

⋃
J ⊆ ℕG, ∣ J ∣ ≤ s

C(J , L) ∩ Sp − 1 ⊆ (2 + L′)cl{conv{D(s)}},
(15)

where L′ = Lλmax/λmin, Sp − 1 = {v ∈ ℝp:‖v‖ = 1} is the ball of unit norm vectors in ℝp and
cl{.}, conv{.} respectively denote the closure and convex hull of a set.

Proof Note that for any J ⊆ ℕG, ∣J∣ ≤ s, and v ∈ C(J , L) ∩ Sp − 1, we have

∑
g ∉ J

‖v[g]‖ ≤ L
λmax
λmin ∑

g ∈ J
‖v[g]‖,

which implies
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‖v‖2, 1 ≤ (L′ + 1) ∑
g ∈ J

‖v[g]‖ ≤ (L′ + 1) s‖v[J]‖ ≤ (L′ + 1) s .

Hence the union of the cone sets on the left hand side of (15) is a subset of

A ≔ {v ∈ ℝp:‖v‖ ≤ 1, ‖v‖2, 1 ≤ (L′ + 1) s}.

We will show that the set A is a subset of B ≔ (2 + L′)cl{conv{D(s)}}, the closed convex hull

on the right hand side of (15). Since both sets A and B are closed convex, it is enough to

show that the support function of A is dominated by the support function of B.

The support function of A is given by ϕA(z) = supθ∈A〈θ, z〉. For any z ∈ ℝp, let S ⊆ {1, … ,

G} be a subset of top s groups in terms of the ℓ2 norm of z[g]. Thus, ∥z[Sc]∥2, ∞ ≤ ∥z[g]∥ for all

g ∈ S. This implies ‖z[Sc]‖2, ∞ ≤ (1 ∕ s)‖z[S]‖2, 1 ≤ (1 ∕ s)‖z[S]‖. So, we have

ϕA(z) = sup
θ ∈ A

〈θ, z〉 ≤ sup
‖θ[S]‖ ≤ 1

〈θ[S], z[S]〉 + sup
‖θ[Sc]‖2, 1 ≤ s(L′ + 1)

〈θ[Sc],

z[Sc]〉
(16)

≤ ‖z[S]‖ + (L′ + 1) s‖z[Sc]‖2, ∞ ≤ (L′ + 2)‖z[S]‖ . (17)

On the other hand, support function of B ≔ (L′ + 2)cl{conv{D(s)}} is given by

ϕB(z) = sup
θ ∈ B

〈θ, z〉 = (L′ + 2) max
∣ U ∣ = s, U ⊆ ℕG

sup
‖θ[U]‖ ≤ 1

〈θ[U], z[U]〉 = (L′ + 2)‖z[S]‖ .

This concludes the proof. ■

Lemma A.5 Consider a matrix Xn×p with rows independently distributed as N(0, Σ),

Λmin(Σ) > 0. Let G1, … , GG be any partition of {1, … , p} into G non-overlapping groups

of size k1, … , kg, respectively. Let C = X′X/n denote the sample Gram matrix and D(s)
denote the set of group s-sparse vectors defined in Lemma A.4. Then, for any integer s ≥ 1

and any η > 0, we have

ℙ sup
v ∈ cl{conv{D(s)}}

∣ v′(C − Σ)v ∣ > 6η‖Σ‖

≤ c0 exp [ − n min{η, η2} + c1s(kmax + c2 log (eG ∕ 2s))]
(18)

for some universal positive constants Ci.

Proof We consider a fixed vector v ∈ ℝp with ∥v∥ ≤ 1, the support of which can be covered

by a set J of at most s groups, i.e., supp(v) ⊆ GJ, J ⊆ ℕG, ∣J∣ ≤ s. Define Y = Xv. Then each

coordinate of Y is independently distributed as N(0, σy2), where σy2 = v′Σv ≤ ‖Σ‖.
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Then, for any η > 0, Hanson-Wright inequality of Rudelson and Vershynin (2013) ensures

ℙ v′(C − Σ)v > η‖Σ‖ ≤ ℙ 1
n ∣ Y ′Y − EY ′Y ∣ > ησy2 ≤ 2 exp −cn min{η, η2} .

Next, we extend this deviation bound on all vectors v in the sparse set

D(2s) = {v ∈ ℝp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ ℕG, ∣ J ∣ ≤ 2s} . (19)

For a given J ⊆ ℕG, ∣J∣ = 2s, we define DJ = {v ∈ ℝp:‖v‖ ≤ 1, supp(v) ⊆ GJ} and note that

D(2s) = ∪ ∣ J ∣ = 2s DJ. For an ϵ > 0 to be specified later, we construct an ϵ-net A of DJ.

Since ∑g∈J kg ≤, 2s kmax it is possible to construct such a net A with cardinality at most (1 +

2/ϵ)2skmax (Vershynin, 2009).

We want a tail inequality for M ≔ supv ∈ DJ ∣ v′Δv ∣, where Δ = C − Σ. Since A is an ϵ-cover

of DJ, for any v ∈ DJ, there exists v0 ∈ A such that w = v − v0 satisfies ∥w∥ ≤ ϵ. Then

∣ v′Δv ∣ = ∣ (w + v0)′Δ(w + v0) ∣ ≤ ∣ w′Δw ∣ + ∣ v0′ Δv0 ∣ + 2 ∣ v0′ Δw ∣ .

