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Abstract

Purpose of review—Epidemiological studies of short and long-term health impacts of ambient 

air pollutants require accurate exposure estimates. We describe the evolution in exposure 

assessment and assignment in air pollution epidemiology, with a focus on spatiotemporal 

techniques first developed to meet the needs of the Multi-Ethnic Study of Atherosclerosis and Air 

Pollution (MESA Air). Initially designed to capture the substantial variation in pollutant levels and 

potential health impacts that can occur over small spatial and temporal scales in metropolitan 

areas, these methods have now matured to permit fine-scale exposure characterization across the 

contiguous United States, and can be used for understanding long- and short-term health effects of 
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exposure across the lifespan. For context, we highlight how the MESA Air models compare to 

other available exposure models.

Recent findings—Newer model-based exposure assessment techniques provide predictions of 

pollutant concentrations with fine spatial and temporal resolution. These validated models can 

predict concentrations of several pollutants, including particulate matter less than 2.5 μm in 

diameter (PM2.5), oxides of nitrogen, and ozone, at specific locations (such as at residential 

addresses) over short time intervals (such as two weeks) across the contiguous United States 

between 1980 and the present. Advances in statistical methods, incorporation of supplemental 

pollutant monitoring campaigns, improved geographic information systems and integration of 

more complete satellite and chemical transport model outputs have contributed to the increasing 

validity and refined spatiotemporal spans of available models.

Summary—Modern models for predicting levels of outdoor concentrations of air pollutants can 

explain a substantial amount of the spatiotemporal variation in observations and are being used to 

provide critical insights into effects of air pollutants on the prevalence, incidence, progression, and 

prognosis of diseases across the lifespan. Additional enhancements in model inputs and model 

design, such as incorporation of better traffic data, novel monitoring platforms, and deployment of 

machine learning techniques will allow even further improvements in the performance of pollutant 

prediction models.

Introduction

Exposure to air pollution is a well-recognized risk factor for numerous adverse health 

effects, including morbidity and mortality due to multiple disorders and reduction in life 

expectancy [1–3]. Air pollution is considered the largest environmental cause of disease 

burden globally [4], and owing to ubiquity of exposure, even modest increases in dose may 

result in substantial negative health consequences at the population level.

Validity of epidemiological cohort studies of health effects of air pollutants requires accurate 

estimates of exposure associated with individual study participants. Ideally, researchers 

would use individual-focused micro-environmental measures of exposure over the period 

relevant for examining the outcome under consideration. In practice, however, multiple 

factors render this infeasible, including low reliability and/or high cost of personal exposure 

measurement devices, the burden of deploying such devices for more than brief periods of 

time or in large populations, and the inability to focus only on ambient-source pollutants—

which are typically the regulated pollutants of primary epidemiological interest—with 

current personal monitoring technologies. In a prior generation of studies (conducted 

towards the end of the 20th century) [5, 6], it was common to assign air pollution 

concentrations from centralized monitors to all individuals residing in a particular region. 

This approach suffers key shortcomings. Notably, it misses spatial variation in concentration 

within the coverage area, which can be substantial even across relatively small distances. 

Also, centralized monitors are available in comparatively few places and some are sited in 

ways that can make their measurements systematically biased or not reflect community-wide 

concentrations.
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Modern epidemiologic cohort studies of air pollution increasingly rely on statistically-

modeled predictions of concentrations. This involves the use of pollutant measurements 

from relatively few monitored locations in conjunction with multiple types of geographic, 

atmospheric, and physicochemical information as covariates in statistical models to estimate 

the concentration of pollutants at a much larger number of unmonitored locations over a 

given timeframe (Figure). Although this approach addresses some shortcomings of the 

traditional approaches, statistical prediction of pollutant concentrations has its own 

challenges, including missingness and irregularity of input data, the need for geographic and 

other covariates necessary for accurate prediction, and the need for user-friendly statistical 

techniques with transparent validation procedures that can be used to process data inputs and 

produce stable predictions.

Reviews have discussed the principles, characteristics, and comparative performance of 

various methods for assessing and modeling air pollution exposures [7–9]. Here we focus 

particularly on describing recent developments in statistical prediction of pollutant 

concentrations through the lens of spatiotemporal modeling approaches developed in the 

Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). MESA Air, a cohort 

study of more than 7,000 Hispanic, Chinese American, white, and African American adults 

in six metropolitan regions, was designed to assess the association between ambient air 

pollutant exposure and cardiovascular disease [10]. We start by outlining the rationale for 

highly-resolved estimates of pollutant concentrations in cohort studies, introduce the core 

spatiotemporal model developed for application in the six MESA Air regions, and then 

discuss how the model has been extended to serve a wider array of epidemiologic use-cases. 

Along the way, we briefly discuss alternative modeling approaches for each use case and 

highlight insights learned while developing and deploying the models in health outcome 

studies. Finally, we outline opportunities for further improving model-based exposure 

assessment in air pollution studies.

Motivation for estimating fine-scale concentrations of pollutants

The goal of exposure assessment in air pollution epidemiology is to accurately quantify the 

average concentration of a target pollutant at specific locations, especially where people live 

or otherwise spend most of their time, over the periods of interest. Air pollutant 

concentrations vary at fine scale, and the inability to capture this variation risks bias due to 

exposure misclassification or may result in biased and/or imprecise estimates of health 

effects [11–13]. Fine-scale variation is important because intra-region variation in 

concentrations and associated health risks may be larger than inter-region differences [14, 

15]. While the magnitude of within-region variation differs by pollutant, all pollutants 

exhibit important intra-urban variations in concentration, both across space and over time. 

Important predictors include proximity to roadways and other point sources, meteorology 

and other seasonal factors, and geographic properties such as predominant land uses, 

elevation and topography. Structural factors such as policies that influence emissions from 

industrial or transportation sources may impact secular trends in concentrations, while 

features like meteorology, traffic patterns, and economic activity result in substantial short-

term swings in concentrations. Exposure gradients across even relatively small distances or 

durations have been shown to be of epidemiological consequence [16], hence estimation and 
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inference about pollutant-outcome relationships requires accurate exposure assessment 

methods.

Evolution from metropolitan area-wide estimation to nearest monitor to 

precise residential locations

In early landmark air pollution cohort studies, exposure concentrations were often assigned 

to all participants in a region based on central “regulatory” monitors [5, 6]. However, this 

eliminates the opportunity to exploit intra-region spatial variation. An early solution was to 

assign exposures based on nearest monitors when a study region had more than one monitor 

[15], but this approach still did not address the core issue of local pollution variation because 

even in high-income countries, well-calibrated reference-standard monitors are sparsely-

located and unevenly-distributed [17].

Exposure assessment using model-based predictions addresses this problem. There are 

different types of statistical models, but all typically calculate parameters that explain the 

relationship between pollutant concentrations at measured locations and a wide variety of 

characteristics thought to influence pollutant formation, distribution and decay, and then 

deploy those parameters to estimate pollutant levels at unmonitored places and times, 

conditional on the predictive characteristics. Models are distinguished by the covariate 

selection and algorithmic approaches employed, the nature of covariates used, whether they 

account for spatial or temporal variation or both, application of geostatistical techniques to 

account for spatial structure outside of the mean field, and whether they are designed to take 

inputs and produce outputs that correspond to “gridded” areas or point locations. The quality 

of resultant estimates is judged by comparing model predictions to observations where 

measurements are available. Prediction accuracy can be measured by mean square error, 

which represents average difference between model predictions for specific locations and 

their corresponding input observations, or by R2, a measure of explained variation based on 

either spatial or temporal comparisons of average predictions versus observations. Spatial R2 

can be operationalized as the cross-validated squared correlation coefficient of the long-term 

averages of predictions and observations at every monitored location, while temporal R2 

may be calculated as the median of squared correlation coefficients of observations and 

predictions at each location across the study period.

