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Abstract

Cognitive control relies on distributed and potentially high-dimensional frontoparietal task 

representations. Yet, the classical cognitive neuroscience approach in this domain has focused on 

aggregating and contrasting neural measures — either via univariate or multivariate methods — 

along highly abstracted, one-dimensional factors (e.g., Stroop congruency). Here, we present 

representational similarity analysis (RSA) as a complementary approach that can powerfully 

inform representational components of cognitive control theories. We review several exemplary 

uses of RSA in this regard. We further show that most classical paradigms, given their factorial 

structure, can be optimized for RSA with minimal modification. Our aim is to illustrate how RSA 

can be incorporated into cognitive control investigations to shed new light on old questions.
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Towards modeling cognitive control representations

A healthy human mind can set itself towards achieving a goal. This capacity for cognitive 
control (see Glossary) seems to be a central part of what it means to be human: it putatively 

underlies abilities that are most elaborate in our species [1-3], yet which go characteristically 

awry within prevalent mental health disorders [1,4-6]. Propelled by this notion, cognitive 

scientists have devoted more than a half-century of collective effort towards understanding 

Correspondence: tbraver@wustl.edu (T.S. Braver). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

We have no known conflict of interest to disclose.

HHS Public Access
Author manuscript
Trends Cogn Sci. Author manuscript; available in PMC 2022 July 01.

Published in final edited form as:
Trends Cogn Sci. 2021 July ; 25(7): 622–638. doi:10.1016/j.tics.2021.03.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how control arises in mind and brain. This understanding has typically been sought through 

the lens of two complementary cognitive constructs: representations and processes. A 

“representation” is a description of the information that the activity of a neural unit (e.g., 

neuron, ensemble, area) encodes [7,8] (Figure 1, Key Figure; Theory, blue components). 

Conversely, a “process” is a description of the function of a neural unit abstracted over 

particulars of the information encoded ([9]; Figure 1, Theory, orange components). 

Analogously, a black-box computing function is not defined by a set of internal state values, 

but instead by a general input–output mapping. Many fundamental problems in cognitive 

control reflect our lack of understanding control representations [10]. Studying these 

representations, however, has been notoriously elusive: classically, their neural markers have 

only been indirectly observable, through process-level measures.

In this Review, we suggest that progress in understanding the mechanisms of control has 

arrived in the form of an expansion in experimental approach: from the classical, which 

focuses on measuring control processes, to the representational, which explicitly models 

control representations. This expansion was precipitated by the development of neural 

population-level analytic techniques, including multivariate pattern analysis (MVPA) 
[11-13] and dimensionality reduction methods [14], which allow neural coding of an 

unprecedentedly wide range of variables to be measured at the macroscopic scales of 

functional neuroimaging. But more specifically, we suggest that the MVPA technique of 

representational similarity analysis (RSA) [15-17] — although it has currently only been 

sparsely used within cognitive control research — is particularly well-suited for 

investigation within this domain. This suitability stems from RSA’s flexibility in 

implementation, and as the name suggests, its explicit focus on modeling representations. 

First, we discuss how the RSA framework can complement the classical approach. We then 

illustrate the usefulness of RSA more concretely, by reviewing several recent RSA studies 

that addressed long-standing issues in cognitive control.

The ‘classical’ approach measures control processes

Classically, cognitive control investigators have designed and analyzed empirical studies 

using a particular style of experimental psychology. Despite salient differences, most 

prototypical cognitive control tasks (e.g., [18-28]) share a key design element: an abstract 

experimental factor that places differential demands on controlled processing. For example, 

in the color-word Stroop task, the key factor is congruency: whether the task-relevant 

dimension (hue) is congruent or incongruent with a spatially overlapping, but irrelevant 

dimension (word; Figure 1, Design). These factors are abstract in the sense that they contain 

a small number of levels, which collapse across a diverse set of other task-relevant 

components (e.g., stimuli, rules, response modalities). During analysis, investigators attempt 

to isolate similarly abstract control processes (e.g., response conflict resolution), by 

aggregating and contrasting measures along these factors (e.g., Figure 1, Analysis, top).

We refer to this style as the “classical” approach to studying cognitive control: through the 

scalar lens of process-level contrasts. As a thermometer indicates the temperature, estimates 

from these one-dimensional contrasts are assumed to indicate the magnitude or efficiency of 

the control process (i.e., ranging from “high control” to “low control”). Modulations in these 
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indicators — for example, as a function of task parameters or individual difference variables 

— are then used to shed light on characteristics of the underlying control processes (e.g., 

boundary conditions [29,30] or relations with other constructs [31,32]; Figure 1, large 

orange arrow linking Measures to Theory). The classical approach is foundational (e.g., 

[29,30,33]; see also [34]) and has undoubtedly shaped the kind of information that 

investigators seek to learn from associated cognitive control paradigms.

With the advent of cognitive neuroscience, control processes have been mapped to the 

recruitment of particular areas and networks of the brain. To accomplish this, the classical 

approach was imported into functional neuroimaging studies, under the predominant 

analytic framework of univariate activation. This framework was used in a manner directly 

analogous to previous process-based behavioral contrasts — only now these contrasts 

indicated the amount by which the key control-process manipulation increased aggregate 

activity within a brain region of interest. Early neuroimaging studies demonstrated that 

lateral prefrontal cortex (LPFC), dorsomedial frontal cortex (DMFC), and other nodes 

within frontoparietal and cingulo-opercular networks (FPN, CON), reliably “activate” during 

situations of controlled processing [35], a result which has been replicated many times over 

(e.g., [36-39]).