Taking supremum over all v ∈ DJ, and noting that w ∕ ϵ ∈ DJ, we obtain

M ≤ ϵ2 M + max
v0 ∈ A

∣ v0′Δv0 ∣ + sup
u, v ∈ DJ

2ϵ ∣ u′Δv ∣ . (20)

To upper bound the third term, note that (u + v) ∕ 2 ∈ DJ, and

2 ∣ u′Δv ∣ ≤ ∣ (u + v)′Δ(u + v) ∣ + ∣ u′Δu ∣ + ∣ v′Δv ∣ .

Hence

sup
u, v ∈ DJ

2ϵ ∣ u′Δv ∣ ≤ 4ϵM + ϵM + ϵM = 6ϵM .

From equation (20), we now have

M ≤ (1 − 6ϵ − ϵ2)−1 max
v0 ∈ A

∣ v0′ Δv0 ∣ .

Choosing ϵ > 0 small enough so that (1 − 6ϵ − ϵ2) > 1/2, we obtain

ℙ sup
v ∈ DJ

∣ v′Δv ∣ > 2η‖Σ‖ ≤ ℙ max
v0 ∈ A

∣ v0′ Δv0 ∣ > η‖Σ‖

≤ 2(1 + 2 ∕ ϵ)2s kmax exp[ − cn min{η, η2}] .
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Taking supremum over 
G
2s ≤ (eG ∕ 2s)2s choices of J, we get

ℙ sup
v ∈ D(2s)

∣ v′Δv ∣ > 2η‖Σ‖ ≤ 2 exp −cn min{η, η2} + 2s log eG
2s + 2s kmax log 1 + 2

ϵ .

In order to extend this deviation inequality to cl{conv{D(s)}}, we note that any v in the

convex hull of D(s) can be expressed as v = ∑i = 1
m αivi, where v1, … , vm are in D(s) and 0 ≤

αi ≤ 1, ∑ αi = 1. Then

∣ v′Δv ∣ ≤ ∑
i = 1

m
∑

j = 1

m
αiαj ∣ vi′Δvj ∣ .

Also, for every i, j, (vi + vj) ∕ 2 ∈ D(2s), and

∣ vi′Δvj ∣ ≤ 1
2 ∣ (vi + vj)′Δ(vi + vj) ∣ + ∣ vi′Δvi ∣ + ∣ vj′Δvj ∣ .

Hence

sup
v ∈ conv{D(s)}

∣ v′Δv ∣ ≤ ∑
i = 1

m
∑

j = 1

m
αiαj

1
2[4 + 1 + 1] sup

v ∈ D(2s)
∣ v′Δv ∣ .

Together with the continuity of quadratic forms, this implies

sup
v ∈ cl{conv{D(s)}}

∣ v′Δv ∣ ≤ 3 sup
v ∈ D(2s)

∣ v′Δv ∣ .

The result then readily follows from the above deviation inequality. ■

Appendix B. Proof of Main Results

Proof [Proof of Proposition 3.2] (a) Note that Σ is a p(T − 1) × p(T − 1) block Toeplitz

matrix with (i,j)th block (Σij)1≤i,j≤(T−1) := Γ(i − j), where Γ(ℓ)p×p is the autocovariance

function of lag ℓ for the zero-mean VAR(d) process (2), defined as Γ(ℓ) = E[Xt(Xt − ℓ)′].

We consider the cross spectral density of the VAR(d) process (2)

f(θ) = 1
2π ∑

ℓ = − ∞

∞
Γ(ℓ)e−iℓθ, θ ∈ [ − π, π] . (21)

From standard results of spectral theory we know that Γ(ℓ) = ∫−π
π eiℓθf(θ)dθ, for every ℓ.
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We want to find a lower bound on the minimum eigenvalue of Σ, i.e., inf∥x∥=1 x′Σx.

Consider an arbitrary p(T − 1)-variate unit norm vector x, formed by stacking the p-tuples

x1, … , xT−1.

For every θ ∈ [−π, π], define G(θ) = ∑t = 1
T − 1xte−itθ and note that

∫−π
π

G∗(θ)G(θ) dθ = ∑
t = 1

T − 1
∑

τ = 1

T − 1
(xt)′(xτ)∫−π

π
ei(t − τ)θ dθ

= ∑
t = 1

T − 1
∑

τ = 1

T − 1
(xt)′(xτ) (2π 1{t = τ}) = 2π ∑

t = 1

T − 1
(xt)′(xt) = 2π ‖x‖2 = 2π .

Also let μ(θ) be the minimum eigenvalue of the Hermitian matrix f(θ). Following Parter

(1961) we have the result

x′Σx = ∑
t = 1

T − 1
∑

τ = 1

T − 1
(xt)′Γ(t − τ)xτ = ∑

t = 1

T − 1
∑

τ = 1

T − 1
(xt)′ ∫−π

π
ei(t − τ)θf(θ)dθ xτ

= ∫−π
π ∑

t = 1

T − 1
(xt)′eitθ f(θ) ∑

τ = 1

T − 1
xτe−iτθ dθ = ∫−π

π
G∗(θ) f(θ) G(θ) dθ

≥ ∫−π
π

μ(θ) (G∗(θ)G(θ)) dθ ≥ min
θ ∈ ( − π, π)

μ(θ) ∫−π
π

G∗(θ)G(θ) dθ = 2π min
θ ∈ ( − π, π)

μ(θ) .