Model-based methods for predicting air pollutant concentrations include land-use regression 

(LUR) [18], geostatistical methods such as kriging [19], satellite-derived aerosol optical 

depth [20, 21], chemical transport modeling (CTM) [22], dispersion models [23], 

generalized additive models [24], and artificial neural networks [25]. Each has advantages 

and limitations [7], prompting adoption of fine-scale prediction strategies that tap their 

collective strengths, including universal kriging-based statistical models that incorporate 

CTM and satellite-derived variables as covariates [26, 27], and hybrid models that fuse 

multiple methodologies [28]. LUR has remained the term used for models built using 

variables obtained from geographic information systems (GIS), although land use is only 

one of the variable classes used to predict concentrations. Other frequently used classes of 

predictors include population density, and traffic characteristics, transportation routes, and 

Kirwa et al. Page 4

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ground-level characteristics from satellite imaging [18]. In kriging, spatial dependence in the 

data is used to develop continuous surfaces of pollution, and variability in concentrations is 

modeled as a factor of spatial trend (local and/or long-range) and non-spatial error 

components [19]. Simple kriging assumes no global trend in the data and spatially 

homogenous variation, while universal kriging is the result of combining LUR and simple 

kriging, whereby LUR predicts aspects of the exposure surface that are related to geography 

and kriging spatially smooths the residuals [29].

GIS data are a foundation of these models. GIS enhancements continue at a rapid pace, and 

currently permit compilation of expansive libraries of covariates, ability to accurately 

calculate covariates for arbitrarily-defined points or buffers around points, frequent 

covariates updates, improved completeness of covariates, and longer time periods of 

coverage with more uniform sets of covariates across numerous political jurisdictions. 

Recent implementations of fine-scale models have used up to 400 geographic covariates, 

available for the entire United States [30]. These include land use types, vegetation cover, a 

large array of traffic-related proximity and length measures, emission sources, topography, 

proximity to sea- and air-ports, and detailed sociodemographic and census data, among 

others. Still, there are covariates that may be desirable but are not yet incorporated in current 

models or readily available in a uniform national system, including waterway traffic, 

national bus and truck routes, and measures of wildfire occurrence and plumes of resultant 

smoke, and some relevant built environment features. For some urban settings, accurate 

point-specific residential exposure prediction may also benefit from incorporating elevation 

estimates (e.g., for multi-story housing), and information regarding “street canyon” effects.

Given increasingly high-dimensional and potentially correlated GIS covariates, pollutant 

model specification decisions benefit from approaches that both optimally characterize 

pollutant variation and are parsimonious, to avoid overfitting, collinearity, and computational 

challenges. Options include variable selection via stepwise regression and/or shrinkage 

using techniques such as LASSO [29]. A third choice is covariate dimension reduction, 

which avoids selecting a limited subset of variables and creates composite scores through, 

for example, partial least squares (PLS) or principal components regression.

The finest feasible spatial scales for model outputs depend partly on the resolutions of model 

inputs, such as geographic data and satellite or pollutant measurements. Current fine spatial 

scale models provide predictions either at a point [31] or at grids of 1km x 1km or less [25]. 

While small grids are a substantial improvement from region-wide assignment, there 

remains potential for within-grid measurement error—especially in spaces where 

concentrations can vary over smaller scales as is typically the case in urban areas. 

Additionally, grids are often defined arbitrarily in ways that make them incompatible with 

other geographic domains, such as postal codes, at which covariates and outcomes used for 

health analyses are aggregated. Spatial misalignment may then occur among participant 

health indicators assessed, for example, at individual level, socioeconomic covariates 

assessed at yet another geographic scale (e.g., census tract or county level), and exposure 

estimates evaluated at the grid level, leading to bias that can be difficult to quantify [32].
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Point-based predictions may reduce the measurement error at the cost of requiring more 

elaborate ground-level monitoring and more precisely-calculated model inputs. Point-

specific predictions also may provide larger exposure contrasts, boosting the power available 

to detect health effects. Additionally, point-level predictions at fine temporal resolutions 

enable calculation of more accurate time-weighted cumulative exposures for study 

participants who reside in multiple locations with disparate exposure levels during the 

course of the study.

Developments in model-based pollutant prediction: insights from MESA Air 

spatiotemporal model

To meet the epidemiological needs of modern cohort studies, advances in model 

development have tackled a number of pertinent challenges. These include dealing with the 

complex and irregular nature of input outcome and covariate data, providing finely-resolved 

estimates at a national scale, and providing accurate predictions for the times preceding 

availability of reliable, dense regulatory monitoring networks. Exemplifying with a number 

of epidemiological applications of the MESA Air spatiotemporal model, we discuss how 

statistical innovations, exposure monitoring improvements, and expanded GIS data 

availability have helped deal with these challenges. For each application, we also briefly 

outline alternative modeling approaches. The table shows the performance of a number of 

statistical models that provide nationwide coverage at fine spatial scale. For non-MESA 

models, we show performance metrics as reported by the various authors. It is difficult to 

compare models head-to-head because investigators use different performance statistics and 

spatial/temporal scales. Moreover, an ideal comparison would involve contrasting 

predictions from different models at a population-based set of locations across the country, 

which is not feasible.

Structure of the MESA Air spatiotemporal model

The MESA Air spatiotemporal model is an extension of universal kriging. It is assumed that 

pollutant concentrations exhibit systematic seasonal and secular trends that vary over space, 

and that the long-term averages and short-term amplitudes of these trends are predictable 

based on a combination of geographic characteristics and spatial smoothing [33]. The model 

can be summarized as

C(s, t) = μ s, t   + v(s, t)

where C(s,t), the log-transformed two-week average concentration of a pollutant at location 

s and time t, is a function of a spatiotemporal “mean” air pollution surface [μ(s,t)] and 

spatially correlated but temporally-independent kriged residuals [v(s,t)]. The spatiotemporal 

mean is constructed as a linear combination of temporal trends [fi(t)] of pollution in a given 

region with spatially varying coefficients [βi(s)] that describe the amplitudes of the temporal 

trends at different locations, and spatiotemporal covariates, if any are used
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μ(s, t) = β0(s) + ∑
i = 1

m
βi(s)fi(t) + ∑

l = 1

L
γlℳl s, t

where β0(s) represents the long-term mean at location s, while m is a small number of 

temporal trends derived from singular value decomposition of the long time series of 

monitored concentrations, and ℳl are any spatiotemporal terms included, with coefficients 

γl. The first temporal basis function f0(t) is set to 1 and the rest have a mean of 0. The 

independent spatial surfaces at each time period are modeled with separate kriging models

βi  N Xi s αi,  Σi ϕi

where i = 0,…,m and Xi(s) are geographic covariates which are typically dimension-reduced 

in practice using partial least squares (PLS) regression. The model estimates regression 

parameters of the geographic covariates (αi), any spatiotemporal covariates used (γl), and 

covariance parameters for the βi fields [Σi ϕi , depending on the chosen geostatistical 

covariance structure. γl = 0 if no spatiotemporal covariates are included.

