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Quantifying hair cortisol has become popular in wildlife ecology for its practical advantages for evaluating stress. Before hair
cortisol levels can be reliably interpreted, however, it is key to first understand the intrinsic factors explaining intra- and inter-
specific variation. Bats are an ecologically diverse group of mammals that allow studying such variation. Given that many bat
species are threatened or have declining populations in parts of their range, minimally invasive tools for monitoring colony
health and identifying cryptic stressors are needed to efficiently direct conservation efforts. Here we describe intra- and inter-
specific sources of variation in hair cortisol levels in 18 Neotropical bat species from Belize and Mexico. We found that fecundity
is an important ecological trait explaining inter-specific variation in bat hair cortisol. Other ecological variables such as colony
size, roost durability and basal metabolic rate did not explain hair cortisol variation among species. At the individual level,
females exhibited higher hair cortisol levels than males and the effect of body mass varied among species. Overall, our findings
help validate and accurately apply hair cortisol as a monitoring tool in free-ranging bats.

Editor: Steven Cooke

Received 20 February 2021; Revised 13 June 2021; Editorial Decision 13 June 2021; Accepted 8 July 2021

Cite as: Sandoval-Herrera NI, Mastromonaco GF, Becker DJ, Simmons NB, Welch KC (2021) Inter- and intra-specific variation in hair cortisol
concentrations of Neotropical bats. Conserv Physiol 9(1): coab053; doi:10.1093/conphys/coab053.

..........................................................................................................................................................

Introduction
Free-living animals face multiple natural and anthropogenic
challenges that threaten their survival and thus are of consid-
erable interest to ecophysiologists concerned with the study
of effects of stress on vertebrates. One of the most extensively
studied processes associated with response to stressors (biotic
or abiotic environmental factors that disrupt homeostasis;
Schulte, 2014) is the release of glucocorticoid (GC) hormones
(Creagh and Brendan Delehanty, 2013; MacDougall-Shackle-

ton et al., 2019). GCs are known to facilitate the mobilization
of energy required to cope with stressors and, during normal
conditions, play a key role in regulating growth, circadian
activity and energy metabolism (review in Landys et al.,
2006). Levels of GCs are commonly employed as a biomarker
of allostatic load or stress (indirect indicators of health)
(Sapolsky et al., 2000; Wikelski and Cooke, 2006; Pearson
Murphy, 2007; Busch and Hayward, 2009). GC secretion
is a well-conserved process across vertebrates and involves
activation of the hypothalamic–pituitary–adrenal (HPA) axis
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and release of GCs from the adrenal glands to the blood
stream (Norris and Carr, 2013). In mammals, the primary
GC is cortisol, which induces a cascade of events to maintain
homeostasis at multiple target tissues (Pearson Murphy, 2007;
Boonstra, 2013). An acute increase in GC levels can benefit
an individual’s survival (e.g. by allocating energy in defence
and escape) yet if adverse conditions remain, continuously
elevated GCs in circulation can become pathological, causing
immune suppression, neuronal cell death and reproductive
impairment (Sapolsky et al., 2000; Tilbrook, 2000; Wingfield
and Romero, 2011; Hing et al., 2016).

Although many of the environmental challenges that wild
populations experience are chronic (e.g. prolonged food
deprivation, climate change, habitat disturbance, pollution),
studies of stress physiology have focused on detecting acute
stress by looking at GC levels in blood, urine and faeces
(Sheriff et al., 2011; Creagh and Brendan Delehanty, 2013).
The rapid turnover of these tissues, however, only gives short-
term information of HPA activity over periods of hours or
days (Sheriff et al., 2011), which may not be an appropriate
time scale. Assessment of cortisol in tissues with slower
turnover rates, such as hair, may reflect circulating cortisol
levels over longer periods of several weeks or even months,
which is the time scale over which chronic environmentally
induced stress would be expected to occur (Davenport
et al., 2006; Macbeth et al., 2010; Ashley et al., 2011;
Mastromonaco et al., 2014). Cortisol is incorporated into
developing hairs from the blood stream during periods of
active hair growth, allowing researchers to retrospectively
examine cortisol production at the time that a stressor
or stressors were faced (Davenport et al., 2006; Pragst
and Balikova, 2006). Hair can be collected in a minimally
invasive manner, is usually easily accessible in relatively large
amounts and is easy to store and transport, all of which make
it particularly useful for wildlife studies, especially those
involving threatened or endangered species (Koren et al.,
2002; Macbeth et al., 2010, 2012). Hair cortisol levels are not
likely affected by stress induced by capture and/or handling,
which is one of the main limitations of blood GC analysis
(Russell et al., 2012). A single sample of hair can also provide
complementary and valuable information about ecology
and behaviour, including diet and movement (e.g. using
stable isotope analyses; Fraser et al., 2010; Sullivan et al.,
2012; Voigt et al., 2012; Oelbaum et al., 2019), condition
(e.g. nutrition; Montillo et al., 2019), toxicant exposure
(Hernout et al., 2016; Becker et al., 2018) and molecular
identification (Magioli et al., 2019), opening possibilities for
more integrative studies. However, analyses of hair samples
can be challenging. Despite being a very promising tool for
assessing wildlife health, quantifying hair cortisol is a method
that has limitations; although these are largely based on lack
of detailed knowledge of patterns of hair growth (Meyer and
Novak, 2012; Russell et al., 2012; Sharpley et al., 2012). For
example, the exact time scale reflected in any given sample
will depend on the rate of hair growth and moulting patterns;
this information is unknown for most species, which makes

the time window being evaluated unclear (Koren et al., 2002;
Fourie et al., 2016). Moreover, rates of cortisol incorporation
to the hair shaft are known to differ across body regions
and among species (Sharpley et al., 2012; Acker et al., 2018;
Lavergne et al., 2020). Nevertheless, hair cortisol levels offer
a potentially powerful tool for assessing relatively long-term
stress levels in mammals.