So Λmin(Σ) ≥ 2π min
θ ∈ ( − π, π)

μ(θ). Since A(z) = I − A1z − A2z2 − … − Adzd is the (matrix-

valued) characteristic polynomial of the VAR(d) model (2), we have the following

representation of the spectral density (see Priestley, 1981, eqn 9.4.23):

f(θ) = 1
2πσ2(A(e−iθ))−1(A∗(e−iθ))−1 .

Thus, 2πμ(θ) = 2πΛmin(f(θ)) = 2π ∕ Λmax(f(θ)−1) ≥ σ2 ∕ A(e−iθ) 2. But

A(e−iθ) ≤ 1 + ∑t = 1
d At  for every θ ∈ [−π, π]. The result then follows at once from

the standard matrix norm inequality (see e.g., Golub and Van Loan, 1996, Cor 2.3.2)

‖At‖2 ≤ ‖At‖1‖At‖∞ ≤
‖At‖1 + ‖At‖∞

2 t = 1, …, d,

where

‖At‖1 = max
1 ≤ i ≤ p

∑
j = 1

p
∣ Aijt ∣ , ‖At‖∞ = max

1 ≤ j ≤ p
∑

i = 1

p
∣ Aijt ∣ .
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(b) The first part of the proposition ensures that Λmin(Σ) ≥ σ2[1 + 1
2 (vin + vout)]−2. If the

replicates available from different panels are i.i.d, each row of the design matrix is

independently and identically distributed according to a N(0, Σ) distribution.

To show that RE(s, L) of (5) holds with high probability for sufficiently large n, it is enough

to show that

min
v ∈ C(J , L) ∖ {0}

J ⊂ ℕḠ, ∣ J ∣ ≤ s

1
n

‖Xv‖2

‖v‖2 ≥ ϕRE
2

(22)

holds with high probability, where the cone sets C(J , L) are defined as

C(J , L) ≔ {v ∈ ℝp̄ : ∑
g ∉ J

λg‖v[g]‖ ≤ L ∑
g ∈ J

λg‖v[g]‖} (23)

for all J ⊂ ℕḠ with ∣J∣ ≤ s. Denote the ball of unit norm vectors in ℝp̄ by Sp̄ − 1. By scale

invariance of ∥Xv∥2/n∥v∥2, it is enough to show that with high probability

min
v ∈ Sp̄ − 1 ∩ C(J , L)
J ⊂ ℕḠ, ∣ J ∣ ≤ s

v′Cv ≥ ϕRE
2 ,

(24)

where C = X′X/n is the sample Gram matrix.

By part (a), we already know that v′Σv ≥ Λmin(Σ) > 0 for all v ∈ Sp̄ − 1. So we only need to

show that ∣v′ (C − Σ) v∣ ≤ Λmin(Σ)/2 with high probability, uniformly on the set

⋃
J ⊆ ℕḠ, ∣ J ∣ ≤ s

C(J , L) ∩ Sp̄ − 1 .
(25)

The proof relies on two key parts. In the first part, we use an extremal representation to show

that the above union of the cone sets sits within the closed convex hull of a suitably defined

set of group s-sparse vectors. In particular, it follows from Lemma A.4 that

⋃
J ⊆ ℕḠ, ∣ J ∣ ≤ s

C(J , L) ∩ Sp̄ − 1 ⊆ (L′ + 2)cl{conv{D(s)}},
(26)

where D(s) = {v ∈ ℝp̄:‖v‖ ≤ 1,, supp(v) ⊆ GJ for some J ⊆ ℕḠ, ∣J∣ ≤ s}, L′ = Lλmax/λmin and

cl{.}, conv{.} respectively denote the closure and convex hull of a set.

The next part of the proof is an upper bound on the tail probability of v′(C − Σ)v, uniformly

over all v ∈ cl{conv{D(s)}}, presented in Lemma A.5. In particular, setting η = Λmin(Σ)/

12∥Σ∥(2 + L′)2 in the above lemma yields

Basu et al. Page 23

J Mach Learn Res. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℙ sup
v ∈ (2 + L′)cl{conv{D(s)}}

∣ v′(C − Σ)v ∣ > Λmin(Σ) ∕ 2 ≤ c0 exp[ − c1 n] (27)

for the proposed choice of n. Together with the lower bound on Λmin(Σ) established in part

(a), this concludes the proof. ■

Proof [Proof of Theorem 4.1] Consider any solution βR ∈ ℝq of the restricted regression

argmin
β ∈ ℝq

1
2n Y − X(1)β 2

2 + λ ∑
g = 1

s
β[g] 2 (28)

and set β = βR′ :01 × (p − q) ′. We show that such an augmented vector β  satisfies the

statements of Theorem 4.1 with high probability.

Let u = β (1) − β(1)
0 = βR − β(1)

0 . In view of lemmas A.1 and A.3, it suffices to show that the

following events happen with probability at least 1 − 4 G1−α:

u[g] < δn β[g]
0 , for all g ∈ S, (29)

1
n X′ ϵ − X(1)u [g] ≤ λ, for all g ∉ S . (30)

Note that, in view of Lemma A.1, u = (C11)−1 1
nZ(1) − λτ  for some τ ∈ ℝq with ∥τ[g]∥ ≤ 1

for all g ∈ S, and Z = 1
nX′ϵ = Z(1)′ :Z(2)′ ′. Thus, for any g ∈ S,

ℙ u[g] > δn β[g]
0 ≤ ℙ (C11)−1 1

nZ(1) − λτ
[g]

> δn β[g]
0

≤ ℙ (C11)−1Z(1) [g] > n δn β [g]
0 − λ (C11)−1τ [g] .