This framework leverages the LUR construct, including the constant time-averaged spatial 

field f0(t) to describe trends related to emission sources, population, land use, and near-

source concentrations while simultaneously producing smooth, more realistic pollution 

surfaces owing to spatial smoothing. Validation strategies account for the complexity of the 

goals in order to, for example, provide an accurate representation of out-of-sample 

performance in regions that lack adequate monitor coverage [31].

The model’s structure also illustrates its ability to provide predictions at fine temporal 

scales. Reliance on long-term data from reference-grade monitors implies that it accurately 

captures secular variations in pollutant concentration. While reference data are limited to 

one-in-three or one-in-six-day availability, diagnostics show that the model also captures 

fortnightly variations well. Daily data are available from other sources, including some 

ground monitors and satellite-derived aerosol optical depth (AOD), but these are typically 

not available at the fine spatial resolution at which this model operates. Overall, the model 

reliably yields accurate predictions at specific geolocations on an approximately semi-

monthly scale.

Metropolitan region-specific spatiotemporal applications incorporating supplemental 
monitoring data (MESA Air spatiotemporal models)

Many models that use ground-based pollutant observations rely on routine monitors whose 

spatial sparsity may make them insufficient for fine-scale prediction. Additionally, these 

monitors are sited primarily for regulatory purposes, not specific epidemiological objectives. 

Most regulatory monitors for oxides of nitrogen in the US, for example, were until recently 

sited far from major roads [34]. To support empirically-driven fine-scale prediction, 

investigators have deployed focused supplemental monitoring schemes to increase the 

spatial density of available measurements while pursuing specific epidemiological goals 
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[35]. A study primarily interested in the health effects of traffic-related pollutants can focus 

supplemental monitoring on locations near to roadways [10]. Investigator-deployed 

supplemental monitors permit targeting locations of interest that may be underrepresented 

by regulatory monitors (e.g. homes and schools), capture exposure variations in places with 

mixed land use characteristics, or uncover exposure dynamics over spatial domains with 

complex gradients, such as along emission sources or leeward and windward sides of large 

buildings.

For cost and logistical reasons, supplemental monitoring has generally been constrained to 

non-synchronous campaigns with short timeframes, resulting in spatiotemporal 

misalignment with routine monitoring data. To address this, the approach to model fitting 

and estimation in the spatiotemporal model described above is designed to accommodate 

irregular pollutant measurements characterized by arbitrary missingness and varying lengths 

of temporal coverage [33]. This has allowed fine-scale spatiotemporal prediction models to 

be developed for multiple metropolitan regions where supplemental monitoring has been 

conducted. In MESA Air, three types of cohort-specific monitors were deployed: 1) “fixed” 

monitors in participant-dense locations not well-covered by regulatory agency monitors; 2) 

“home” monitors in about 10% of participant homes for two-week sampling during different 

seasons (approximately 100 locations in six study regions); and 3) “snapshot” samplers in 

clusters adjacent to major roadways, on utility poles at 50 m, 100 m, and 350 m from road 

edges in both directions, and at locales with varying population densities [35, 10]. This set of 

input data was used to predict concentrations of PM2.5 and its chemical components, NO2, 

NOx, and black carbon at each participant’s residence [30, 36]. The predictions have been 

used to gain insights into the role of air pollutants in subclinical cardiovascular disease, 

among other outcomes [37]. Because the models are easily portable to other pollutants, 

cohorts, and regions, they have been used in additional epidemiological applications, 

including assessment of the effect of ozone exposure on the risk of chronic obstructive 

pulmonary disease [38, 39]. The use of supplemental data to augment regulatory data 

provided significant improvements in prediction accuracy [40, 30].

Supplemental monitoring can be time-consuming and expensive, and is best deployed with a 

clear understanding of how it will be used in subsequent analysis. A fraction of 

supplemental monitors should be co-located with routine monitors for quality control and 

calibration purposes. Post-modeling validation should account for the complexity of data 

sources, and disentangle the spatial and temporal contributions of monitor types to overall 

accuracy in the context of complex spatiotemporal interactions [31].

The MESA Air model is based on spatially-varying temporal pollution processes. An 

alternative paradigm is to model temporally-varying spatial surfaces, estimating pollutant 

concentrations as a factor of spatial fixed-effects, smooth functions of time-varying 

covariates, and time-varying spatial residuals [41, 42]. This approach also allows modeling 

of complex spatiotemporal interactions and captures fine-scale spatial heterogeneity, 

although it relies on more complete observations both across time and space, uses a stepwise 

variable selection approach without dimension-reduction, and does not take advantage of 

supplemental monitoring. The spatial structure is represented using penalized splines rather 

than kriging [42].

Kirwa et al. Page 8

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An emerging alternative source of short-term supplemental data is mobile monitoring, which 

is especially suitable for ultrafine particles not typically measured by fixed monitors [43, 

44]. An advantage of mobile monitoring is spatial extent, making it suitable for spatially 

heterogeneous pollutants and complex urban terrain. Conversely, mobile monitors do not 

optimally assess temporal variation, and many aspects of mobile sampling design, including 

number and location of monitoring sites, length of sampling time per site, and number of 

repeated samples per site require careful consideration to optimize for good performance 

and cost-effectiveness [45]. Combining mobile and stationary sources of supplemental data 

may also yield improved model performance [46]. As application of mobile monitoring-

based predictions in epidemiological studies ramps up, additional rigorous evaluation is 

required to assess whether such exposure estimates bias effects relative to those from fixed 

monitoring locations.

National spatiotemporal model

While the MESA Air models were developed for specific communities under study, it is 

desirable to extend these models to the continental scale for application to other populations. 

Implementation at the national scale can be accomplished by extending statistical 

infrastructure that is highly effective at the scale of a metropolitan area to a nationwide 

scale, borrowing information from data-rich areas in order to produce estimates even for 

sparsely-populated regions with less monitoring infrastructure. To facilitate the extension, 

investigators divided the country into 9 climatic/topographic regions (for PM2.5 model) or 3 

regions (for ozone and NO2), in order to account for sub-national region-specific pollution 

processes and ensure each region contained supplemental monitors. Simple smoothing was 

used at regional boundaries to avoid artificial discontinuities. Relative to the city-specific 

models described above, the national model is parameterized to account for a wider range of 

concentration time-series and local geographic characteristics by increasing the number of 

temporal trends and PLS scores. The nationwide version uses data from approximately 940 

investigator-deployed non-regulatory monitors and 1,500 regulatory monitors as well as 

satellite-derived PM2.5 and NO2 measurements, and produces point-wise PM2.5, ozone, and 

NO2 concentrations between 1999–2017 across the contiguous United States at a two-week 

temporal time scale [26].

The performance of these models is also excellent, with cross-validated R2 for PM2.5 and 

NO2 of 0.89 and 0.87, respectively, and some variation by region (spatial R2 in the Southeast 

and Northwest regions were 0.91 and 0.71, respectively). Spatially-clustered cross-validated 

R2, a measure of predictive performance at regions with little or no monitor coverage, was 

satisfactory at 0.77. Greater fine-scale variation was observed in models that additionally 

incorporated supplemental monitors, rather than relying solely on regulatory data. At best, 

modest increases in prediction accuracy were gained by including satellite-sourced data, 

primarily in areas with little ground monitoring coverage. National spatiotemporal models 

for NO2 and ozone that employ similar principles are in development, and will additionally 

include CTM outputs.