But the classical approach and its focus on measuring control processes — while serving a 

necessary, anchoring role — is incomplete. Many cognitive control theories are 

predominantly specified, not in terms of processes, but in terms of representations ([9]; e.g., 

abstract rules [3,40], high-dimensional [41] task conjunctions [42,43], compositional sub-

tasks [44,45], attentional templates [46], hierarchical task schemas [47-49]). In theory, 

cognitive control representations, encoded and maintained by control networks (FPN, CON), 

contain the requisite information for performing cognitive control tasks within an 

appropriately organized form. But investigating the form of these representations, though it 

is a central goal, is often challenging to pursue with only process-level measures. Possibly, 

even, the kinds of questions that would be most clarifying for understanding representational 

format, are those which process-level measures least naturally support. For example, what 

makes two control-demanding states similar, versus distinct?

Representational approaches explicitly model control representations

Distinguishing among multiple, similarly control-demanding states is exactly the sort of 

problem that MVPA methods can make more tractable. These methods can be decomposed 

(non-comprehensively) into two variants: classification-based decoding, which we refer to 

here as “classification”, and RSA (Box 1; see also encoding methods [50]). There has been a 

growing body of work using classification within the domain of cognitive control (e.g., for a 

review [51]), including contributions from our own group ([45,52,53]). But, in contrast to 

other domains of cognitive neuroscience, (e.g., object recognition or episodic memory; 

[54-56]), relatively few cognitive control studies have adopted the RSA approach.

We speculate that classification has been used more frequently out of tradition. 

Classification naturally aligns with the classical approach to cognitive control, as it is well-

suited for binary questions — that is, to classify task conditions along a single dimension 
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(e.g., congruency; see Box 1). In contrast, in its original formulation, RSA was developed 

for the condition-rich naturalistic experimental designs that are common in visual 

neuroscience [16,57]. Control-oriented researchers may have therefore considered RSA to 

be more of an exploratory tool for studying sensory and perceptual processes, rather than 

higher cognitive ones. Yet this would not be accurate. RSA is a general framework in which 

the central goal is to adjudicate between several competing representational models. Two 

features of RSA make this a straightforward task: The first is flexibility, due to operating on 

the similarity structure of activity patterns, or their geometry, rather than on activity 

patterns per se. The second is explicitness in the goal of modeling representations, due to a 

“forward” direction of inference, from model to brain (see Box 1).

In fact, the balance of these features makes RSA well-suited for cognitive control research. 

Seemingly at odds with the original goal of leveraging the continuously varying feature-

spaces of naturalistic experiments, RSA can also capitalize on the strengths of factorial 

designs. These designs are, of course, a bread-and-butter approach used in cognitive control 

experiments, as they allow confounds to be efficiently orthogonalized and interactions 

studied. Full factorial RSA provides a simple yet powerful framework for accessing these 

benefits within analysis of neural representations (Box 2). Indeed, many extant datasets may 

be amenable to full factorial RSA (e.g., [58]).

Similarly, cognitive control research can leverage the general inferential strategy of RSA, 

model comparison, in a more comprehensive manner than perhaps initially anticipated. In 

the original formulation of RSA, a set of competing models (hypotheses) are fit to an 

observed geometry (e.g., of a brain region), and evidence for a hypothesis is obtained if its 

corresponding model clearly provides a better fit. But once fit, the modeled representations 

(i.e, “coding strengths”) can also be compared in a variety of useful ways: particularly, in 

their ability to explain behavioral measures (e.g., classical contrasts of control), in their 

sensitivity to superimposed experimental manipulations [59] (e.g., process-level factors), 

and in their ability to explain modulations in other modeled representations (e.g., in 

downstream regions or subsequent timepoints; termed representational connectivity analysis 

[60], see Table 1). In conjunction, these tools can provide a rigorous means to decompose 

the black-box of control processes — the gap between process manipulations and controlled 

behavior — into a more mechanistic path that is mediated by the strength of specific 

representations.

RSA and cognitive control: a collection of exemplary studies

To demonstrate the advantages of the RSA approach to cognitive control investigation more 

concretely, we review a number of illustrative studies, focusing on human neuroscience, that 

touch on long-standing issues within this domain. While the questions differ, many of these 

studies share a primary goal: to validate a mapping between a theorized control 

representation and measured neural activity. Results, therefore, primarily provide support for 

existing theory, rather than advancing or exploring new theoretical ideas. But, with this 

validating work in place, RSA methodology can now be used to directly refine and challenge 

existing theoretical models of cognitive control. Relevant techniques are summarized within 

Table 1.
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Task-set representation

A central element of many theoretical models of cognitive control are task set 

representations (e.g., [2,3]; for a review, see [61]). One expansive cognitive theory proposes 

that, during goal-driven behavior, perceptual, action, and contextual information are 

intermediately bound into conjunctive representations, so-called “event files”, that are used 

to guide action selection [43,62]. Support for this account was recently found using RSA 

and EEG, in a pair of rule-based action-selection studies [63,64]. The task required a manual 

response (left, right, up, down button-press) to be determined by applying a spatial 

translation rule (e.g., horizontal, vertical, diagonal) to a spatial stimulus (a dot in one of the 

screen’s quadrants). Conjunctive coding was modeled as the components in the EEG 

geometry that were uniquely but stably evoked by each stimulus, rule, and response 

combination (i.e., non-linear combinations of these factors). As these constituent factors 

(i.e., stimulus, rule, response) were orthogonalized in the design, full factorial RSA was used 

to dissociate conjunctive coding from “pure” coding of each factor, similar to decomposition 

of main effects from their interaction. Further, in a novel methodological extension, a single-

trial RSA method was developed, which enabled within-subject brain–behavior relationships 

to be tested via hierarchical linear models.