Note that V = (C11)−1 Z(1) ~ N(0, σ2 (C11)−1). So V [g]~N(0, σ2C11
[g][g]), where Σ[g][g] :=

(Σ−1)[g][g]]. Also, by the second statement of lemma A.2 we have E‖V [g]‖ ≤ σ kg C11
[g][g] .

Therefore ℙ u[g] > δn β[g]
0  is bounded above by

ℙ V [g] − E V [g] > n δn β [g]
0 − λ (C11)−1 s − σ kg C11

[g][g]

≤ 2 exp − 2
π2σ2‖C11

[g][g]‖
nδn‖β[g]

0 ‖ − nλ‖C11
−1‖ s − σ kg‖C11

[g][g]‖
2

.

For the proposed choice of δn, this expression is bounded above by 2G−α. Next, for any g ∉
S, we get
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ℙ 1
n X′ ϵ − X(1)u [g] > λ

≤ ℙ Z(2) − C21C11
−1Z(1) [g] > nλ 1 − C21C11

−1τ [g] .

Defining W = Z(2) − C21C11
−1Z(1)~N(0, σ2(C22 − C21C11

−1C12)), the uniform irrepresentable

condition implies that the above probability is bounded above by ℙ(‖W [g]‖ > nλη).

It can then be seen that W [g] ∼ N(0, σ2C̄[g][g]), where C̄ = C22 − C21C11
−1C12 denotes the

Schur complement of C22. As before, lemma A.2 establishes that

ℙ W [g] > nλη ≤ ℙ W [g] − E W [g] > nλη − σ kg‖C̄[g][g]‖

≤ 2 exp − 2
π2‖σ2C̄[g][g]‖

nλη − σ kg‖C̄[g][g]‖
2 ,

and the last probability is bounded above by 2G−α for the proposed choice of λ.

The results in the proposition follow by considering the union bound on the two sets of the

probability statements made across all g ∈ ℕG. ■

Appendix C. Proof of results on ℓ2-consistency

We first note that each of the p optimization problems in (4) is essentially a generic group

lasso regression on n independent samples from a linear model Y = Xβ0 + ϵ, ϵ ~ N(0, σ2):

β = argmin
β ∈ ℝp

1
2n ‖Y − Xβ‖2 + ∑

g = 1

Ḡ
λg‖β[g]‖, (31)

where Yn × 1 = Xi
T , Xn × p̄ = [X1 :⋯ :XT − 1], βp̄ × 1

0 = vec(Ai:
1: (T − 1)), {1, …, p̄} = ∪g = 1

Ḡ Gg,

p‒ = T − 1 p,Ḡ = (T − 1)G and λg = λwi, gt . In Proposition C.1, we first establish the upper

bounds on estimation error in the context of a generic group lasso penalized regression

problem. The results for regular group NGC then readily follows by applying the above

Proposition on the p separate regressions.

Recall the Restricted Eigenvalue assumption required for the derivation of ℓ2 estimation

and prediction error. Following van de Geer and Bühlmann (2009), we introduce a slightly

weaker notion called Group Compatibility (GC). For a constant L > 0 we say that GC(S, L)

condition holds, if there exists a constant ϕcompatible = ϕcompatible(S, L) > 0 such that

min
Δ ∈ ℝp ∖ {0}

∑g ∈ S λg
2 1 ∕ 2‖XΔ‖

n∑g ∈ S λg‖Δ[g]‖
: ∑

g ∉ S
λg‖Δ[g]‖ ≤ L ∑

g ∈ S
λg‖Δ[g]‖

≥ ϕcompatible .
(32)
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The fact that GC(S, L) holds whenever RE(s, L) is satisfied (and ϕRE ≤ ϕcompatible) follows

at once from Cauchy Schwarz inequality. We shall derive upper bounds on the prediction

and ℓ2,1 estimation error of group lasso estimates involving the compatibility constant. This

notion will also be used later to connect the irrepresentable conditions to the consistency

results of group lasso estimators.

Proposition C.1 Suppose the GC condition (32) holds with L = 3. Choose α > 0 and denote
λmin = min1≤g≤Gλg. If

λg ≥ 2σ
n C[g][g] kg + π

2 α log G

for every g ∈ ℕG, then, the following statements hold with probability at least 1 − 2G1−α,

1
n X β − β0 2 ≤ 16

ϕcompatible
2 ∑

g = 1

s
λg

2, (33)

‖β − β0‖2, 1 ≤ 16
ϕcompatible

2
∑g = 1

s λg
2

λmin
. (34)

If, in addition, RE(2s, 3) holds, then, with the same probability we get

‖β − β0‖ ≤ 4 10
ϕRE

2 (2s)
∑g = 1

s λg
2

λmin s . (35)

Proof [Proof of Proposition (C.1)] Since β  is a solution of the optimization problem (31), for

all β ∈ ℝp, we have

1
n‖Y − X β‖2 + 2 ∑

g = 1

G
λg‖β [g]‖ ≤ 1

n‖Y − X β‖2 + 2 ∑
g = 1

G
λg‖β[g]‖ .

Plugging in Y = Xβ0 + ϵ, and simplifying the resulting equation, we get

1
n‖X(β − β0)‖2 ≤ 1

n‖X(β − β0)‖2 + 2
n ∑

g = 1

G
(X′ϵ)[g] (β − β)[g]

+ 2 ∑
g = 1

G
λg ‖β[g]‖ − ‖β [g]‖ .