Alternative PM2.5, PM10 and coarse PM models based on spatial trends that vary temporally 

have also been extended for nationwide application [47]. They also take a regionalized 
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approach, with spatial smoothing using penalized splines and a smaller set of location-

specific geographic covariates that is not dimension-reduced, resulting in a more 

straightforward interpretation of covariate effects on exposure levels. Other recent fine-scale 

nationwide models are generally characterized by use of hybrid approaches that combine 

LUR with output from satellite AOD and CTM, rather than supplemental ground monitor 

data. They are further differentiated by additional analytical features, such as Bayesian 

Maximum Entropy kriging of residuals from LUR models [48], adjustment of remote 

sensing inputs with geographically-weighted regression [49], and outputs at finer temporal 

scales or estimates of urban versus rural model performance [50]. Deep learning neural 

networks have been proposed to handle complex nonlinear relationships among model 

inputs and measured concentrations [51]. Key features of another new hybrid 

implementation are described below [25, 52].

National spatiotemporal model for periods prior to dense regulatory monitoring (Historical 
national model)

The prediction models discussed above rely on measurements from regulatory monitoring 

programs and often leverage high resolution satellite data, both of which started being 

available only in the last two decades. In the US, the Environmental Protection Agency’s 

(EPA) extensive monitoring infrastructure for PM2.5 was established in 1999. This poses a 

challenge when exposure time of interest for many observational studies is before 1999. A 

common remedy is to use exposure estimates from more recent times relative to time of 

health outcome assessment. This relies on an assumption that more recent pollutant 

concentrations reflect concentrations at earlier times. While these sets of concentrations are 

likely correlated, there is the potential for both bias (given secular trends in several pollutant 

concentrations) and relative exposure misclassification when different areas change their 

ranking of concentrations over time. Other alternatives include use of whatever historical 

(e.g. pre-1999) concentration data are available, however sparse, or back-extrapolation of 

recently-estimated concentrations. While many LUR-based back-extrapolation efforts have 

suggested satisfactory temporal transferability of estimates, they have been of relatively 

limited spatial or temporal scope, focus mostly on oxides of nitrogen, and lack rigorous 

validation of resulting predictions [53–57]. A few recent national-scale studies suggest that 

for NO2, back-extrapolation of estimates from between 2006–2009 explains approximately 

73%−83% of the variation in concentrations going back to 1990 [58, 59].

Based on the model structure above, a comprehensive spatiotemporal historical prediction 

model for PM2.5 spanning the contiguous United States for the period 1980 to 2010 was 

developed by first estimating the concentration trend from data for 1999–2010, then 

performing linear back-extrapolation [57]. Alternative back-extrapolation approaches were 

assessed, including estimation of the historical trend based on proxies such as pre-1999 

visibility data or PM2.5 sulfate data. Validation with numerous contemporaneous external 

datasets suggested that the linear trend extrapolation technique performed best, with spatial 

and temporal R2 ranging between 0.77–0.87 and 0.55–0.58, respectively, depending on type 

of monitoring site.
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Spatiotemporal models incorporating satellite and chemical transport model output as 
covariates (Spatiotemporal models for Los Angeles, incorporating CTM output)

Nearly 30% of people in the US live more than 20 km from a PM2.5 monitor [60], and 

existing monitors may not be located close enough to pollutant sources of interest to allow 

precise determination of fine-scale dispersion profiles. Because of sparsity of ground-level 

monitors, satellite-derived data and outputs from CTM are increasingly incorporated during 

fine-scale prediction. CTMs such as CMAQ and GEOS-Chem simulate atmospheric 

physical and chemical processes, taking into account topographic, meteorological and 

emission source data in order to estimate outdoor pollutant levels [22, 19]. They may 

facilitate better representation of physicochemical atmospheric characteristics relevant to 

pollutant concentrations but not encapsulated in land use variables. Satellite-derived AOD is 

a measure of visibility that, when properly calibrated with regulatory monitors, can serve as 

a proxy for ground-level pollution.

Because the above model can accommodate spatiotemporal covariates, CTM output was 

incorporated to predict point-level concentrations of ozone and PM2.5 in Los Angeles [27]. 

The model combined (separately for each pollutant) regulatory data from 25 PM2.5 and 37 

ozone monitors, more than 100 supplemental ground monitors in the metropolitan region, 

and 4km x 4km output from the University of California Davis-California Institute of 

Technology source-oriented CTM [61]. The model also included nearly 200 geographic 

variables and Caline3QHCR dispersion model output as spatial covariates. It demonstrated 

better prediction accuracy (lower mean square errors) and precision (higher R2 values) 

compared to CTM-only and universal kriging-only alternatives, particularly for ozone in 

rural locales. The contribution of CTM to improvements in the PM2.5 model was more 

modest. This model incorporates outputs from dispersion, CTM or satellite products as 

either spatial and spatiotemporal covariates, in contrast to alternatives that fuse estimates 

from different sources together in hybrid implementations [52].

Supplementing LUR models with CTM and AOD data can improve prediction accuracy by 

providing a signal where ground-level monitoring is inadequate. Additionally, because land 

use characteristics typically vary slowly over time and GIS databases are only updated 

periodically, CTM and AOD inputs provide more variable spatiotemporal coverage. Many 

contemporary models, especially those covering supra-national scales, combine ground 

monitor data with CTM and/or AOD measurements [62, 21], although performance 

improvements have been reported even at sub-national domains [63]. However, CTM and 

AOD data are typically available at relatively coarse resolutions, suggesting that for 

purposes of improving fine-scale performance, it may be especially helpful to integrate them 

with spatially-dense ground monitoring data. Furthermore, recent health-effect studies 

suggest that using only satellite-derived exposure measures of PM2.5 may underestimate 

risks, supporting incorporation of ground monitoring data for epidemiological studies [64].

While prediction models for PM2.5 based on satellite data are appealing, it is not clear that 

they improve fine-scale long-term prediction of PM2.5 in the US [26, 65], because models 

based on ground observations already perform very well, while satellite observations are 

only available at coarse spatial scales and are characterized by extensive missingness. 

Approximately 70% of AOD data are missing due to cloud and snow cover and surface 
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brightness [66]. Much like regulatory ground monitors, satellite AOD is not primarily 

designed to support epidemiologically-motivated estimation of surface pollutant levels, and 

its relationship to pollutant concentrations is influenced by a complex of features that is only 

partially-understood [67, 68], necessitating extensive calibration, ideally on a daily and 

regional basis [20, 25]. Notwithstanding major progress in AOD satellite data resolution, 

calibration, and imputation, active ground monitoring will continue to be critical for fine-

scale prediction of PM2.5. Satellite data has a clear role for understanding PM2.5 

concentrations in areas of the world with less ground-level monitoring [21]. Similarly, CTM 

are independently useful, especially in understanding the spatial and temporal relationships 

between emissions from various sources and subsequent pollutant concentrations [69].

A recent alternative with nationwide application is a hybrid model that relies instead on a 

neural network to account for complex spatiotemporal nonlinearities and interactions among 

multiple inputs, including satellite AOD, surface reflectance, CTMs (Geos-CHEM and 

CMAQ), land use and vegetation cover, and meteorological data [25, 52]. The model uses 

convolutional layers to aggregate nearby space-time information and account for 

spatiotemporal autocorrelation. It has recently been used to produce daily national 

predictions of PM2.5 and ozone at a 1km2 resolution, for the 2000–2012 period, with overall 

R2 values of 0.84 and 0.80, respectively. The model accounts for complex atmospheric 

processes, has a fine temporal resolution, and the ability to deal naturally with non-

linearities. On the other hand, the 1km2 resolution introduces possibility of exposure 

misclassification due to spatial misalignment of participant residence and grid-level 

exposure. The neural network is trained on data from regulatory monitors, which 

underrepresent rural expanses and some urban locales, potentially introducing 

geographically-systematic prediction errors. While overall spatial R2 is very good, region-

specific temporal performance may be more modest, especially in areas with little 

monitoring coverage.