Conjunctive coding emerged relatively early following the stimulus (i.e., prior to response 

coding), was robustly related to trial-by-trial response time, and — uniquely among the 

coding schemes — explained a defining behavioral marker of event files (the “partial 

repetition cost”). A follow-up experiment imposed an additional stop-signal manipulation on 

the design, to assess which, if any, coding scheme was impacted by inhibitory control 

processes [64]. Strikingly, only conjunctive coding was suppressed, shortly after the stop 

signal was presented, selectively on successfully stopped trials, with the degree of 

suppression uniquely predicting stopping success. Conjunctive coding thus reflects an 

important locus of action selection, that is both proximal to behavior and a target or 

intermediary of inhibitory control. A useful direction for future work will be to clarify the 

neuroanatomical generators of this conjunctive EEG code (e.g., via fMRI, neurophysiology, 

or perturbative approaches, such as TMS).

Another major focus of control research is to understand how task sets are regulated. Most 

commonly, this has been studied within multi-tasking and task-switching paradigms, in 

which competing task sets are activated and frequently switched across trials [65,66]. 

Foundational to this research has been the behavioral switch cost: across consecutive trials, 

people typically are slower and more error-prone at switching tasks versus repeating them. 

In theory, cognitive control processes must overcome this task-set “inertia” [67] and rapidly 

activate a new task representation when needed (“reconfiguration”) [24]. Task 

representations within frontoparietal cortices (through interactions with striatum) are thought 

to mediate these dynamics [2,3,61].

A strong correspondence between this cognitive theory of task-switching and frontoparietal 

coding dynamics was recently demonstrated via RSA and fMRI [68]. By conducting RSA 

on consecutive trials within a cued task-switching experiment, this study illustrated that the 

strength of task representations in these regions closely tracked inertial and reconfiguration 

phenomena: task representations were stronger (higher trial-to-trial similarity) following 
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repeat versus switch trials (inertia) and were additionally strengthened across the cue-to-

target epoch (reconfiguration). Critically, these dynamics were also aligned to behavior, such 

that stronger reconfiguration of the task representation was associated with reduced switch 

costs.

Sometimes, though, an irrelevant task set can be a potent competitor, not because of its 

recent use, but because of stable differences in automaticity. This type of regulation is 

studied in stimulus–response conflict paradigms such as Stroop. How the brain actually 

regulates this interference is a matter of ongoing debate. Foundational models of control 

propose that key mediators of Stroop interference are LPFC rule and attentional template 

representations (e.g., [3,69]). Recent evidence, however, suggests that cognitive control may 

play less of a role than originally thought (e.g., [70]; see also [71,72]; but see [73,74]). This 

debate is undoubtedly complicated by the fact that the classical Stroop interference effect is 

a highly multi-determined measure. Here, though, the RSA framework can assist, as the 

Stroop paradigm is amenable to decomposition by full-factorial RSA (Box 2; [58]). Such a 

decomposition can provide a rich set of coding variables that can be used, in turn, to 

decompose classical behavioral measures from Stroop (as in [58]), or tracked as a function 

of interference-modulating manipulations (e.g., proportion congruency; [75]). For example, 

it is possible that top-down control processes, mediated by LPFC rule coding, are better 

captured by behavioral measures other than the classical Stroop interference effect (e.g., 

Stroop-effect variability [76]), or, become crucial only in certain scenarios (e.g., when 

interference is likely [77] or when task statistics engender habitual responding [78]). Thus, 

not only can RSA be used to constrain the set of mechanisms that putatively mediate 

response conflict, but also to clarify how best to measure them within behavior.

Learning latent task structure

Real-world tasks often possess a latent structure that unfolds in time. Learning this structure 

can facilitate performance and increase the probability of advantageous outcomes by 

enabling the individual to predict which actions are appropriate in given contexts. Recent 

accounts have postulated that latent structures are encoded by medial and orbitofrontal 

cortex, and through interactions with midbrain circuitry, serve to guide the formation of 

frontoparietal task representations that orchestrate goal-directed behavior (i.e., planning and 

action preparation) [79,80].

This area, as with many others in cognitive control, is amenable to formal modeling. One 

useful method of formalizing hypotheses in this domain has been with artificial neural 
networks (ANNs), which perform tasks via distributed representations [48,81], learned 

during training. By linking artificial representations to those observed in the brain, neural 

data can constrain ANN models of cognitive control. Because each of these representations 

can be high-dimensional, often the simplest way to assess such a link is through their 

geometry — that is, via RSA ([16]).

This feature of RSA was effectively used in a recent fMRI study [82], in which both human 

participants and an ANN learned about the latent sequential structure present in a pair of 

everyday tasks: making coffee or tea. Although some actions could be freely chosen (e.g., 

whether to add sugar or water first), others had to be made based on previous choices (e.g., 
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only serve the drink after both ingredients had been added exactly once). Successfully 

performing such a task requires organizing and maintaining relevant information from 

preceding timesteps, which the critical “context” layer encoded within the ANN (Figure 2A, 

left). The similarity structure that emerged within this layer served as the RSA model 

(Figure 2A, Context Layer Model), and was fit to (the similarity structures of) neural activity 

patterns recorded from participants during performance of the same task. This model was 

selectively associated with representations in medial PFC (MPFC; including mid-cingulate 

cortex) — above and beyond competing models defined from other behaviorally relevant 

variables (e.g., Figure 2A, Sequence Model). The clear specificity of this result, both to 

MPFC and to the context model, suggests that MPFC could provide downstream regions 

with a flexible representation of progress-to-current-goal.