Fix g ∈ ℕG and consider the event Ag ϵ ∈ ℝn : 2
n (X′ϵ)[g] ≤ λg . Note that

Z = 1
nX′ϵ ∼ N(0, σ2C). So Z[g] ~ N(0, σ2C[g][g]). Then,
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ℙ (Agc) = ℙ Z[g] > 1
2λg n

≤ ℙ Z[g] − E Z[g] >
λg n

2 − σ kg C[g][g] ,

where the last inequality follows from the second statement of Lemma A.2. Now, let

xg =
λg n

2 − σ kg C[g][g] . Then, for xg > 0, if

2 exp −
2 xg2

π2σ2 C[g][g]
≤ 2 G−α,

we get

ℙ (Agc) ≤ 2G−α .

But this happens if,

2xg ≥ α log Gπσ C[g][g] ,

which is ensured by the proposed choice of λg.

Next, define A ≔ ∩g = 1
G Ag. Then, ℙ (A) ≥ 1 − 2G1 − α, and on the event A, we have, for all

β ∈ ℝp,

1
n‖X(β − β0)‖2 + ∑

g = 1

G
λg β [g] − β[g] ≤ 1

n‖X(β − β0)‖2

+ 2 ∑
g = 1

G
λg β [g] − β[g] + β[g] − β [g] .

Note that β [g] − β[g] + ‖β[g]‖ − β [g]  vanishes if g ∉ S and is bounded above by

min{2 ‖β[g]‖, 2 β[g] − β [g] } if g ∈ S.

This leads to the following sparsity oracle inequality, for all β ∈ ℝp,

1
n‖X(β − β0)‖2 + ∑

g = 1

G
λg β [g] − β[g] ≤ 1

n‖X(β − β0)‖2

+ 4 ∑
g ∈ S

λg min β[g] , β[g] − β [g] .
(36)

The sparsity oracle inequality (36) with β = β0, and Δ ≔ β − β0 leads to the following two

useful bounds on the prediction and ℓ2,1-estimation errors:
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1
n ‖XΔ‖2 ≤ 4 ∑

g ∈ S
λg Δ[g] , (37)

∑
g ∉ S

λg Δ[g] ≤ 3 ∑
g ∈ S

λg Δ[g] . (38)

Now, assume the group compatibility condition 32 holds. Then,

1
n ‖XΔ‖2 ≤ 4 ∑

g ∈ S
λg Δ[g] ≤ ∑

g ∈ S
λg

2 ‖XΔ‖
n

4
ϕcompatible

, (39)

which implies the first inequality of proposition C.1. The second inequality follows from

λmin β − β 2, 1 ≤ ∑
g = 1

G
λg‖Δ[g]‖ ≤ 4 ∑

g ∈ S
λg‖Δ[g]‖

≤ 4 ∑
g ∈ S

λg2
‖XΔ‖

n
1

ϕcompatible
≤ 16

ϕcompatible
2 ∑

g ∈ S
λg2,

where the last step uses (39).

The proof of the last inequality of proposition C.1, i.e., the upper bound on ℓ2 estimation

error under RE(2s), is the same as in Theorem 3.1 in Lounici et al. (2011) and is omitted. ■

Proof [Proof of Proposition 3.1] Applying the ℓ2-estimation error of (35) on the ith group

lasso regression problem of regular group NGC, we have

‖Ai:
1:T − 1 − Ai:1:T − 1‖ ≤ 4 10

ϕRE
2 (2si)

∑g = 1
si λg2

λmin si
≤ 4 10

ϕRE
2 (2smax)

λmax
λmin

si

with probability at least 1 − 2Ḡ1 − α. Combining the bounds for all i = 1, … , p and noting

that s = ∑i = 1
p si, we have the required result. ■

Appendix D. Irrepresentable assumptions and consistency

In this section, we discuss two results involving the compatibility and irrepresentable

conditions for group lasso. We first show that a stronger version of the uniform

irrepresentable assumption implies the group compatibility (32), and hence, consistency

in ℓ2,1 norm. Next we argue that a weaker version of the irrepresentable assumption is indeed

necessary for the direction consistency of the group lasso estimates. These results generalize

analogous properties of lasso (van de Geer and Bühlmann, 2009; Zhao and Yu, 2006) to

the group penalization framework. The proofs are given under a special choice of tuning

parameter λg = λ kg. Similar results can be derived for the general choice of λg, although

their presentation is more involved.
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Proposition D.1 Assume uniform irrepresentable condition (13) holds with η ∈ (0,1), and

Λmin(C11) > 0. Then group compatibility(S, L) (32) condition holds whenever L < 1
1 − η .

Proof First note that with the above choice of λg the Group Compatibility (S, L) condition

simplifies to

ϕcompatible ≔ min
Δ ∈ ℝp ∖ {0}

q‖XΔ‖
n∑g ∈ S kg‖Δ[g]‖

: ∑
g ∉ S

kg‖Δ[g]‖ ≤ L ∑
g ∈ S

kg

‖Δ[g]‖ > 0 .
(40)

Also, the uniform irrepresentable condition guarantees that there exists 0 < η < 1 such that

∀τ ∈ ℝq with ‖τ‖2, ∞ = max
1 ≤ g ≤ s

‖τ[g]‖2 ≤ 1, we have,

1
kg

C21 (C11)−1K τ0
[g] 2 < 1 − η ∀g ∉ S .