Hair cortisol and its correlation with natural and anthro-
pogenic stressors has been explored for different wild mam-
mals, including rhesus monkeys (Macaca mulatta; Dettmer
et al., 2014), grizzly bears (Ursus arctos; Macbeth et al.,
2010), reindeer/caribou (Rangifer tarandus; Ashley et al.,
2011), lynx (Lynx canadensis; Terwissen et al., 2013; Azevedo
et al., 2020), mongoose (Herpestes ichneumon; Azevedo et al.,
2019) and snowshoe hares (Lepus americanus; Lavergne
et al., 2020); other examples reviewed by Kalliokoski et al.,
2019). Although most of these studies support hair cortisol
as an informative measure of central HPA activity, they also
identified intrinsic factors such as age, sex, reproductive stage
and social status that modulate GC levels in different contexts
(Wingfield and Romero, 2011; Crespi et al., 2013; Hau et al.,
2016). Not accounting for these intrinsic sources of variation
in GC levels may lead to incorrect or misleading estimates of
the effects of stressors on individual fitness and population
health (Sapolsky et al., 2000; Reeder and Kramer, 2005;
Busch and Hayward, 2009; Wingfield and Romero, 2011;
Kalliokoski et al., 2019).

Ecological traits such as diet, fecundity and lifespan, as well
as phylogenetic relatedness, have been proposed to explain
differences in baseline cortisol levels in wild species (Wingfield
and Romero, 2011; Patterson et al., 2014). Evolution of
different life-history strategies are also thought to have led
to different adaptations in HPA activity modulation so as
to maximize individual fitness within species (Bonier et al.,
2009; Bonier and Martin, 2016). Bats are a very ecologi-
cally diverse group comprising over 1400 species that live
in most terrestrial ecosystems and have a wide variety of
diets, use many different roost types and have many differ-
ent social systems (Kunz and Fenton, 2005; Dumont et al.,
2012; Gunnell and Simmons, 2012; Simmons and Cirranello,
2020). This diversity provides the opportunity to study the
ecological correlates of cortisol levels among phylogenetically
related species with different life history traits. Few ecological
correlates of GCs have been evaluated simultaneously in
mammalian groups in the context of cortisol studies, and
fewer studies have further related cortisol levels to life history
traits across multiple species from a single mammalian clade.
Among bats, variation in plasma cortisol levels associated
with seasonal food availability has been studied in two species
with contrasting diets, Carollia perspicillata and Desmodus
rotundus (Lewanzik et al., 2012), but no other comparative
studies have been conducted within this order. Furthermore,
little is known about the modulation of the stress response in
bats, despite Chiroptera being the second-most speciose order
of mammals.
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Bat populations are declining worldwide due to ongoing
habitat destruction and land use changes, increased interac-
tion with human environments and associated threats includ-
ing wind turbine fatalities, hunting and targeted killing, pesti-
cide exposure and emerging infectious diseases such as white-
nose syndrome (O’Donnell, 2000; Mickleburgh et al., 2002;
Kunz et al., 2007; Frick et al., 2010; Racey, 2013; Voigt and
Kingston, 2015). Because many bat species are threatened or
have declining populations in parts of their range (IUCN Red
List of Threatened Species, 2020), minimally invasive tools
to monitor colony health and identify cryptic stressors are
critically needed to efficiently direct conservation efforts. It is
essential to investigate the factors influencing baseline GCs
to properly detect elevated cortisol levels due to long-term
stressors.

In this study, we describe intra- and inter-specific sources
of variation in baseline hair cortisol levels in bats, which
contributes to better understanding the potential for hair
cortisol to be an indicator of HPA activity in this taxon.
We hypothesize that interspecific variation in hair cortisol
of bats will be greater than intra-specific variation and that
such heterogeneity will be best explained by ecological traits
directly related to energy expenditure, such as basal metabolic
rate (BMR), dietary guild, foraging style and roost durability.
We expect that species with high energetic demands or less
predictable energy acquisition (e.g. less reliable food sources)
will have higher hair cortisol. Specifically, we predict the
following: (i) a positive relationship between BMR and hair
cortisol;(ii) bats that feed on fruit and nectar, which are energy
rich and readily available, will have lower hair cortisol; (iii)
bats that actively hunt prey during flight, such aerial hawkers,
will have higher GC levels owing to greater energetic demands
compared to gleaners that can hunt from perches (Norberg
and Rayner, 1987; Fenton, 1990); and (iv) species using more
ephemeral day roosts (e.g. foliage or crevices under exfoliating
bark) will have higher hair cortisol than species using more
stable structures (Kunz and Fenton, 2005).

Material and methods
Study sites
We sampled bats from northern Belize (Orange Walk District)
and two locations in Mexico (Colima and Chihuahua States).
In each region, we sampled sites with different levels of
habitat fragmentation and agricultural intensity. We used the
global Human Modification Index (HMI; Kennedy et al.,
2019) as a standardized measure of disturbance, using a
5-km buffer around each collection site. The HMI is a
cumulative measurement with possible values between 0
(no disturbance) and 1 (highest disturbance) that includes
transportation, human settlement, agriculture, extractive
activities and electric infrastructure (Kennedy et al., 2019).
Sites were classified as low (0 ≤ HMI ≤ 0.10), moderate
(0.10 < HMI ≤ 0.40), high (0.40 < HMI ≤ 0.70) and very
high (0.70 < median HMI ≤ 1.00). At all sites, bats were

captured from 18:00 to 22:00 using mist nets and from
18:00 to 5:00 using harp traps (only in Belize) set along
flight paths. Bats sampled during the day were captured in
their roosts, mainly caves, using hand nets. We recorded sex,
size (body mass, g) and reproductive stage (females: pregnant,
lactating; males: active, inactive; Kunz and Parsons, 2009).
Reproductive stage was assessed by checking for the presence
of scrotal testes in males (indicating that the individual was
reproductively active at the time of capture) and by the
evidence of pregnancy or lactation (enlarge nipples) in females
(Racey, 2009). Only adult individuals were sampled for hair
collection.