Follow-up studies could further strengthen this interpretation by examining how the strength 

of the MPFC context representation covaries with task representations in other areas and 

with other manipulations: for example, coordination with LPFC and premotor cortex may be 

critical during situations of high response conflict, or with hippocampus during learning. 

Another clarifying direction could be to make the model competition more intense: for 

example, by testing alternative representations derived from competing network 

architectures (e.g., [83,84]). Similarly, recent work that could be useful to integrate here, has 

used classification and RSA methods to identify unique mechanisms for serial-order control, 

implicating hippocampal and frontoparietal regions in forming hierarchical and “chunked” 

representations [85-87].

Domain-general cognitive control

A long-standing interest within the field is to refine the constructs of cognitive control (e.g., 

[1]). Of particular interest is where to draw the boundaries: which functions should be 

considered general, commonly engaged by different tasks, and which distinct? A construct 

validation approach is often used to address this issue: measures from a battery of tasks are 

collected for each individual, and from the covariance structure of individual differences 

among the tasks, latent factors are estimated that correspond to the hypothesized constructs. 

Evidence for the construct is provided if factors are interrelated in predicted ways (e.g., 

[31,32]). Prior studies of the generality of control functions, however, have yielded mixed 

results (e.g., [71,73]). But, these studies have almost exclusively used behavioral measures 

to estimate cross-task factors. Brain activity measures may give additional leverage, as they 

can provide more proximal, higher-dimensional readouts of neural mechanisms.

Through the use of a novel meta-analytic, cross-task RSA, an important first step towards 

“neural construct validation” of cognitive control was recently reported [88] (see [51] for a 

complementary voxel-wise meta-analysis). This work included fMRI datasets spanning three 

domains: cognitive control, negative affect, and pain. The key region of interest was the 

anterior midcingulate cortex (aMCC), a region that has seemed functionally ubiquitous [89] 

and challenging to characterize [90]. The researchers found that aMCC representations 

converged across disparate pain modalities (thermal, mechanical, visceral) and separately, 

across different sub-domains of negative affect (visual, social, auditory narrative). In 

contrast, cognitive control representations not only diverged from these two domains, but 
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diverged from each other — regardless of whether they were from common or distinct sub-

domains (“working memory”, “response selection”, “response inhibition”). That is, no task-

general control representations were detected.

Limitations of this study are important to bear in mind. In particular, site factors (e.g., study 

location, scanner, research group) confound the manipulations of task domain. Likewise, as 

their meta-analysis was inherently also a cross-subject RSA (i.e., all pattern similarities were 

estimated between different subjects), the analysis was not optimized to capture finer-

grained representational structure that could be subject-specific (i.e., idiosyncratic [91,92]). 

Indeed, finer-grained or idiosyncratic response topographies may best define the aMCC 

signal relevant for cognitive control (as, e.g., suggested by differences in developmental 

timecourses between domains; c.f., [93,94]). Nevertheless, the potential of cross-task RSA is 

highly appealing. When tasks form the dimensions of a representational similarity matrix, 

RSA naturally assesses cross-task convergent and divergent validity at the level of neural 

(e.g., fMRI BOLD signal) implementation (see also [95]). Indeed, similar to construct 

validation approaches, several RSA methods have been developed that use unbiased 

similarity measures in order to explicitly account for measurement error (see Table1; 

[13,96-98]). More broadly, this cross-task view of representations is also reflected in the 

recent recommendation to use pattern similarity as a rigorous way to assess replication of 

task-based fMRI results [99].

Interactions with motivational value

There has been a growing appreciation of the tight relationship between motivation and 

cognitive control [100,101]. In several recent accounts, deciding whether and how to engage 

cognitive control is a value-based process, in which the benefits of goal attainment are 

integrated with the cost of various control strategies [102]. This interaction of motivation 

and cognitive control is thought to involve dopaminergic signaling and fronto–striatal 

circuitry [103-107]. One way in which this interaction may manifest is as an increase in the 

gain (i.e., sharpening) of frontoparietal task rule coding. Indeed, a recent cued task-

switching study using MVPA classification, reward incentives (which varied trial-by-trial 

and were pre-cued) increased the distinctiveness of frontoparietal task-set representations, 

and these task-set coding changes explained individual differences in performance 

improvement on incentivized trials [52].

Building on this work, the same question was examined from within the RSA framework, 

via EEG [108]. Relative to [52], the use of full factorial RSA allowed a richer set of coding 

variables to be jointly estimated — including task rule (as in [52]), but also two stimulus-

feature models (target and distractor) and a response (motor) model. While incentives 

enhanced target stimulus, response, and rule coding (i.e., all but distractor representations), 

only rule coding was selectively enhanced during rule updating (i.e., on switch versus repeat 

trials), and emerged prior to trial onset, consistent with a proactive control mechanism [77]. 