Here K0 = K/λ is a q × q block diagonal matrix with diagonal blocks

k1 Ik1 × k1, …, ks Iks × ks. Define

Δ0 ≔ argmin
Δ ∈ ℝp

1
2n ‖XΔ‖2

2 : ∑
g ∈ S

kg‖Δ[g]‖2 = 1, ∑
g ∉ S

kg‖Δ[g]‖2 ≤ L . (41)

Note that 1
n‖XΔ0‖2

2 = ϕcompatilble
2 ∕ q, and introduce two Lagrange multipliers λ and λ′

corresponding to the equality and inequality constraints for solving the optimization problem

in (41). Also, partition Δ0 = Δ(1)
0 :Δ(2)

0  and X = [X(1) : X(2)] into signal and nonsignal parts

as in (10). The first q linear equations of the KKT conditions imply that there exists τ0 ∈ ℝq

such that

C11Δ(1)
0 + C12Δ(2)

0 = λK0τ0 (42)

and, for every g ∈ S,

τ[g]
0 = D(Δ[g]

0 ) if Δ[g]
0 ≠ 0,

‖τ[g]
0 ‖2 ≤ 1 if Δ[g]

0 = 0 .

It readily follows that (τ0)TK0Δ(1)
0 = ∑g ∈ S kg‖Δ[g]

0 ‖2 = 1.

Multiplying both sides of (42) by (Δ(1)
0 )T  we get
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Δ(1)
0 TC11Δ(1)

0 + Δ(1)
0 TC12Δ(2)

0 = λ . (43)

Also, (42) implies

Δ(1)
0 + (C11)−1 C12Δ(2)

0 = λ (C11)−1 K0τ0 . (44)

Multiplying both sides of the equation by (K0τ0)T = (τ0)T K0 we obtain

1 = − (τ0)T K0 (C11)−1 C12Δ(2)
0 + λ (K0τ0)T (C11)−1 (K0τ0) . (45)

Note that the absolute value of the first term,

∑
g ∉ S

Δ[g]
0 T C21(C11)−1K0τ0

[g] , (46)

is bounded above by

(1 − η) ∑
g ∉ S

kg‖Δ[g]
0 ‖2 ≤ (1 − η)L (47)

by virtue of the uniform irrepresentable condition and the Cauchy-Schwartz inequality.

Assuming the minimum eigenvalue of C11, i.e., Λmin (C11), is positive and considering

‖K0τ0‖2 ≤ q, the second term is at most λq/Λmin (C11). So (45) implies

1 ≤ (1 − η)L + λq
Λmin (C11) . (48)

In particular, λ ≥ Λmin (C11) (1 − (1 − η)L)/q is positive whenever L < 1/(1 − η). Next,

multiply both sides of (44) by (Δ(2)
0 )TC21 to get

Δ(2)
0 TC21Δ(1)

0 + Δ(2)
0 TC21 (C11)−1 C(12)Δ(2)

0 = λ Δ(2)
0 TC21 (C11)−1K0τ0 . (49)

Using the upper bound in (47), the right hand side is at least −λ(1 − η)L.

Also a simple consequence of the block inversion formula of the non-negative definite

matrix C guarantees that the matrix C22 − C22 (C11)−1 C12 is non-negative definite. Hence,

Δ(2)
0 T

C22 − C21 (C11)−1 C12 Δ(2)
0 ≥ 0

and Δ(2)
0 T

C22Δ(2)
0 ≥ Δ(2)

0 T
C21 (C11)−1 C12Δ(2)

0 .

Putting all the pieces together we get
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ϕcompatible
2 ∕ q = 1

n‖XΔ0‖2
2

= Δ(1)
0 T

C11Δ(1)
0 + 2Δ(2)

0 T
C21Δ(1)

0 + Δ(2)
0 T

C22Δ(2)
0

= λ + Δ(2)
0 T

C21Δ(1)
0 + Δ(2)

0 T
C22Δ(2)

0 , by (43)
≥ λ − λ(1 − η)L, by (49)
= λ(1 − (1 − η)L) .

Plugging in the lower bound for λ we obtain the result; namely,

ϕcompatible
2 = Λmin(C11) (1 − (1 − η)L)2 > 0

for any L < 1
1 − η . ■

In this section we investigate the necessity of irrepresentable assumptions for direction

consistency of group lasso estimates. To this end we first introduce the notion of weak

irrepresentability.

For a q-dimensional vector τ define the stacked direction vector

D(τ)
q × 1

= [D(τ[1])′
k1 × 1

, …, D(τ[s])′
ks × 1

]′ .

Weak Irrepresentable Condition is satisfied if

1
λg

C21 (C11)−1KD(β(1)
0 ) [g] ≤ 1, ∀g ∉ S = {1, …, s} . (50)

We argue the necessity of weak irrepresentable condition for group sparsity selection and

direction consistency under two regularity conditions on the design matrix, as n, p → ∞:

(A1) The minimum eigenvalue of the signal part of the Gram matrix, viz. Λmin(C11), is

bounded away from zero.

(A2) The matrices C21 and C22 are bounded above in spectral norm.

As in the last proposition, we set λg = λ kg and K0 = K/λ. Suppose that the weak

irrepresentable condition does not hold, i.e., for some g ∉ S and ξ > 0, we have,

1
kg

C21 (C11)−1K0D(β(1)
0 ) [g] > 1 + ξ

for infinitely many n. Also suppose that there exists a sequence of positive reals δn → 0 such

that the event
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En ≔ {‖D(β [g]) − D(β[g])‖2 < δn, ∀g ∈ S, and β [g] = 0 ∀g ∉ S}

satisfies ℙ(En) 1 as p, n → ∞.