In Colima (west central Mexico) in March 2019 (dry
season), we sampled bats roosting in three caves surrounded
by different levels of disturbance: Don Pancho Cave (mod-
erate disturbance, HMI = 0.38), El Salitre Cave (high distur-
bance, HMI = 0.44) and La Fábrica Cave (high disturbance,
HMI = 0.57; Fig. 1). Don Pancho Cave is located on San
Agustin island, 1 km away from the coast of Chamela Bay,
Jalisco (19.5353◦N, −105.0881◦W). El Salitre Cave is near
Los Ortices village, Colima (19.083330◦N, −103.726667◦E).
La Fábrica Cave is 6.4 km southwest of Coquimatlan town,
Colima (19.1513◦N, −103.8353◦W). We refer here to these
locations collectively as central Mexico, and we took samples
from three species in this region: Leptonycteris yerbabuenae,
Macrotus waterhosii, and Pteronotus mexicanus. We also
sampled bats foraging close to pecan nut croplands near the
town of Jimenez, Chihuahua (northern Mexico). This region
is entirely dedicated to the production of pecan nuts with
thousands of squared kilometres of cultivated land (Orona
Castillo et al., 2018). We visited one that farms using organic
practices and another that farms with intensive use of pes-
ticides. However, the estimated HMI was the same for the
two sites (HMI = 0.49, high disturbance). We collected hair
samples from three bat species (Antrozous pallidus, Tadarida
brasilensis and Myotis velifer) at both northern Mexico sites.

Our field sites in Belize consisted of two forest patches
of very different size located ∼10 km apart and separated
by a heterogeneous, largely agricultural landscape. Lamanai
Archaeological Reserve (LAR) is a protected secondary semi-
deciduous forest of 450 ha with a high canopy and with
relatively low disturbance (HMI = 0.17) (Herrera et al., 2018).
In contrast, the Ka’Kabish archaeological site (KK) is a small
remnant forest patch of ∼45 ha surrounded by cattle pastures
and local croplands (Fig. 1). Although the landscape in Belize
is apparently disturbed and highly fragmented, agricultural
activity and urban development is not as intense as the field
sites in Mexico, which is reflected in their moderate HMI
scores (LAR: 0.17; KK: 0.18). We collected hair samples from
12 different species (Table 1) in April 2018 and 2019 (dry
season) at Belize sites.

Ethical statement
Field procedures followed guidelines for safe and humane
handling of bats published by of the American Society of
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Figure 1: Sampling sites in central Belize and Mexico showing the use of land in the surrounding areas. Sources: Sistema Nacional de
Información Estadística y Geográfica de Mexico (INEGI, 2013) and Biodiversity and Environmental Resource Data System for Belize.

Mammalogists (Sikes and Bryan, 2016) and were approved
by the Institutional Animal Care and Use Committees
of the University of Georgia (A2014 04-016-Y3-A5),
University of Toronto (20012113) and American Museum
of Natural History (AMNHIACUC-20180123). Fieldwork
was authorized by the Belize Forest Department under
permits WL/2/1/18(16) and WL/1/19(06). Sample collection
in Mexico was approved under the permit #FAUT-0069.

Sample collection
We manually trimmed a hair sample (3–10 mg) using
round tip curved dissection scissors from the scapular
region on the back of each bat. The resulting samples
were placed individually in 1–2-ml plastic tubes using flat
tweezers. The dissection tools were cleaned with 70%
ethanol between sampling different individuals to avoid
cross contamination. The amount of hair removed from each
bat depended on the hair density of each species. The hair
shaft was carefully cut close to the root avoiding removing
skin or follicle tissue. From pilot analyses, we determined
a minimum amount of 3 mg of hair was necessary to
obtain values around 50% binding on the standard curve
thereby accurately estimating cortisol concentration in the
sample.

Extraction and quantification of cortisol
Hair samples were processed and analysed at the endocrinol-
ogy laboratory at the Toronto Zoo following methods
described by Acker et al., 2018. Each hair sample was spread
apart and weighed in a 7-ml glass scintillation vial. To avoid
contamination with other biological fluids, all hair samples
were washed with 100% methanol by vortexing in a tube for
10 s and immediately removing the methanol using a pipettor.
Immediately thereafter, 100% methanol was added to each
sample, at a ratio of 0.005 g/ml. Samples were then mixed
for 24 hrs on a plate shaker (MBI Orbital Shaker; Montreal
Biotechnologies Inc., Montreal, Quebec City, Canada). After
24 hrs the vials were centrifuged for 10 min at 2400 g. The
supernatants were pipetted off into clean glass vials and dried
down under air in a fume hood. The dried extracts were
stored at −20◦C until analysis.