Completing the link to behavior, individual differences in the strength of this interaction 

between rule coding and incentive robustly explained the amount by which response 

latencies decreased as function of incentives, even when controlling for incentive-driven 

changes in other coding schemes. The results of this elegant study converge with those of 
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[52], but further suggest that this incentive-driven enhancement in rule coding reflects 

proactive control [77], precedes other incentive-driven representational changes, and may be 

dependent on updating, as opposed to other types of control processes (e.g., rule 

maintenance).

From these foundational results, the research paradigm can be expanded to address 

additional critical questions regarding the motivational properties of incentivized task 

contexts, such as the effects of motivational valence (i.e., positive/approach, negative/

avoidance), incentive categories (i.e., primary, secondary), subjective preferences, and the 

timing of incentive cues (i.e., preparatory, target-linked) [109,110]. When used with 

neuroimaging methods of higher spatial resolution (such as fMRI), RSA offers a means of 

identifying the neural systems underlying these (potentially massively distributed) EEG 

codes.

Individual differences

Cognitive control is strongly impacted by individual differences [2,77,111]. Some of this 

variability may be localized to frontoparietal networks, in which functional differences may 

emerge from, or manifest as variability in task-relevant representations ([2,112]). Studying 

individual differences in frontoparietal representations can thus be a powerful test-bed for 

models of control. Likewise, RSA may provide novel ways of approaching such questions, 

as illustrated by two recent studies.

A long-standing construct in models of control of visual attention is an attentional template 

representation, encoded by frontoparietal networks, which contains visual information 

regarding the current target [46] (e.g., an object for which you are searching). At the heart of 

these models is a computation of similarity, between template features and objects within the 

visual field: representations of objects are preferentially enhanced, as a function of similarity 

to template (see [113] for a review). But similarity is, to some degree, subjective [54]. 

Subjective perceptual differences — idiosyncrasies in perceptual representations — could 

therefore plausibly drive individual differences in attentional efficiency.

Though this question may seem slippery, it can be naturally addressed with RSA, as 

demonstrated in a creative fMRI study [114]. Participants first classified identities of faces 

linearly morphed between two famous individuals (Figure 2B). In an RSA “fingerprinting” 

procedure adapted from object perception research [54] — which hinges upon on the 

“second-order” nature of RSA — individuals’ fusiform face area and lateral PFC were found 

to encode the stimuli in a format that captured their own idiosyncrasies in perceptual 

categorizations. Critically, an attentional task was performed next, using these same face-

morph stimuli as distractors. Only within right lateral PFC did an individual's neural 

similarity between a given target and distractor — measured during the initial categorization 

task — predict the degree to which the distractor disrupted (prolonged) their search. This 

study demonstrates a tight linkage between perceptual categorization, attentional search, and 

the representational structure in LPFC, while hinting at a privileged role for LPFC in 

representing categories when relevant for impending decisions. More generally, this study 

illustrates the utility of the second-order nature of RSA: by abstracting away from brain 

activity patterns, towards their geometry, investigators can more directly compare 
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individuals on cognitive dimensions of interest. Beyond identifying idiosyncratic 

representations, such an approach could be an effective medium for comparing subgroups 

(e.g., older versus younger adults), circumventing issues of gross anatomical change.

But sometimes the functional topographic organization of cortex is of interest. A recent 

study conducted by our own group [115], used genetic contributions to individual 

differences in functional organization to explore task coding within the FPN. Cross-subject 

RSA was applied to fMRI images of the N-back working memory task, in order to examine 

the similarity structure of activation patterns between paired individuals, contrasting 

monozygotic (identical) and dizygotic (fraternal) twin pairs, as well as non-twin siblings and 

unrelated pairs. Two contrasting models were compared: one of working memory load, the 

other of stimulus category. The coding of these dimensions was anatomically specific, such 

that frontoparietal regions showed higher pattern similarity in pairs with greater genetic 

similarity, but critically, only for the load model. Moreover, these patterns exhibited 

functionally relevant individual differences: in related (but not unrelated) pairs, stronger 

common coding of working memory load was associated with better N-back performance. 

These results provide clear support for the idea that genetic factors are entwined with the 

development of cognitive control functions [116], and suggest that these factors are 

expressed in the task-dependent functional organization of frontoparietal networks. Here, the 

use of RSA methods provided an efficient way to both compare different coding models and 

identify behaviorally relevant individual differences in the strength of a given coding 

scheme.

Concluding Remarks

RSA provides a convenient yet rich framework for decomposing control-related neural 

activity into measures that better correspond to representational components of theories. Of 

course, there are still many unknowns regarding the limitations of these tools (Box 3), as 

well as important open theoretical questions (Outstanding Questions). But as we have 

attempted to illustrate, the RSA framework has high potential for constraining mechanistic 

theories of cognitive control. We hope that this Review inspires other investigators working 

in this area to consider whether an RSA approach might be usefully applied to their own 

research questions.
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Glossary

Artificial neural network (ANN):
computing systems, loosely based on biological brains (with units analogous to neurons and 

weights analogous to synaptic connections) that are trained to perform particular tasks via 

supervised or reinforcement learning algorithms.
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Cognitive control:
the coordination and regulation of thoughts and actions in accordance with internally 

maintained behavioral goals.

Condition-rich RSA:
an experiment containing diverse and high-dimensional experimental stimuli, such as 

naturalistic images, that permit description by several different, often continuously varying, 

feature spaces (e.g., Gabor filters, semantic dimensions). A condition-rich RSA leverages 

this stimulus diversity to disentangle models built on competing feature spaces.

Full factorial RSA:
an RSA approach that uses a combination of a full factorial design (i.e., with multiple fully 

crossed factors) and multiple regression to decompose various coding schemes and 

potentially their interactions.