Note that for large enough n so that δn < ming ∥D(β[g])∥, we have β [g] ≠ 0, ∀g ∈ S on the

event En.

Then, as in the proof of Theorem 4.1, we have, on the event En,

u = (C11)−1 1
nZ(1) − λK0D(β (1)) (51)

and 1
n [X(2)

T(ϵ − X(1)u)][g] ≤ λ kg, ∀g ∉ S . (52)

Substituting the value of u from (51) in (52), we have, on the event En,

1
n Z(2) − C21 (C11)−1Z(1) + λ nC21 (C11)−1K0D(β (1)) [g] ≤ λ kg,

which implies that

Z(2) − C21 (C11)−1Z(1) [g]

≥ λ n kg
1
kg

C21 (C11)−1K0D(β (1)) [g] − 1 .
(53)

Now note that for large enough n, if ∥C21∥ is bounded above, direction consistency

guarantees that the expression on the right is larger than

1
2 λ n kg

1
kg

C21 (C11)−1K0D(β(1)) [g] − 1 ,

which in turn is larger than 1
2 λ n kgξ, in view of the weak irrepresentable condition.

This contradicts ℙ(En) 1, since the left-hand side of (53) corresponds to the norm of a

centered Gaussian random variable with bounded variance structure C22 − C21C11
−1C12 [g][g]

while λ n kg diverges with log G.

Appendix E. Thresholding Group Lasso Estimates.

Proof [Proof of Theorem 4.2] We use the notations developed in the proof of Proposition

C.1. First note that, (ii) follows directly from Theorem 4.1. For (i), since the falsely selected
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groups are present after the initial thresholding, we get ‖β [g]‖ > 4λ for every such group.

Next, we obtain an upper bound for the number of such groups. Specifically, denoting

Δ = β − β0, we get

S ∖ S ≤ ‖βSc‖2, 1
4λ = ∑g ∉ S ‖Δ[g]‖

4λ . (54)

Next, note that from the sparsity oracle inequality (37), the following holds on the event A,

∑
g ∉ S

‖Δ[g]‖ ≤ 3 ∑
g ∈ S

‖Δ[g]‖ .

It readily follows that

4 ∑
g ∉ S

‖Δ[g]‖ ≤ 3‖Δ‖2, 1 ≤ 48
ϕ2 sλ,

where the last inequality follows from the ℓ2,1-error bound of (34). Using this inequality

together with (54) gives the result. ■
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Figure 1:
An example of a Network Granger causal model with two non-overlapping groups observed

over T = 4 time points
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Figure 2:
Example demonstrating direction consistency

Basu et al. Page 36

J Mach Learn Res. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3:
Comparison of lasso and group irrepresentable conditions in the context of group sparse

NGC models. (a) group ICs tend to be met for dense networks where lasso IC fails to meet.

(b) For the same network group IC is met with smaller sample size than required by lasso.

(c) For longer time series group IC is satisfied more often than lasso IC.
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Figure 4:
Estimated adjacency matrices of a misspecified NGC model with p = 60, T = 10, n = 60:

(a) True, (b) Lasso, (c) Group Lasso, (d) Thresholded Group Lasso. The grayscale represents

the proportion of times an edge was detected in 100 simulations.
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Figure 5:
Estimated Gene Regulatory Networks of T-cell activation. Width of edges represent the

number of effects between two groups, and the network represents the aggregated regulatory

network over 3 time points.
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Figure 6:
Estimated Networks of banking balance sheet variables using (a) lasso and (b) group lasso.

The networks represent the aggregated network over 5 time points.
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Table 1:

Performance of different regularization methods in estimating graphical Granger causality with balanced
group sizes and no misspecification; d = 2, T = 5, SNR = 1.8. Precision (P), Recall (R), MCC are given

in percentages (numbers in parentheses give standard deviations). ERR LAG gives the error associated with

incorrect estimation of VAR order.

p = 60, ∣E∣ =351
Group Size=3

p = 120, ∣E∣ =1404
Group Size=3

p = 200, ∣E∣ =3900
Group Size=5

n 160 110 60 160 110 60 160 110 60

P Lasso 80(2) 75(2) 66(4) 69(1) 62(2) 52(2) 52(1) 47(1) 38(1)

Grp 95(2) 91(4) 83(7) 91(3) 80(5) 68(7) 78(4) 72(3) 59(6)

Thgrp 96(1) 92(3) 86(6) 93(3) 83(5) 70(7) 82(4) 76(3) 64(6)

Agrp 96(2) 92(4) 83(7) 92(3) 82(5) 69(7) 81(3) 74(3) 60(6)

R Lasso 71(2) 54(2) 31(2) 54(1) 40(1) 22(1) 38(1) 28(1) 15(1)

Grp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(1) 70(2) 41(4)

Thgrp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(2) 69(2) 41(3)

Agrp 99(1) 93(3) 71(7) 91(2) 81(2) 47(8) 84(1) 69(2) 40(4)

MCC Lasso 75(2) 63(2) 45(3) 60(1) 49(1) 33(1) 43(1) 35(1) 23(1)

Grp 97(1) 92(3) 76(5) 91(1) 80(2) 56(2) 81(2) 70(2) 48(2)

Thgrp 98(1) 93(2) 78(5) 92(1) 81(2) 57(3) 83(2) 72(2) 50(3)

Agrp 97(1) 92(3) 76(5) 91(1) 81(2) 56(3) 82(2) 71(2) 48(2)