Samples were brought to room temperature prior to anal-
ysis. Reconstitution of the desiccated extracts was done by
adding phosphate buffer and vortexing for 10 s. Belize sam-
ples were reconstituted neat (i.e. evaporated 150 ul and recon-
stituted with 150 ul), and Mexico samples were reconstituted
as follows: three species were neat, two species diluted 1:5 and
one species diluted 1:50 in phosphate buffer (Andreasson
et al., 2015). Cortisol concentrations were determined
using an enzyme immunoassay (EIA) previously described
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(Dulude-de Broin et al., 2019) but antibody dilution
was adjusted. Antibody (R4866, C. Munro, University of
California, Davis) and horseradish peroxidase dilutions were
1:10200 and 1:33400, respectively. Cortisol, rather than
corticosterone, was targeted because it has been found to
be the primary circulating GC in bats, with concentrations
four times higher than corticosterone (reviewed in Kwiecinski
and Damassa, 2000). Biochemical validation (parallelism
and recovery) of the cortisol EIA was done using pooled
hair extracts (see Supplementary data). We used pooled hair
samples from Big Brown bats (Eptesicus fuscus) from a
captive colony at McMaster University as a model for species
with low cortisol concentrations (i.e. extracts reconstituted
neat). For species with diluted extracts (Tadarida brasiliensis,
P. mexicanus and L. yerbabuenae) there was sufficient hair
for separate pools. The inter-assay coefficient of variation
(CV) for high control (24% binding) and low control (60%
binding) were 9.3% and 9.8%, respectively. The intra-assay
CV was 8.5%. The limits of detection and quantitation were
56 pg/ml and 153 pg/ml, respectively. Results are presented
as nanograms of cortisol per gram of hair.

Validation of immunoassay
Biochemical validations showed that the cortisol assay was
suitable for hair. The recoveries of known concentrations
of exogenous cortisol from hair extracts were 87.1 ± 3.5%
(dilution neat, E. fuscus), 98.8 ± 6.3% (dilution, 1:5; T.
brasiliensis), 105.4 ± 4.7% (dilution, 1:5; P. mexicanus)
and 101.3 ± 5.2% (dilution, 1:50; L. yerbabuenae). The
measured hormone concentrations in the spiked samples
correlated with the expected concentrations (E. fuscus:
r = 0.997, P < 0.001; T. brasiliensis: r = 0.982, P < 0.01; P.
mexicanus: r = 0.999, P < 0.001; L. yerbabuenae: r = 0.995,
P < 0.001; Supplementary data). Serial dilutions of pooled
hair extracts showed parallel displacement with the cortisol
standard curve (E. fuscus: r = 0.991, P < 0.01; T. brasiliensis:
r = 0.988, P < 0.01; P. mexicanus: r = 0.997, P < 0.001; L.
yerbabuenae: r = 0.996, P < 0.001; Supplementary data).

Species ecological traits
We compiled data on ecological traits considered relevant
to cortisol mobilization from previously published literature
and databases. Values for traits are species-level averages
and may not reflect specific values at these sites (Table 1).
Data on BMR was extracted from the literature (Cruz-Neto
et al., 2001; Genoud et al., 2018; see Supplementary data)
and when not available (n = 2) the following formula was
used for the estimation: ln BMR = 0.744 × ln mass(in g) +
1.0895 (Speakman and Thomas, 2003). Information on diet,
foraging style, percentage of invertebrates in the diet and
fecundity was extracted from the Elton Traits, PanTHERIA
and Amniote Life History databases (Jones et al., 2009b;
Wilman et al., 2014; Myhrvold et al., 2015). We collapsed
variation in diet into two dietary guilds: phytophagy (includ-
ing nectarivores and frugivores) and animalivory (insectivores

and carnivores) because many bat species in our study have
diets that combine more than one food source within these
categories (Fenton et al., 2001; Kunz and Fenton, 2005;
Reid, 2009; Oelbaum et al., 2019). We also considered the
percentage of invertebrates in the diet of the animalivorous
bats, which can vary significantly among species. Because
foraging behaviour is a complex and plastic trait, we sim-
plified this variable into two categories: aerial foragers (i.e.
hawkers) and gleaners (including species that glean plant
products like fruit as well as insects) since these behaviours
may reflect differences in energetic demands associated with
foraging (Herrera et al., 2018). Because wing morphology
can strongly influence the energetic costs of flight, we also
included the mean wing aspect ratio for each species (Norberg
and Rayner, 1987; Bullen et al., 2014). Fecundity was defined
as the annual average fecundity (litter size × number of
litters per year). We estimated roost durability following the
methods of Patterson et al. (2007), where 1 indicates the
most ephemeral and least protected roost types (e.g. rolled
leaves and foliage) and 6 indicates the most permanent and
protected roost types (e.g. caves). For species known to mul-
tiple use different kinds of roost, intermediate ranks were
calculated, weighting roost categories according to the rela-
tive frequency of use reported in the literature (Schneeberger
et al., 2013). Lifespan was drawn from the Animal Ageing
and Longevity database (AnAge: The Animal Ageing and
Longevity Database, 2020) and DATLife (DATLife Database,
2020). Lifespan was grouped in five categories: 0–5, 5–10,
10–15, 15–20 and >20 years. For many of the species in these
databases, longevity estimates are based on captive animals,
which likely overestimates life expectancy in the wild. Because
bats of a single species may live in colonies of varying sizes,
and most values of colony size are reported in ranges in
the literature, we classified maximum colony sizes reported
for each species as small (1–50), medium (50–500) or large
(>500) sensu Santana et al. (2011).

Data analysis
We first used phylogenetic generalized least squares (PGLS)
models to evaluate the effect of species-level ecological vari-
ables on hair cortisol concentrations while accounting for bat
phylogenetic relatedness. We used the rotl and ape packages
in R to extract the bat phylogeny from the Open Tree of Life
and calculate branch lengths with Grafen’s method (Paradis
et al., 2004; Michonneau et al., 2016). We first fit a null PGLS
model (intercept only) using the nlme package to estimate
phylogenetic signal as Pagel’s λ (Pagel, 1999). We next fit
a PGLS model with bat family as the predictor to assess
broad taxonomic patterns in hair cortisol. We then fit 15
PGLS univariate models with, dietary guild, foraging style,
roost durability, fecundity, lifespan and colony size as pre-
dictors. We also fit five multivariate PGLS models including:
BMR + body mass, dietary guild + fecundity, dietary guild
+ % invertebrates, dietary guild + lifespan + fecundity and
dietary guild + fecundity + colony. We compared PGLS
models with Akaike information criterion corrected for small
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sample sizes (AICc) and assessed fit with an adjusted R2

(Burnham and Anderson, 2002). All PGLS models included
weighting by sampling variance to account for variable sam-
ple sizes per species (Pennell, 2015).