National spatial models using regulatory monitoring data (National spatial models)

In chronic disease applications, exposure assessment is often focused on spatial contrasts in 

annual or multi-year average concentrations. A spatial model can be formulated as

C(s) = β0(s) + ∑
i = 1

n
βi(s)Xi s + ∑

j = 1

J
λj s ℱj s + ε(s)

where C(s) is the log-transformed annual average pollutant concentration at location s, while 

Xi(s) are PLS components derived from geographic covariates, ℱj s  are any satellite-

derived variables included directly as spatial covariates instead of being fused with 

geographic variables that generate PLS scores, and ε(s) are spatially-varying residuals 

modeled with universal kriging [70, 71].

For national coverage, each region is usually modeled separately. The rationale for 

regionalized modeling is from findings showing that impressive large-scale spatial 

performance can mask sub-par predictive characteristics when interrogated at smaller scale 

[70]. Based on a “pragmatic” approach to dealing with spatial heterogeneity in model 
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structure, modeling PM2.5 at the level of sub-national regions characterized by relative 

geographic homogeneity provides improved prediction accuracy. At a national or continental 

scale, covariates that seem to define similar characteristics may not have the same 

implications for exposure levels in all regions. For instance, the impact of traffic density may 

depend on regionally-varying fleet mixes, and similarly classified roadway types may have 

far more traffic in urban versus rural areas. In a similarly-designed NO2 national model, 

addition of satellite-derived covariates significantly improved prediction performance for 

locations distant from ground monitors, but only marginally in those with more adequate 

monitoring coverage [71].

Other models have also shown that satellite data can improve model performance compared 

to using ground-based measures only [72, 73]. Most national spatial models have focused on 

predicting NO2, PM10, and PM2.5, with performance ranging from modest to very good (R2 

between 0.22–0.90). A number of other recent fine-scale spatial models provide point-wise 

predictions for multiple sub-national regions or entire countries based on LUR and universal 

kriging [74, 24, 75]. Others additionally incorporate satellite-derived data and give 

predictions resolved to a small grid (up to 100m) [76–78].

Future directions, challenges, and extensions

The next generation of fine-scale exposure models needs to respond to evolving 

contemporary challenges in air pollution epidemiology, including the need to understand 

sources of pollutants to better target future exposure control efforts and to incorporate new 

types of information that can improve prediction accuracy. An additional imperative is the 

development of openly available, user-friendly modeling platforms to foster reproducible 

research given the heightened regulatory and public scrutiny to which environmental 

epidemiology research is now subject.

Methods have recently been developed to assess regional clustering of PM2.5 components 

[79]. Investigators have also published software for implementing comprehensive fine-scale 

models on publicly accessible venues and in programming languages widely used by 

environmental scientists and epidemiologists. Examples are SpatioTemporal [80] and airpred 
[81], packages for implementing fine-scale national models already used in major 

epidemiological analyses [37, 2, 82].

Key challenges to optimizing modeling approaches remain. In the US, nationally-

standardized long-term high quality traffic volume and congestion data are not yet available, 

leaving modeling efforts to rely on time-static road-network data or other proxies, which are 

incomplete or otherwise inadequate. Furthermore, even the best outdoor concentration 

model will imperfectly reflect an individual’s exposure. Most people spend substantial 

fractions of time indoors, where exposures can be dramatically different from outdoor 

concentrations.

It is important to note that the current generation of models are trained on data from well-

monitored areas. The result is potentially large prediction errors in data-poor areas and little 

applicability to rural areas in high-income countries and to low- and middle-income 
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countries. The advent of “low-cost” monitors may play a big role in expanding the spatial 

density of sources for fine-scale modeling. Work is ongoing to address a number of well-

recognized limitations of low-cost monitors, including reliability and accuracy of 

measurements [83, 84]

Conclusions

The continued evolution of models for fine-scale prediction of pollutant concentrations has 

improved the scientific evaluation of health effects of air pollutants. Models now exist that 

leverage a wide array of land use, satellite, meteorological, and physicochemical inputs to 

provide small-grid or pointwise predictions of key air pollutants across the contiguous 

United States and elsewhere, taking advantage of supplemental monitoring campaigns while 

accounting for complex spatiotemporal dynamics. Machine learning algorithms may offer an 

alternative approach for complex spatiotemporal correlations. Major challenges remain, 

including the computational burden of increasingly sophisticated models, worse prediction 

accuracy at places with little available ground-level input data, and a lack of comprehensive 

traffic data. High quality, fine-scale, nation-wide modeling also needs to be expanded to 

more countries, more pollutants — including ultrafine particulate and non-criteria hazardous 

air pollutants — and an understanding of the sources and components of major pollutants.

Sources of Support

This publication was developed under a STAR research assistance agreements RD831697 (MESA Air), 
RD-83830001 (MESA Air Next Stage), and RD83479601 (UW Center for Clean Air Research), awarded by the 
U.S. Environmental Protection Agency. It has not been formally reviewed by the EPA. The views expressed in this 
document are solely those of the authors and the EPA does not endorse any products or commercial services 
mentioned in this publication. Research reported in this publication was also supported by the University of 
Washington EDGE Center of the NIA under award number: P30ES007033, by ECHO PATHWAYS (NIH grants: 
1UG3OD023271-01 and 4UH3OD023271-03), and by grants R56ES026528 and P30ES007033 from NIEHS and 
R01ES026187 from NIA and NIEHS. This work was supported in part by the UW NIEHS sponsored Biostatistics, 
Epidemiologic and Bioinformatics Training in Environmental Health (BEBTEH) Training Grant, Grant #: NIEHS 
T32ES015459.

References

1. Brook RD, Rajagopalan S, Pope CAI, Brook JR, Bhatnagar A, Diez-Roux AV et al. Particulate 
matter air pollution and cardiovascular disease: An update to the scientific statement from the 
American Heart Association. Circulation. 2010;121(21):2331–78. doi:10.1161/
CIR.0b013e3181dbece1. [PubMed: 20458016] 

2. Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C et al. Air Pollution and Mortality in the 
Medicare Population. N Engl J Med 2017;376(26):2513–22. doi:10.1056/NEJMoa1702747. 
[PubMed: 28657878] 

3. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B et al. Effects 
of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European 
cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785–95. doi:10.1016/
S0140-6736(13)62158-3. [PubMed: 24332274] 

4. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K et al. Estimates and 25-year 
trends of the global burden of disease attributable to ambient air pollution: an analysis of data from 
the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18. doi:10.1016/
S0140-6736(17)30505-6. [PubMed: 28408086] 

5. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME et al. An association between air 
pollution and mortality in six U.S. cities. N Engl J Med 1993;329(24):1753–9. doi:10.1056/
nejm199312093292401. [PubMed: 8179653] 

Kirwa et al. Page 14

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Pope CA 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE et al. Particulate air 
pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care 
Med 1995;151(3 Pt 1):669–74. doi:10.1164/ajrccm/151.3_Pt_1.669. [PubMed: 7881654] 

7. Hoek G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr Environ 
Health Rep 2017;4(4):450–62. doi:10.1007/s40572-017-0169-5. [PubMed: 29064065] 