ERR Lasso 10.5 11.3 13.9 16.63 17.37 16.69 19.79 20 18.52

LAG Grp 3.19 6.95 12.76 4.86 10.77 12.65 4.21 5.27 7.8

Thgrp 2.83 5.87 10.01 3.98 9.03 11.19 3.06 3.91 5.68

Agrp 3.13 6.89 12.59 4.63 10.37 12.34 3.58 4.87 7.59
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Table 2:

Performance of different regularization methods in estimating graphical Granger causality with unbalanced
group sizes and no misspecification; d = 2, T = 5, SNR = 1.8. Precision (P), Recall (R), MCC are given

in percentages (numbers in parentheses give standard deviations). ERR LAG gives the error associated with

incorrect estimation of VAR order.

p = 60, ∣E∣ = 450
Groups=1 × 10, 11 × 5

p = 120, ∣E∣ = 1575
Groups=1 × 10, 23 × 5

p = 200, ∣E∣ = 4150
Groups=1 × 10, 39 X× 5

n 160 110 60 160 110 60 160 110 60

P Lasso 72(2) 69(3) 62(2) 51(1) 48(1) 41(1) 61(1) 53(1) 42(2)

Grp 84(4) 79(6) 76(9) 55(5) 47(5) 40(6) 86(3) 77(5) 66(7)

Thgrp 86(4) 82(7) 78(11) 60(6) 50(7) 40(5) 88(2) 79(6) 69(6)

Agrp 85(3) 81(5) 77(9) 59(5) 51(5) 42(6) 88(2) 78(5) 67(6)

R Lasso 45(2) 35(2) 22(2) 43(1) 34(1) 22(1) 23(1) 15(0) 7(0)

Grp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)

Thgrp 95(2) 88(4) 62(8) 89(3) 77(4) 50(5) 73(3) 50(6) 21(5)

Agrp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)

MCC Lasso 56(2) 48(2) 35(2) 46(1) 39(1) 29(1) 36(1) 28(1) 17(1)

Grp 89(3) 82(4) 67(5) 68(3) 58(3) 42(3) 79(1) 61(3) 37(3)

Thgrp 90(3) 84(4) 68(6) 72(4) 61(4) 43(2) 80(1) 62(3) 37(3)

Agrp 89(3) 83(4) 67(6) 71(3) 60(3) 43(3) 79(1) 61(3) 37(3)

ERR Lasso 10.59 10.74 11.76 18.3 18.72 18.76 11.54 10.93 9.29

LAG Grp 7.04 9.85 13.04 12.53 14.71 13.06 4.8 6.41 6.85

Thgrp 6.58 8.98 11.1 9.6 11.9 10.9 4.06 5.65 5.7

Agrp 6.74 9.19 12.96 10.81 12.78 11.79 4.55 6.2 6.81
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Table 3:

Performance of different regularization methods in estimating graphical Granger causality with misspecified
groups (30% misspecification); d = 2, T = 10, SNR = 2. Precision (P), Recall (R), MCC are given in

percentages (numbers in parentheses give standard deviations). ERR LAG gives the error associated with

incorrect estimation of VAR order.

p = 60, ∣E∣ = 246
Group Size=6

p = 120, ∣E∣ = 968
Group Size=6

n 160 110 60 160 110 60

P Lasso 88(2) 85(3) 77(5) 59(1) 55(1) 49(2)

Grp 65(2) 66(2) 66(3) 43(3) 44(4) 38(4)

Thgrp 87(3) 88(3) 85(3) 56(6) 56(6) 51(7)

Agrp 65(2) 66(2) 66(3) 45(2) 45(4) 39(4)

R Lasso 80(3) 63(3) 37(2) 66(1) 54(1) 35(1)

Grp 100(0) 98(2) 82(6) 87(2) 78(3) 59(4)

Thgrp 100(0) 98(2) 79(6) 86(2) 79(3) 57(4)

Agrp 100(0) 98(2) 82(6) 86(2) 78(3) 58(3)

MCC Lasso 84(2) 73(2) 53(3) 62(1) 54(1) 41(1)

Grp 81(1) 80(2) 74(4) 61(2) 58(3) 47(2)

Thgrp 93(2) 93(2) 82(4) 69(4) 66(4) 53(3)

Agrp 81(1) 80(2) 74(4) 62(2) 59(2) 47(2)

ERR Lasso 12.63 17.05 22.41 45.09 49.68 53.4

LAG Grp 9.43 8.78 15.12 18.22 18.43 29.26

Thgrp 6.45 5.34 8.02 11.81 12.84 15.57

Agrp 9.11 8.78 14.96 16.32 16.9 27.69
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Table 4:

Mean and standard deviation of MSE for different NGC estimates

Lasso Grp Agrp Thgrp

mean 0.649 0.456 0.457 0.456

stdev 0.340 0.252 0.251 0.252
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Table 5:

Mean and standard deviation (in parentheses) of PMSE (MSE in case of Dec 2010) for prediction of banking

balance sheet variables.

Quarter Lasso Grp Agrp Thgrp

Dec 2010 1.59 (0.29) 0.36 (0.05) 0.36 (0.05) 0.37 (0.05)

Mar 2011 1.46 (0.30) 0.47 (0.23) 0.47 (0.23) 0.46 (0.22)

Jun 2011 1.33 (0.26) 0.36 (0.11) 0.36 (0.11) 0.35 (0.11)

Sep 2011 1.72 (0.32) 0.50 (0.18) 0.50 (0.18) 0.47 (0.16)
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