We used generalized linear models (GLMs) to determine
which individual- and habitat-level factors influence hair cor-
tisol for each bat species. We first evaluated the relationship
between body mass and hair cortisol separately for each
species. Next, we ran species-specific GLMs including sex,
reproductive stage (by sex) and site disturbance as predictors.
Not all covariates were tested for all species due to sample
size restrictions. Total sample size and balanced sample sizes
among levels were considered to select the number of covari-
ates to include in the model for each species. We included
disturbance in GLMs only for species present in more than
one site (Pteronotus mesoamericanus, P. mexicanus, Mac-
totus waterhousii, T. brasiliensis, Glossophaga soricina, D.
rotundus) since disturbance was treated as constant within
sites. The only genus sampled in both Belize and Mexico
was Pteronotus. The two species P. mesoamericanus (Belize)
and P. mexicanus (Mexico) represent lineages considered
conspecific until a few years ago, but are now thought to
represent distinct species that diverged very recently based on
molecular and morphometric evidence (Pavan and Marroig,
2016). Because their phenotypes and ecology are still very
similar, we treated these as conspecific to test if there were
differences in hair cortisol between representatives from the
two regions (Mexico and Belize). Tukey post hoc tests were
conducted for significant covariates. We compared effect sizes
across bat species by evaluating the degree of overlap in 95%
confidence interval for each GLM coefficient. All analyses
used the natural logarithm of hair cortisol as the response
variable and assumed Gaussian errors. We confirmed that all
models fulfilled assumptions of normality, homoscedasticity
and non-multicollinearity (variance inflation factors < 3). We
report data as mean ± SD, unless otherwise noted.

Results
Ecological and evolutionary predictors of
hair cortisol
We analysed 259 hair samples from 18 different bat species
representing 5 families in Belize and Mexico (Table 1). Hair
cortisol concentration across species varied by four orders
of magnitude, ranging from 36.6 ± 40.5 ng/g in Eptesicus
furinalis to 24 614 ± 14 780 ng/g in L. yerbabuenae (Table 1).
Even though mean hair cortisol apparently differed among
families (F4,252 = 18.89; P < 0.01; R2 = 0.23; Fig. 2), this effect
did not hold after accounting for phylogenetic relatedness
(F4,13 = 1.84; P = 0.18; R2 = 0.16). Accordingly, we did not
find strong phylogenetic signal in cortisol (Pagel λ = 0). Eco-
logical and life history traits were instead better predictors
of species-level cortisol levels (Table 2). Mean hair cortisol
was best predicted by a model including both dietary guild
and fecundity; however, only fecundity had a significant effect

Figure 2: Mean and standard error of cortisol concentration in hair
samples from 18 Neotropical bat species grouped by family.
Summary statistics are displayed without adjusting for bat
phylogeny. The y-axis is displayed on a log10 scale.

(F2,15 = 5.51; P = 0.01; R2 = 0.34; Table 2). Annual fecundity
explained 24% of the variance in Neotropical bat mean hair
cortisol. Species reported to have more than one pup per year
had significantly lower cortisol than bats having only one pup
per year (F1,16 = 6.22; P = 0.02; Fig. 3A). While phytophagous
bats seem to have higher levels of cortisol in hair than
animalivorous bats, this difference is not significant when
considering the phylogenetic relatedness (Fig. 3B). Other eco-
logical traits including roost durability, foraging style, and
colony size were uninformative (Table 2). As cortisol levels
varied by sex for some species (see below), we reran our
model comparison after calculating species-level means for
males and females separately. However, the above aggregate
species-level results held when analysing the sexes separately
(Supplementary Tables 2-3).

The lesser long-nosed bat (L. yerbabuenae) showed par-
ticularly high hair cortisol (24 614 ± 14 780 ng/g). Because
the high values of this species could bias inter-species com-
parisons, we assessed the sensitivity of our top models by
excluding L. yerbabuenae. In Fig. 3C, we show the coefficients
from the top PGLS models with and without this species. In
both cases, fecundity was the best species-level predictor of
hair cortisol regardless of including L. yerbabuenae.

Individual-level analyses of bat hair cortisol
When investigating intra-specific variation, we found positive
relationships between body mass and hair cortisol in two
species: P. mesoamericanus (F1,24 = 7.34; P = 0.010; R2 = 0.23)
and Molossus nigricans (F1,4 = 96.52; P < 0.01; R2 = 0.96;
Fig. 4). The opposite trend was found in P. mexicanus, where
heavier bats presented lower cortisol (F1,33 = 7.97; P < 0.01;
R2 = 0.19). For D. rotundus, only sex was a significant

..........................................................................................................................................................