8. Berrocal VJ, Guan Y, Muyskens A, Wang H, Reich BJ, Mulholland JA et al. A comparison of 
statistical and machine learning methods for creating national daily maps of ambient PM2.5 
concentration. Atmospheric Environment. 2020;222:117130. doi:10.1016/j.atmosenv.2019.117130. 
[PubMed: 32863727] 

9. Sorek-Hamer M, Just AC, Kloog I. Satellite remote sensing in epidemiological studies. Current 
opinion in pediatrics. 2016;28(2):228–34. doi:10.1097/mop.0000000000000326. [PubMed: 
26859287] 

10. Kaufman JD, Adar SD, Allen RW, Barr RG, Budoff MJ, Burke GL et al. Prospective study of 
particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: 
The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Am J Epidemiol 
2012;176(9):825–37. doi:10.1093/aje/kws169. [PubMed: 23043127] 

11. Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution 
epidemiology. Environmetrics. 2013;24(8):501–17. doi:10.1002/env.2233. [PubMed: 24764691] 

12. Vlaanderen J, Portengen L, Chadeau-Hyam M, Szpiro A, Gehring U, Brunekreef B et al. Error in 
air pollution exposure model determinants and bias in health estimates. Journal of Exposure 
Science & Environmental Epidemiology. 2019;29(2):258–66. doi:10.1038/s41370-018-0045-x. 
[PubMed: 29880834] 

13. Butland BK, Samoli E, Atkinson RW, Barratt B, Katsouyanni K. Measurement error in a multi-
level analysis of air pollution and health: a simulation study. Environmental Health. 2019;18(1):13. 
doi:10.1186/s12940-018-0432-8. [PubMed: 30764837] 

14. Eeftens M, Tsai M-Y, Ampe C, Anwander B, Beelen R, Bellander T et al. Spatial variation of 
PM2.5, PM10, PM2.5 absorbance and PM coarse concentrations between and within 20 European 
study areas and the relationship with NO2 – Results of the ESCAPE project. Atmospheric 
Environment. 2012;62:303–17. doi:10.1016/j.atmosenv.2012.08.038.

15. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL et al. Long-term 
exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 
2007;356(5):447–58. doi:10.1056/NEJMoa054409. [PubMed: 17267905] 

16. Brunekreef B, Hoffmann B. Air pollution and heart disease. The Lancet. 2016;388(10045):640–2. 
doi:10.1016/S0140-6736(16)30375-0.

17. United States Environmental Protection Agency. SLAMS/NAMS/PAMS Network Review 
Guidance: Regulatory Requirements and Other Data Needs. Research Triangle Park, DC: US EPA; 
1998.

18. Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P et al. A review of land-use 
regression models to assess spatial variation of outdoor air pollution. Atmos Environ 
2008;42:7561–78.

19. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T et al. A review and 
evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 
2005;15(2):185–204. doi:10.1038/sj.jea.7500388. [PubMed: 15292906] 

20. Streets DG, Canty T, Carmichael GR, de Foy B, Dickerson RR, Duncan BN et al. Emissions 
estimation from satellite retrievals: A review of current capability. Atmospheric Environment. 
2013;77:1011–42. doi:10.1016/j.atmosenv.2013.05.051.

21. van Donkelaar A, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term 
exposure assessment of global concentrations of fine particulate matter. Environmental health 
perspectives. 2015;123(2):135–43. doi:10.1289/ehp.1408646. [PubMed: 25343779] 

22. Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM et al. Global modeling of 
tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal 
of Geophysical Research: Atmospheres. 2001;106(D19):23073–95. doi:10.1029/2001jd000807.

Kirwa et al. Page 15

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Ross Anderson H, Carslaw DC. Air pollution 
dispersion models for human exposure predictions in London. J Expo Sci Environ Epidemiol 
2013;23(6):647–53. doi:10.1038/jes.2013.6. [PubMed: 23443237] 

24. Hart JE, Yanosky JD, Puett RC, Ryan L, Dockery DW, Smith TJ et al. Spatial modeling of PM10 
and NO2 in the continental United States, 1985–2000. Environ Health Perspect 
2009;117(11):1690–6. doi:10.1289/ehp.0900840. [PubMed: 20049118] 

25. Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. Assessing PM2.5 Exposures with 
High Spatiotemporal Resolution across the Continental United States. Environ Sci Technol 
2016;50(9):4712–21. doi:10.1021/acs.est.5b06121. [PubMed: 27023334] 

26. Wang M, Sampson P, Bechle M, Marshall J, Vedal S, Kaufman J. National PM2. 5 and NO2 
Spatiotemporal Models Integrating Intensive Monitoring Data and Satellite-Derived Land Use 
Regression in a Universal Kriging Framework in the United States: 1999–2016. ISEE Conference 
Abstracts; Ottawa, Canada2018.

27. Wang M, Sampson PD, Hu J, Kleeman M, Keller JP, Olives C et al. Combining Land-Use 
Regression and Chemical Transport Modeling in a Spatiotemporal Geostatistical Model for Ozone 
and PM2.5. Environ Sci Technol 2016;50(10):5111–8. doi:10.1021/acs.est.5b06001. [PubMed: 
27074524] 

28. Di Q, Koutrakis P, Schwartz J. A hybrid prediction model for PM2.5 mass and components using a 
chemical transport model and land use regression. Atmospheric Environment. 2016;131:390–9. 
doi:10.1016/j.atmosenv.2016.02.002.

29. Mercer LD, Szpiro AA, Sheppard L, Lindström J, Adar SD, Allen RW et al. Comparing universal 
kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) 
for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmospheric 
environment (Oxford, England : 1994). 2011;45(26):4412–20. doi:10.1016/
j.atmosenv.2011.05.043.

30. Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA et al. A unified spatiotemporal 
modeling approach for predicting concentrations of multiple air pollutants in the multi-ethnic 
study of atherosclerosis and air pollution. Environ Health Perspect 2015;123(4):301–9. 
doi:10.1289/ehp.1408145. [PubMed: 25398188] 

31. Lindstrom J, Szpiro AA, Sampson PD, Oron AP, Richards M, Larson TV et al. A Flexible Spatio-
Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates. Environ Ecol Stat 
2014;21(3):411–33. doi:10.1007/s10651-013-0261-4. [PubMed: 25264424] 

32. Keller JP, Peng RD. Error in estimating area-level air pollution exposures for epidemiology. 
Environmetrics. 2019;30(8):e2573. doi:10.1002/env.2573.

33. Sampson PD, Szpiro AA, Sheppard L, Lindström J, Kaufman JD. Pragmatic estimation of a spatio-
temporal air quality model with irregular monitoring data. Atmos Environ 2011;Vol. 45(No. 
36):6593–606.

34. Federal Register. Revision to the near-road NO2: A rule by the Environmental protection Agency 
(Document Citation: 81 FR 96381). Washington, DC. 2016. https://www.federalregister.gov/
documents/2016/12/30/2016-31645/revision-to-the-near-road-no2. Accessed May 23, 2020.

35. Cohen MA, Adar SD, Allen RW, Avol E, Curl CL, Gould T et al. Approach to estimating 
participant pollutant exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution 
(MESA Air). Environ Sci Technol 2009;43(13):4687–93. [PubMed: 19673252] 

36. Kim S-Y, Sheppard L, Bergen S, Szpiro AA, Sampson PD, Kaufman JD et al. Prediction of fine 
particulate matter chemical components with a spatio-temporal model for the Multi-Ethnic Study 
of Atherosclerosis cohort. Journal of Exposure Science & Environmental Epidemiology. 
2016;26(5):520–8. doi:10.1038/jes.2016.29. [PubMed: 27189258] 

37. Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL et al. Association between air 
pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-
Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. The Lancet. 
2016;388(10045):696–704. doi:10.1016/S0140-6736(16)00378-0.