Multivariate Pattern Analysis (MVPA):
A loose category of data analyses that are sensitive to spatially distributed (e.g., across-

voxel, across-electrode, or across-neuron) patterns of brain activity. These include but are 

not limited to classification-based decoding and RSA.

Process:
an account of the function of a neural or cognitive unit (e.g., neuron, area, model 

component) in terms of the unit’s outcome or impact on other systems, or more general 

contexts in which it is engaged. Analogous to a computing function, which is not described 

by a set of internal state values (representations), but an abstract operation that “acts on” 

other values.

Representational geometry:
a term equivalent to similarity structure, but that more strongly connotes the geometric or 

graphical interpretation (of points as activity patterns and similarity as inter-point distances 

in high-dimensional activity space), and that emphasizes connections with neural population 

coding frameworks.

Representation:
an account of the function of a neural or cognitive unit (e.g., neuron, area, model 

component) in terms of the content and format of information that the unit stably encodes. In 

the black-box computing function analogy, a representation would be the (hidden) internal 

values (or states) of the function.

Similarity structure:
Given brain activity patterns evoked by a set of task conditions, the set of all pairwise 

similarities among the conditions. See also representational geometry.

Task set:
The “instructions” for a task — containing information about stimuli, responses, and rules 

(e.g., stimulus–response mappings) — but represented within a proceduralized, actionable 

format.
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Univariate analysis:
Neuroimaging analysis technique developed to detect spatially uniform (“overall” or mean-

level) changes in brain activity resulting from experimental manipulations.
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Box 1. Strengths of MVPA classification and RSA

Consider a hypothetical fMRI study of the color-word Stroop task and a researcher 

interested in the neural coding of congruency information. A one-dimensional research 

question like this is perhaps most straightforwardly assessed via MVPA classification: 

can the congruency level of a trial be classified, or “predicted”, by patterns of dACC 

activation (Figure I, Analysis and Conclusion)? If prediction is successful, dACC would 

be said to encode congruency information (Figure I, test split; see [117] for an actual 

example of classification in Stroop; for more general discussion and introductions, see 

[11,118-120]).

But it is often of interest to compare encoding of multiple task variables — for example, 

does dACC encode congruency selectively or more strongly than task-relevant target 

information? Here is where RSA becomes advantageous. A prototypical RSA would 

frame this as a singular problem of model comparison, in which two models (Figure I, 

congruency and target model geometries) compete to explain a common outcome: the full 

condition-by-condition similarity matrix of dACC activity patterns (Figure I, observed 

geometry, lower). The analysis tests whether the congruency model provides a better fit 

to the observed dACC geometry than the target model.

This example highlights two key distinctions between MVPA classification and RSA. 

First, RSA operates at a level once-removed from brain activity patterns, whereas 

classification operates directly on brain activity patterns (Figure I, Analytic Problem). 

This “second-order” abstraction (a la [121]) is the key basis for the flexibility of RSA. It 

allows representations from fundamentally different types of spaces to be easily 

compared [16].

Second, RSA and classification differ in their direction of inference. In RSA, models are 

tested in their ability to explain (similarity structure of) brain activity patterns (Analytic 

Problem, RSA, purple arrow), whereas in classification, activity patterns are tested in 

their ability to predict (or “recover”) a hypothesized model (Analytic Problem, 

Classification, orange arrow; [50]). This “forward” direction of inference of RSA — from 

models, which are (typically) under experimental control, to brain activity measures, 

which are not — underlies its explicitness for comparing competing coding models. This 

is a practical consideration that becomes critical with more complex experiments 

involving balanced factorial designs (e.g., [122]) that include interactions (e.g., [108]), or 

when there is a need to control for a diversity of confounding similarity structures (e.g., 

[63]). Further, this strategy enables one to test whether the geometry is completely 

explained by the models (i.e., with reference to a noise ceiling; [50,59]).

Finally, many strengths of classification are also accessible via RSA. Similarity measures 

can be chosen that account for certain properties of the data [123] that popular classifiers 

handle well, such as structured noise (e.g., [96]). Additionally, RSA models can be fit to 

individual trials, enabling, for example, using RSA model coefficients to predict 

theoretically-specified single-trial behavioral indices [63].
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Box 1 Figure: 
Illustration of prototypical classification and RSA approaches, using a toy example of a 

four-stimuli color-word Stroop experiment. Classification, Analysis and Conclusion, 

Trial-level activity patterns from a 2-voxel brain region (dACC) are depicted as points in 

2-dimensional space. Classification corresponds to fitting a decision boundary (orange) 

that separates patterns along a single factor (e.g., congruency; hollow or filled points) and 

is typically assessed via cross-validation (training and test splits). Classification, 
Analytic Problem, Classification directly uses brain activity patterns to predict the task 

model (congruency). RSA, Analysis and Conclusion, Condition-average dACC activity 

patterns (observed geometry) are depicted as a spatial arrangement (or geometry) of four 

points (here, the color-word stimuli), with six inter-point distances (green lines). The 

smaller the distance between patterns, the more similar they are (green numbers). The 

observed geometry can also be represented as a similarity matrix, as can model 

geometries. RSA, Analytic Problem, In RSA, brain activity patterns are first 

transformed into geometries, which are then explained by task models (target, 

congruency).
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Box 2: Full factorial RSA

Full factorial RSA offers a convenient framework for removing confounds and studying 

interactions in neural representations. Yet at first, this approach can seem 

counterintuitive, particularly for those who have primarily employed factorial designs in 

univariate contexts. Returning to the example of the Stroop task, we illustrate the 

potential utility of this approach.