7



..........................................................................................................................................................
Research article Conservation Physiology • Volume 9 2021

Table 2: PGLS models predicting hair cortisol (ln transformed) in Neotropical bats. Models are ranked by �AICc with the number of coefficients
(k), Akaike weights (wi) and the adjusted R2

Model structure df �AICc wi R2

Dietary guild + fecundity 2 0 0.412 0.34

Fecundity 4 1.08 0.247 0.24

Dietary guild+ fecundity+ foraging style 5 3.30 0.081 0.30

1 (intercept only) 6 4.12 0.054 0

Dietary guild + fecundity+ lifespan 1 4.38 0.048 0.46

Roost durability 2 5.64 0.025 0

Dietary guild 3 5.68 0.024 0.01

BMR+ body mass 3 6.00 0.021 0

Sample 2 6.39 0.017 0.33

Foraging style 2 6.67 0.015 0

Colony size 4 8.01 0.007 0.37

Dietary guild + invertebrate% 3 8.35 0.006 −0.03

BMR + foraging style 3 8.92 0.005 −0.08

Family 5 9.12 0.004 0.16

Foraging style + WAR 3 9.15 0.004 −0.1

Lifespan 4 10.54 0.002 −0.06

Figure 3: Left: Cortisol concentration in hair samples from 18 Neotropical bat species according to diet and annual fecundity. Y-axes are
displayed on a log10 scale. A. Mean hair cortisol by number of offspring per year. B. Hair cortisol by dietary guilds (animalivory or phytophagy). C.
Differences in parameter estimates for the PGLS model with and without L. yerbabuenae. Bars indicate the 95% confidence intervals. The
reference values for each variable of the model are listed in parentheses.

predictor of hair cortisol (F1,19 = 4.39; P = 0.04; R2 = 0.19).
Male vampire bats had significantly lower hair cortisol than
females (t20 = 2.09; P = 0.02). Similarly, variation in hair
cortisol in the moustached bat (P. mesoamericanus) and the
mastiff bat (M. nigricans) was explained only by sex, with
males having lower concentrations than females (t4 = 2.68;
P = 0.01 and t24 = −6.373; P = 0.01, respectively; Fig. 5).
When treating P. mesoamericanus (Belize) and P. mexicanus

(Mexico) as one species, we found differences in hair cortisol
between the two populations. Bats from Mexico had higher
cortisol than their counterparts in Belize (F1,59 = 29.88;
P < 0.01; R2 = 0.33). Within Mexico, hair cortisol in P.
mexicanus was explained by site disturbance (F2,31 = 72.35;
P < 0.001): bats roosting in Don Pancho cave (San Agustin
island), a site with moderate disturbance (HMI = 0.38),
showed significantly higher hair cortisol than bats roosting in
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Figure 4: Relationship between hair cortisol concentration and body mass for each Neotropical bat species. Lines represent the GLM fit for
each species. The y-axis is shown on a log10 scale.

Figure 5: Mean and standard error for hair cortisol concentration by
sex (F, female; M, male) for nine species of Neotropical bat species.
Asterisks indicate species for which cortisol significantly varies by sex.
Effects are only shown for species with balanced sample sizes per sex.
Y-axes are shown on a log10 scale.

El Salitre and La Fabrica caves in Colima (t20 = 9.94, P < 0.01;
t21 = −10.29; Fig. 1). There was no effect of sex (t33 = −1.15;
P > 0.31) or females’ reproductive stage (F4,14 3.26; P = 0.06)
on hair cortisol in P. mexicanus. For other species such
as E. furinalis (F1,12 = 2.451; P = 0.64), L. yerbabuenae
(F1,17 = 0.52; P = 0.94), Saccopteryx billineata (F2,17 = 0.18;
P = 0.83), Rhynchonycteris naso (F2,11 = 2.60; P = 0.12),
G. soricina (F3,15 = 0.13; P = 0.94), Macrotus waterhousii
(F2,18 = 0.24; P = 0.78), Sturnira parvidens (F2,14 = 0.2052,
P = 0.81) and A. pallidus (F2,9 = 0.506; P = 0.68), none of the
individual- or habitat-level traits examined were informative
predictors of hair cortisol levels.

Discussion
Analysis of hair cortisol has become a popular method to
study long-term stress in wild animals, offering several practi-
cal advantages (e.g. minimally invasive collection, easy sample
storage and transport). An accurate interpretation of cortisol
levels attributed to stress, however, requires a good under-
standing of the intrinsic and extrinsic drivers of baseline
variation. Factors influencing hair cortisol in bats must be
identified before hair cortisol can be used as a conservation
tool to assess effects of environmental conditions on bat pop-
ulation health. In this study, we present the first quantification
of hair cortisol in bats and describe relationships between
hair cortisol levels and both intrinsic and ecological traits.
Cortisol in blood, faeces and hair are known to be highly
correlated in various mammals (e.g. chimpanzees, chipmunks
and mice; Kalliokoski et al., 2019). Therefore, although the
concentration values are not directly comparable across dif-
ferent matrices, the effects of covariates can still be compared
with our results.

One of the advantages of the use of hair as a physiological
biomarker of stress is the longer window of time that it
provides compared to other samples like blood and faeces.
This feature, however, is only useful if the rate of hair growth
and moulting patterns are known for the species of concern.
Moulting cycles in bats are understudied, especially in tropical
bats (Fraser et al., 2013). Therefore, we cannot be certain
of the precise temporal window that this biomarker could
represent for our study species. While moult patterns for most
of our tropical study species are unknown, we know that
many temperate species have a one annual summer/fall moult
cycle (Fraser et al., 2013). If we assume our study species
have a similar cycle, then the hair cortisol levels detected
in our study would be reflecting primarily the circulating
cortisol levels during one to two months of rapid hair growth
between July and September. Moult in tropical bats, however,
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might not be confined to a distinct or single annual event,
given the relative stable environmental conditions the tropics
offer. Moult patterns in tropical bats therefore should be
investigated further to allow inferences about the window of
time over which cortisol levels in hair integrate and reflect
circulating levels. Other aspects associated with differences in
the timing of new fur growth, and therefore cortisol deposi-
tion in hair, could be related to local environmental variables
(e.g. precipitation, temperature and food seasonality; Tiunov
and Makarikova, 2007), as well as species–specific life history
traits (e.g. reproduction and migration; Heydon et al., 1995).