38. Hansel NN, Paulin LM, Gassett AJ, Peng RD, Alexis N, Fan VS et al. Design of the 
Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study. BMJ 
Open Respir Res 2017;4(1):e000186. doi:10.1136/bmjresp-2017-000186.

Kirwa et al. Page 16

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.federalregister.gov/documents/2016/12/30/2016-31645/revision-to-the-near-road-no2
https://www.federalregister.gov/documents/2016/12/30/2016-31645/revision-to-the-near-road-no2


39. Paulin LM, Gassett AJ, Alexis NE, Kirwa K, Kanner RE, Peters S et al. Association of Long-term 
Ambient Ozone Exposure With Respiratory Morbidity in Smokers. JAMA Internal Medicine. 
2020;180(1):106–15. doi:10.1001/jamainternmed.2019.5498. [PubMed: 31816012] 

40. Szpiro AA, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman J. Predicting Intra-Urban 
Variation in Air Pollution Concentrations with Complex Spatio-Temporal Dependencies. 
Environmetrics. 2009;21(6):606–31. doi:10.1002/env.1014. [PubMed: 24860253] 

41. Paciorek CJ, Yanosky JD, Puett RC, Laden F, Suh HH. Practical Large-Scale Spatio-Temporal 
Modeling of Particulate Matter Concentrations. Ann Appl Stat 2009;3(1):370–97.

42. Yanosky JD, Paciorek CJ, Suh HH. Predicting chronic fine and coarse particulate exposures using 
spatiotemporal models for the Northeastern and Midwestern United States. Environ Health 
Perspect 2009;117(4):522–9. doi:10.1289/ehp.11692. [PubMed: 19440489] 

43. Hatzopoulou M, Valois MF, Levy I, Mihele C, Lu G, Bagg S et al. Robustness of Land-Use 
Regression Models Developed from Mobile Air Pollutant Measurements. Environmental Science 
& Technology. 2017;51(7):3938–47. doi:10.1021/acs.est.7b00366. [PubMed: 28241115] 

44. Jones RR, Hoek G, Fisher JA, Hasheminassab S, Wang D, Ward MH et al. Land use regression 
models for ultrafine particles, fine particles, and black carbon in Southern California. Science of 
The Total Environment. 2020;699:134234. doi:10.1016/j.scitotenv.2019.134234.

45. Saha PK, Li HZ, Apte JS, Robinson AL, Presto AA. Urban Ultrafine Particle Exposure Assessment 
with Land-Use Regression: Influence of Sampling Strategy. Environmental Science & Technology. 
2019;53(13):7326–36. doi:10.1021/acs.est.9b02086.

46. Tessum MW, Larson T, Gould TR, Simpson CD, Yost MG, Vedal S. Mobile and Fixed-Site 
Measurements To Identify Spatial Distributions of Traffic-Related Pollution Sources in Los 
Angeles. Environmental Science & Technology. 2018;52(5):2844–53. doi:10.1021/
acs.est.7b04889. [PubMed: 29382190] 

47. Yanosky JD, Paciorek CJ, Laden F, Hart JE, Puett RC, Liao D et al. Spatio-temporal modeling of 
particulate air pollution in the conterminous United States using geographic and meteorological 
predictors. Environmental Health. 2014;13(1):63. doi:10.1186/1476-069X-13-63. [PubMed: 
25097007] 

48. Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A et al. A Hybrid Approach 
to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States. 
Environmental Science & Technology. 2013;47(13):7233–41. doi:10.1021/es400039u. [PubMed: 
23701364] 

49. van Donkelaar A, Martin RV, Spurr RJ, Burnett RT. High-Resolution Satellite-Derived PM2.5 from 
Optimal Estimation and Geographically Weighted Regression over North America. Environ Sci 
Technol 2015;49(17):10482–91. doi:10.1021/acs.est.5b02076. [PubMed: 26261937] 

50. Bechle MJ, Millet DB, Marshall JD. National Spatiotemporal Exposure Surface for NO2: Monthly 
Scaling of a Satellite-Derived Land-Use Regression, 2000–2010. Environmental Science & 
Technology. 2015;49(20):12297–305. doi:10.1021/acs.est.5b02882. [PubMed: 26397123] 

51. Li T, Shen H, Yuan Q, Zhang X, Zhang L. Estimating Ground-Level PM2.5 by Fusing Satellite and 
Station Observations: A Geo-Intelligent Deep Learning Approach. Geophysical Research Letters. 
2017;44(23):11,985–11,93. doi:10.1002/2017gl075710.

52. Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved 
ozone exposures in the continental United States. Journal of the Air & Waste Management 
Association (1995). 2017;67(1):39–52. doi:10.1080/10962247.2016.1200159. [PubMed: 
27332675] 

53. Chen H, Goldberg MS, Crouse DL, Burnett RT, Jerrett M, Villeneuve PJ et al. Back-extrapolation 
of estimates of exposure from current land-use regression models. Atmospheric Environment. 
2010;44(35):4346–54. doi:10.1016/j.atmosenv.2010.07.061.

54. Wang R, Henderson SB, Sbihi H, Allen RW, Brauer M. Temporal stability of land use regression 
models for traffic-related air pollution. Atmospheric Environment. 2013;64:312–9. doi:10.1016/
j.atmosenv.2012.09.056.

55. Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. Stability of measured and 
modelled spatial contrasts in NO&lt;sub&gt;2&lt;/sub&gt; over time. Occupational and 
Environmental Medicine. 2011;68(10):765. doi:10.1136/oem.2010.061135. [PubMed: 21285243] 

Kirwa et al. Page 17

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



56. Cesaroni G, Porta D, Badaloni C, Stafoggia M, Eeftens M, Meliefste K et al. Nitrogen dioxide 
levels estimated from land use regression models several years apart and association with mortality 
in a large cohort study. Environmental Health. 2012;11(1):48. doi:10.1186/1476-069X-11-48. 
[PubMed: 22808928] 

57. Kim S-Y, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP et al. Historical Prediction 
Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before 
the 1999 Implementation of Widespread Monitoring. Environmental Health Perspectives. 
2017;125(1):38–46. doi:doi:10.1289/EHP131. [PubMed: 27340825] 

58. Gulliver J, de Hoogh K, Hoek G, Vienneau D, Fecht D, Hansell A. Back-extrapolated and year-
specific NO2 land use regression models for Great Britain - Do they yield different exposure 
assessment? Environment International. 2016;92–93:202–9. doi:10.1016/j.envint.2016.03.037. 
[PubMed: 26562560] 

59. Knibbs LD, Coorey CP, Bechle MJ, Marshall JD, Hewson MG, Jalaludin B et al. Long-term 
nitrogen dioxide exposure assessment using back-extrapolation of satellite-based land-use 
regression models for Australia. Environmental Research. 2018;163:16–25. doi:10.1016/
j.envres.2018.01.046. [PubMed: 29421169] 

60. Dominici F, Schwartz J, Di Q, Braun D, Choirat C, Zanobetti A. Assessing Adverse Health Effects 
of Long-Term Exposure to Low Levels of Ambient Air Pollution: Phase 1. Research Report 200. 
Boston, MA: Health Effects Institute; 2019.