In the color-word Stroop task, the target factor (here, four colors) is crossed with the 

distractor factor (four words; Figure I, A, left). This design permits at least three coding 

models to be specified: target, distractor, incongruency (Figure I, A, right). Each model 

describes an “ideal” coding scheme: for example, the target model would be observed in 

a region that only encoded the hue (or correct response), regardless of the distractor or 

congruency. Through multiple regression, these model similarity matrices can be jointly 

fit to the observed similarity matrix. The resulting β weights reflect the strength with 

which each factor was uniquely encoded within the observed geometry. Indeed, when this 

approach was recently, retrospectively applied to fMRI activity from sensory, motor, and 

frontoparietal control regions, predicted dissociations in coding strength were found at 

the group level (Figure I, B, left) and in relationships with individual differences in 

behavior (Figure I, B, right; [58]).

But even this example does not reveal the potential precision of full factorial RSA. For 

example, the target model conflates a variety of coding schemes: sensory coding (of hue), 

motor coding (of correct response), and more flexible, attentional template coding 

(Figure I, C, Decomposition). Adding a rule manipulation (Figure I, C, Design, pink) 

enables these coding schemes to be unconfounded, as regions encoding an attentional 

template would be expected to reconfigure their coding scheme on the basis of the task 

rule (Figure I, C, Control-Related Models, target features model; e.g., [108]; see 

discussion in [58] for additional decomposition). Likewise, a general rule-coding scheme 

(Figure I, C, rule model) can now be specified to identify task-set representations.

Further, full factorial RSA allows interaction hypotheses to be tested. For example, if 

increasing the frequency of incongruent trials drives subjects to adopt a mode of 

proactive control [77], a corresponding increase should be seen the strength of rule 

coding. This interaction could be tested by comparing the strength of rule coding (Figure 

I, C, rule model) in blocks with different probability of incongruency. More complex 

types of interaction hypotheses are testable, too (e.g., [63]; see also [124]).

An important limitation of full factorial designs are constraints on experimental time. 

Because time is limited, each additional manipulation typically reduces the number of 

trials per condition. To some extent, though, a larger RSA matrix (due to having more 

conditions) will counteract instability due to fewer trials. Nevertheless, manipulations 

should be added judiciously, boosting precision only along specific dimensions. We 

strongly recommend piloting and simulation to guide concrete design choices.
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Box 2 Figure: 
A decomposition of color-word Stroop via full factorial RSA. A, The similarity structure 

evoked during a Stroop experiment is modeled as a weighted sum of three hypothesized 

coding schemes (for visibility, white-hued stimuli are displayed in grey). B, Predicted 

dissociations in coding schemes were found when applying this approach to fMRI data 

[58]. At the group level (left), target coding predominated in ventral somatomotor cortex 

(vM1/vS1), whereas distractor coding predominated in V1 (error bars indicate 95% CI of 

between-subject variance; asterisks indicate significant pairwise model comparison). 

Relative to DLPFC, coding of incongruency predominated in dorsomedial frontal cortex 

(DMFC, including dACC and pre-SMA). At the individual level (right), subjects with 

stronger target coding in DLPFC, but weaker congruency coding in DMFC had smaller 

Stroop effects. C, In full factorial RSA, the precision of models can be boosted by adding 

specific manipulations to better isolate representations relevant to cognitive control.
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Box 3. Effective fMRI measurement of cognitive control representations

Cognitive control is complex, and perhaps not coincidentally, the brain regions associated 

with it, such as DLPFC, are challenging to study. Neurophysiologists have long 

appreciated the difficulty in characterizing the response profiles of neurons within this 

region (e.g., [125,126]): neuronal selectivities seem to be dynamic, often changing within 

single-trials [127], and are highly conjunctive, reflecting a mixture of task attributes 

[128]. At larger spatial scales, the principles by which lateral PFC is functionally 

organized have been difficult to establish (e.g., [49]). In fact, a recent, influential model 

of DLPFC embraces the confounding nature of this region by positing that neural 

populations are randomly connected to their input layers [42,129]. Random connectivity 

implies a lack of topographic organization, which would cast doubt on the utility of fMRI 

pattern analysis methods for identifying localized task representations in DLPFC.

Indeed, recent evidence suggests the signal-to-noise ratio in PFC fMRI activation patterns 

is relatively low. A meta-analysis of MVPA classification studies concluded that mean 

classification accuracies were considerably lower in PFC than in posterior sensory cortex 

[130]. A pair of recent RSA studies also illustrates the potential issue. In the first, 

macaques were trained on a reward-based decision-making task while single-unit activity 

was recorded [122]. Full factorial RSA revealed a triple dissociation of coding schemes 

across PFC regions. Yet this same full factorial RSA design, when adapted for human 

fMRI, found considerably weaker results in putatively homologous regions [131].

Although the scale of topographic organization (or lack thereof) in PFC is one important 

open question, there are many other potential limiting factors that also likely impact our 

ability to measure prefrontal coding effectively. More research on the importance of these 

factors is needed. For instance, dense sampling approaches (fewer subjects, more data per 

subject) are critical for maintaining signal in the presence of strong individual variability 

in functional organization [132]. Yet such an approach is rare in cognitive control 

research, despite the pronounced sensitivity of the associated frontoparietal brain regions 

to individual differences [133,134]. Thus, individual-specific areal definitions (e.g., 

[135,136]) are another important avenue to examine. Conversely, expanding the spatial 

scale of analysis, from areas to networks, has proven highly effective in other domains 

[137]. Of course, a loss of anatomical precision necessarily comes with this expansion; 

but, for many cognitive-level inferences, areal versus network-level specificity may not 

be critical. Finally, repetition suppression may be an effective means to achieve sub-

voxel-level precision in measuring representations [138,139].