Overall, we found particularly high hair cortisol in most
bat species compared to levels reported in hair for other small
mammals (e.g. chipmunk [66-110 g] = 40.27–260.22 ng/g of
hair; Mastromonaco et al., 2014). Previous studies in bats,
examining plasma and faeces, have also reported higher cor-
tisol levels relative to similar samples from other mammal
species (Lewanzik et al., 2012; Kelm et al., 2016; Hald, 2019).
Some of the exceptional life history traits of bats, such as long
lifespan and low fecundity, could explain why bats exhibit
higher levels of GCs compared to other mammals (Austad
and Fischer, 1991). According to life history theory, long-lived
species with low reproduction rates are expected to prioritize
their adult survival (i.e. future offspring) over current repro-
duction (Stearns, 1992), which could in turn favour higher
investment in self-maintenance that might be facilitated by
high baseline levels of GCs (Ricklefs and Wikelski, 2002).

Ecological factors among species
Despite the similarity in the HPA hormonal pathways across
vertebrates, baseline and stress-induced GC levels are context
and species specific (Romero, 2004; French et al., 2008;
Crespi et al., 2013; Kalliokoski et al., 2019). In light of this,
it is not surprising that hair cortisol levels in bats showed
broad interspecific variation. The differences found could not
be explained solely by taxonomic family or phylogenetic relat-
edness (λ = 0), which suggests that other environmental and
ecological factors are influencing hair cortisol in Neotropical
bats.

Among all the ecological traits evaluated, annual fecundity
was the best predictor of hair cortisol. Species with lower
fecundity showed higher concentrations of cortisol in hair.
This relationship can be supported from a physiological per-
spective, considering that GCs play an important role modu-
lating the production of reproductive hormones upstream in
the hypothalamic–pituitary–gonadal axis, both under home-
ostatic and challenging conditions. This interaction, however,
has only been clearly demonstrated within populations (e.g.
individuals with high levels of cortisol reduce reproduction,
reallocating energy current needs). It is unknown if inter-
specific variation in GCs is driven by the same mechanisms.
Looking to other taxa, studies on birds have found similar
results to those here in Neotropical bats, where avian species
with low clutch size and few breeding events showed higher
circulating GCs (Bókony et al., 2009; Ouyang et al., 2011).

This pattern is supported by predictions from life history
theory; for species with lower fecundity, the value of each
offspring is higher than in species with relatively high fecun-
dity (Lendvai et al., 2007). Parents of more valuable broods
would be predicted to be more ‘willing’ to invest in offspring
survival, which might be facilitated by high baseline GC levels
(Bókony et al., 2009). Confirming if this mechanism explains
the GCs levels found in our bat species would require more
information about reproductive strategies (e.g. monoestry
and polyoestry) and seasonality (Wingfield and Sapolsky,
2003), which is limited for most Neotropical species. A more
practical rationale for our results could be related to differ-
ences in hair cortisol deposition among species with different
reproductive cycles. For many species, pelage moulting occurs
after breeding (Constantine, 1957; Dwyer, 1963; Cryan et al.,
2004; Measor et al., 2017), given that both reproduction
and hair growth are energetically demanding processes (Ling,
1970). Based on this pattern, we could expect that cortisol
deposition in hair may reflect differences in breeding events
among bat species.

Although diet explained additional variation in Neotrop-
ical bat hair cortisol, this variable was uninformative when
considering phylogenetic relationships; hair cortisol did not
vary significantly between our simplified dietary guilds. Fur-
ther studies using a more accurate classification of diet (e.g.
using stable isotopes or metabarcoding; Oelbaum et al., 2019;
Ingala et al., 2021) could give more conclusive insights into
the links between feeding strategies and cortisol levels in bats.

GCs play a key role in metabolic function, facilitating
fuel mobilization (e.g. glucose, fatty acids) under normal and
challenging conditions (Kuo et al., 2015). A positive relation-
ship between resting metabolic rate (RMR) and plasma cor-
tisol levels has been reported for various mammalian species
(including four species of bats), and this relationship has been
suggested as a general pattern for mammals (Haase et al.,
2016). Due to the limited data on RMR for our study species,
we used BMR as an indicator of energy expenditure. Different
to what we expected, BMR was not an informative factor for
cortisol variation in hair among the bats in our study. The
positive relationship between cortisol levels and metabolic
rate previously found in plasma might be obscured in studies
of hair cortisol like ours, due to confounding factors such
as moulting cycles and cortisol deposition rate. In addition,
obtaining accurate BMRs in wildlife species (particularly free-
ranging animals) is challenging, which raises questions about
the quality of BMR data, especially in comparative studies
(Genoud et al., 2018). For future studies, a more realistic
and informative indicator of energy turnover in free-ranging
animals is the Daily Energy Expenditure (Speakman, 1997),
which integrates the energy allocated in different activities
such as foraging, commuting and thermoregulation (Butler
et al., 2004).

The relationship between body condition and GC release
has been widely evaluated, because weight loss is one of the
early responses to long-term stress in many species (Kitaysky
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et al., 1999; Angelier et al., 2009; Dickens and Romero, 2013).
However, the direction of the effect of body condition on cor-
tisol is context and species dependent (Crespi et al., 2013). We
used body mass as an indicator of body condition because it is
a more informative metric than other indices in bats (McGuire
et al., 2018). We found different directions of the effect of
body mass on hair cortisol. For two of the studied species
(M. nigricans and P. mesoamericanus), heavier individuals
showed higher concentrations of hair cortisol. In contrast,
P. mexicanus showed a negative relationship between body
mass and cortisol. These divergent results suggest that the
relationship between cortisol and body condition of bats is
not generally predictable and might be species specific. Hair
cortisol only reflects the time window of fur growth. There-
fore, it is possible that body condition might have changed
since the individual’s last moult.