61. Hu J, Zhang H, Ying Q, Chen SH, Vandenberghe F, Kleeman MJ. Long-term particulate matter 
modeling for health effect studies in California – Part 1: Model performance on temporal and 
spatial variations. Atmos Chem Phys 2015;15(6):3445–61. doi:10.5194/acp-15-3445-2015.

62. Meng J, Li C, Martin RV, van Donkelaar A, Hystad P, Brauer M. Estimated Long-Term (1981–
2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical 
Transport Modeling, Satellite Remote Sensing, and Ground-Based Measurements. Environmental 
Science & Technology. 2019;53(9):5071–9. doi:10.1021/acs.est.8b06875. [PubMed: 30995030] 

63. Akita Y, Baldasano JM, Beelen R, Cirach M, de Hoogh K, Hoek G et al. Large Scale Air Pollution 
Estimation Method Combining Land Use Regression and Chemical Transport Modeling in a 
Geostatistical Framework. Environmental Science & Technology. 2014;48(8):4452–9. 
doi:10.1021/es405390e. [PubMed: 24621302] 

64. Jerrett M, Turner MC, Beckerman BS, Pope CA, Donkelaar Av, Martin RV et al. Comparing the 
Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote 
Sensing Exposure Estimates. Environmental Health Perspectives. 2017;125(4):552–9. 
doi:doi:10.1289/EHP575. [PubMed: 27611476] 

65. Paciorek CJ, Liu Y. Limitations of remotely sensed aerosol as a spatial proxy for fine particulate 
matter. Environ Health Perspect 2009;117(6):904–9. doi:10.1289/ehp.0800360. [PubMed: 
19590681] 

66. Belle JH, Liu Y. Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality 
Research over the Continental United States. Remote Sensing. 2016;8(10):815.

67. Belle JH, Chang HH, Wang Y, Hu X, Lyapustin A, Liu Y. The Potential Impact of Satellite-
Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition. International Journal 
of Environmental Research and Public Health. 2017;14(10):1244.

68. Kumar N. What Can Affect AOD–PM2.5 Association? Environmental Health Perspectives. 
2010;118(3):A109–A10. doi:doi:10.1289/ehp.0901732.

69. Matthias V, Arndt JA, Aulinger A, Bieser J, Denier van der Gon H, Kranenburg R et al. Modeling 
emissions for three-dimensional atmospheric chemistry transport models. Journal of the Air & 
Waste Management Association. 2018;68(8):763–800. doi:10.1080/10962247.2018.1424057. 
[PubMed: 29364776] 

70. Sampson PD, Richards M, Szpiro AA, Bergen S, Sheppard L, Larson TV et al. A regionalized 
national universal kriging model using Partial Least Squares regression for estimating annual 
PM2.5 concentrations in epidemiology. Atmospheric Environment. 2013;75:383–92. doi:10.1016/
j.atmosenv.2013.04.015. [PubMed: 24015108] 

71. Young MT, Bechle MJ, Sampson PD, Szpiro AA, Marshall JD, Sheppard L et al. Satellite-Based 
NO2 and Model Validation in a National Prediction Model Based on Universal Kriging and Land-

Kirwa et al. Page 18

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Use Regression. Environ Sci Technol 2016;50(7):3686–94. doi:10.1021/acs.est.5b05099. 
[PubMed: 26927327] 

72. Hoek G, Eeftens M, Beelen R, Fischer P, Brunekreef B, Boersma KF et al. Satellite NO2 data 
improve national land use regression models for ambient NO2 in a small densely populated 
country. Atmospheric Environment. 2015;105:173–80. doi:10.1016/j.atmosenv.2015.01.053.

73. Bechle MJ, Millet DB, Marshall JD. Remote sensing of exposure to NO2: Satellite versus ground-
based measurement in a large urban area. Atmospheric Environment. 2013;69:345–53. 
doi:10.1016/j.atmosenv.2012.11.046.

74. Kim S-Y, Song I. National-scale exposure prediction for long-term concentrations of particulate 
matter and nitrogen dioxide in South Korea. Environmental Pollution. 2017;226:21–9. 
doi:10.1016/j.envpol.2017.03.056. [PubMed: 28399503] 

75. Kim S-Y, Bechle M, Hankey S, Sheppard L, Szpiro AA, Marshall JD. Concentrations of criteria 
pollutants in the contiguous U.S., 1979 – 2015: Role of prediction model parsimony in integrated 
empirical geographic regression. PLOS ONE. 2020;15(2):e0228535. doi:10.1371/
journal.pone.0228535. [PubMed: 32069301] 

76. Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M et al. Creating national air 
pollution models for population exposure assessment in Canada. Environ Health Perspect 
2011;119(8):1123–9. doi:10.1289/ehp.1002976. [PubMed: 21454147] 

77. Vienneau D, de Hoogh K, Bechle MJ, Beelen R, van Donkelaar A, Martin RV et al. Western 
European Land Use Regression Incorporating Satellite- and Ground-Based Measurements of NO2 
and PM10. Environmental Science & Technology. 2013;47(23):13555–64. doi:10.1021/
es403089q. [PubMed: 24156783] 

78. Novotny EV, Bechle MJ, Millet DB, Marshall JD. National Satellite-Based Land-Use Regression: 
NO2 in the United States. Environmental Science & Technology. 2011;45(10):4407–14. 
doi:10.1021/es103578x. [PubMed: 21520942] 

79. Keller JP, Drton M, Larson T, Kaufman JD, Sandler DP, Szpiro AA. COVARIATE-ADAPTIVE 
CLUSTERING OF EXPOSURES FOR AIR POLLUTION EPIDEMIOLOGY COHORTS. Ann 
Appl Stat 2017;11(1):93–113. doi:10.1214/16-AOAS992. [PubMed: 28572869] 

80. Lindstrom J, Szpiro AA, Sampson PD, Bergen S, Sheppard L. SpatioTemporal: An R Package for 
Spatio-Temporal Modeling of Air Pollution. R Package Version 1.1.7. 2013. http://cran.r-
project.org/web/packages/SpatioTemporal/index.html. Accessed November 19, 2018.

81. Sabath M, Di Q, Schwartz J, Braun D, Dominici F, Choirat C, editors. aipred: A flexible R package 
implementing methods for predicting air pollution. IEEE International Conference on Data 
Science and Advanced Analytics; 2018; Turin, Italy: IEEE.

82. Wang M, Aaron CP, Madrigano J, Hoffman EA, Angelini E, Yang J et al. Association Between 
Long-term Exposure to Ambient Air Pollution and Change in Quantitatively Assessed Emphysema 
and Lung Function. JAMA. 2019;322(6):546–56. doi:10.1001/jama.2019.10255. [PubMed: 
31408135] 

83. Bi J, Wildani A, Chang HH, Liu Y. Incorporating Low-Cost Sensor Measurements into High-
Resolution PM2.5 Modeling at a Large Spatial Scale. Environmental Science & Technology. 
2020;54(4):2152–62. doi:10.1021/acs.est.9b06046. [PubMed: 31927908] 

84. Zusman M, Schumacher CS, Gassett AJ, Spalt EW, Austin E, Larson TV et al. Calibration of low-
cost particulate matter sensors: Model development for a multi-city epidemiological study. 
Environment International. 2020;134:105329. doi:10.1016/j.envint.2019.105329. [PubMed: 
31783241] 

Kirwa et al. Page 19

Curr Environ Health Rep. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org/web/packages/SpatioTemporal/index.html
http://cran.r-project.org/web/packages/SpatioTemporal/index.html


Figure. 
Schematic of spatiotemporal air pollution model.
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