One species that stood out for its particularly high levels
of cortisol was L. yerbabuenae. This species is highly mobile
and migratory (Horner et al., 1998; Buecher and Sidner, 2013;
Medellin et al., 2018). Migration itself was not considered in
our analyses, because the degree to which bats may migrate
seasonally is unclear for many of the species in our sample.
Migratory behaviour, however, could explain such high corti-
sol concentrations in L. yerbabuenae. La Fábrica caves in Col-
ima, one of our field sites, is known to be one of the starting
points of the annual migration of L. yerbabuenae (Medellin
et al., 2018). The role of GCs during migration has been
widely studied in birds, fish and some large mammals, but
not in bats (Holberton, 1999; Romero, 2002; Wada, 2008).
We hypothesize that premigratory fattening could explain the
high hair cortisol levels observed in L. yerbabuenae, and we
encourage future studies to address this question.

Consistent with other studies, we found differences in
hair cortisol levels between sexes, albeit for only 4 of our
18 studied species: D. rotundus, M. nigricans, P. mexicanus
and P. mesoamericanus. For these species, females showed
higher cortisol than males, a trend that appears to hold for
many mammalian species (Bechshøft et al., 2011; Hau et al.,
2016; Rakotoniaina et al., 2017; Dettmer et al., 2018). Higher
levels of GCs in females can be attributed to sex differences
in the HPA axis activity, which are mainly mediated by
gonadal steroid hormones (i.e. androgens and estrogens). For
example, estradiol, which is more abundant in females than
males, can enhance cortisol release, while androgens tend to
reduce its production (Handa et al., 1994). Other mechanisms
underlying sex differences in HPA axis regulation and stress-
related behaviours in mammals are reviewed by Zuloaga
et al. (2020). Females have also shown differences in HPA
axis activity depending on their life history stage, with GCs
being higher during the late stages of pregnancy (Reeder et al.,
2004). Studies in a fruit-eating bat (Artibeus jamaicensis) and
little brown myotis (Myotis lucifugus) have reported higher
levels of plasma GCs in pregnant females (Reeder and Kramer,
2005; Klose et al., 2006). Contrary to those findings, we
did not find reproductive state to influence hair cortisol in

our female-only model (i.e. for P. mesoamericanus in Belize).
However, it may have been difficult to detect an effect, given
the low number of pregnant females in our sample (n = 5,
24%) and the fact that moulting might not occur in conjunc-
tion with mating. Although cortisol has been proposed as the
primary GC in bats (reviewed by Kwiecinski and Damassa,
2000), corticosterone is also detectable in circulation and has
been identified to play an important role in reproduction
(Koren et al., 2012). Therefore, some effects of ecological
traits could go unnoticed and the complexity of the stress
response in bats could be oversimplified by quantifying only
cortisol.

Bats have been proposed as good indicators of habitat
quality due to their ecological diversity, wide distribution and
potential sensitivity to disturbance (Jones et al., 2009a; Cunto
and Bernard, 2012; Stahlschmidt and Brühl, 2012). However,
a clear correlation between environmental disturbance and
cortisol levels, in faeces and blood, has not been reported
in bats (Wada et al., 2010; Allen et al., 2011; Kelm et al.,
2016). Cortisol in hair could reflect better the effects of
chronic stressors such as human settlements, and it is not
sensitive to capture stress. We compared hair cortisol in three
of our study species found in sites with varying fragmentation
and agricultural activities in Mexico. We found an effect of
disturbance in only one of these species, P. mexicanus, for
which bats roosting in Don Pancho Cave island, a site with
moderate disturbance, showed the highest concentrations of
cortisol (Fig. 1). We speculate that the high levels found in this
population could reflect differences in the cave microhabitat
compared to the other caves in our Mexican sample. Don
Pancho Cave is a narrow crevice estimated to have a higher
colony size (100 000 individuals from 6 species; Téllez et al.,
2018) than the other sampled caves El Salitre (∼10 000
individuals from 10 species; Torres-Flores et al., 2012) and
La Fábrica (>5000 individuals from four species). The high
density of bats in the Don Pancho cave may increase agonistic
social interactions (Creel et al., 2013) and parasite transmis-
sion (Langwig et al., 2012; Postawa and Szubert-Kruszyńska,
2014), factors that have been shown to increase cortisol levels
in other mammals.

Physiological responses to chronic stress in wildlife are
difficult to unravel and predict unless multiple responses at
different levels of biological organization are evaluated simul-
taneously (Dickens and Romero, 2013). Hair cortisol offers
great potential as a tool to monitor health in wild popula-
tions, particularly those already identified at risk (Kalliokoski
et al., 2019). For instance, chronically elevated cortisol levels
have been linked to greater susceptibility to infection and
disease severity (Davy et al., 2017). Periodic surveys of hair
cortisol could therefore help identify periods when bats might
be more vulnerable to infection (e.g. white nose syndrome).
Further, such surveys might also inform when individuals are
more likely to shed zoonotic pathogens (e.g. henipaviruses
and filoviruses; Plowright et al., 2008; Davy et al., 2017;
McMichael et al., 2017; Kessler et al., 2018).
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Conclusions
The current study reports cortisol levels in hair of 18 Neotrop-
ical bat species from two countries and serves as a reference
for future research using this method in wild bat populations.
We found that fecundity and potentially diet are important
ecological traits explaining interspecific variation in bat hair
cortisol. Within species, female bats exhibited higher cortisol
than males and the effect of body mass varied among species.
Other factors that may be important at the individual level,
such as parasite load and colony size, should be considered
in future studies to have a more complete understanding of
sources of variation on baseline GC levels within species.
Importantly, studies looking at hair growth rate and moulting
cycles in Neotropical bat species are imperative to give an
accurate interpretation of hair cortisol as a biomarker of
stress response. Applied properly, hair cortisol quantification
is a powerful minimally invasive technique with multiple
potential applications in bat ecology, physiology and conser-
vation. Our findings and ongoing work will help to validate
and apply hair cortisol as a monitoring tool in wild bat
populations.
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