Importantly, within each of these alternative approaches, the logic of RSA — explicitly 

modeling neural similarity structure — is applicable. Thus, for those interested in PFC 

coding of control, we predict that fluency in RSA will be valuable, regardless of 

measurement technique.
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Outstanding Questions

• In stimulus–response interference paradigms such as Stroop, how does 

cognitive control state (e.g., proactive/reactive) or other contextual and state 

factors (e.g., trial history, proportion congruency, amount of practice) impact 

target, distractor and task-set (rule) representations?

• Can more detailed representational models of dACC “congruency” coding 

(based on, e.g., model-derived response conflict, performance-monitoring 

information, or value computations) be used to shed light on function of this 

region?

• Can RSA be used to model the trial-by-trial dynamics of task structure 

learning?

• What is the evidence for domain-generality (i.e., cross-task similarity) of 

cognitive control representations?

• How do various motivational factors (e.g., valence, incentive type, 

preferences) modulate cognitive control representations? Is it through a 

common mechanism of sharpened task-set coding?

• To what degree are cognitive control representations idiosyncratic, that is, 

serving as a “fingerprint” of the individual?

• What are the psychometric properties of RSA with regard to individual 

differences analyses (e.g., test–retest reliability)? Can neuroimaging-based 

RSA be optimized to more powerfully address individual difference 

questions?

• Within fMRI-based RSA, what methods (e.g., involving amount of data per 

subject, preprocessing decisions, region definitions, denoising procedures, 

similarity estimation) are most effective for measuring prefrontal coding?
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Highlights

• Classical measures of cognitive control often only weakly correspond to the 

theoretical representations they are commonly used to test.

• Representational similarity analysis (RSA) can help better align measures to 

theory in this domain.

• The power of RSA comes from its flexibility, yet explicitness, in modeling 

representational structure.

• Full factorial RSA also enhances inferential precision and enables interactions 

to be tested.

• Useful strategies for applying RSA to inform cognitive control theory are 

discussed, and recent studies that exemplify these strategies are reviewed.

Freund et al. Page 24

Trends Cogn Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1, Key Figure. 
Schematic of “classical” and RSA-style approaches in cognitive control research. Design, A 

color-word Stroop task with four colors and four words. The participant is instructed to 

name the stimulus hue rather than read the written word. Analysis, top, The classical 

approach begins by defining abstract factor levels (here, congruent and incongruent) to 

which conditions (e.g., stimuli) are assigned. Within these levels, the outcome variables of 

interest (e.g., response time) are summed (Σ) then contrasted. Measures, top, These 

unidimensional measures are typically interpreted in terms of control processes (e.g., slower 

reaction time on incongruent relative to congruent trials indicates heightened control 

demands). Analysis, bottom, The RSA approach keeps the task conditions disaggregated 

(↔↕) in order to examine the set of pairwise similarities among measures (e.g., brain 

activity patterns) from all conditions — that is, their full similarity structure (grey and black 

lines). This observed similarity structure is then compared to structures predicted from 

theory. For example, a model of target representations would predict greater similarity 

between patterns from trials in which the target response was identical (i.e., between stimuli 

of same hue: e.g., black line connecting blue-hued “BLUE” and “GREEN” stimuli) versus 

different (e.g., between stimuli of same word in different hues: black line connecting red-

hued and blue-hued “BLUE”s). The RSA approach thus provides indices reflecting the 

strength which multiple different representational schemes were encoded (e.g., the space 

defined by the light blue basis vectors, which correspond to potentially encoded variables). 

Theory, Typically, classical measures support inference (large orange arrow linking 

Measure to Theory) regarding control processes (entire CONTROL component of model, 

orange). Conversely, RSA-based measures can map more directly (large blue arrow linking 

Measures to Theory) onto theorized control representations (blue nodes within CONTROL 

component).

Freund et al. Page 25

Trends Cogn Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Diagrams of two reviewed RSA methods. A, Mapping internal representations of an 

artificial neural network (ANN) to brain activity with RSA [82]. An ANN was trained to 

perform a hierarchical action sequence task, in which the action at one point in the sequence 

depended on previously chosen actions (e.g., ingredients could only be added once; cream 

could only be added to coffee). After training, the ANN simulated each step of each 

sequence (depicted: the fourth step of two different sequences), and the resulting activation 

patterns (reddish nodes) within the context layer were extracted; the similarity structure of 

these patterns served as the Context Layer Model (right). A competing model (Sequence 

Model), which contained only information regarding position-in-sequence (i.e., not previous 

choices) was built by taking the distance (absolute difference) between each pair of steps 

(green arrow). B, RSA “fingerprinting” [114]. Individuals first performed a famous-face 

classification task, in which an exemplar face, linearly morphed between two famous faces 

(e.g., Brad Pitt and Mel Gibson), had to be classified (as either Brad or Mel). Each 

individual's categorizations were expressed in similarity matrix form (here, depicted as 2-

dimensional perceptual geometries) then used as models to explain (green and purple 
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arrows) neural similarity matrices (neural geometries) from each and every subject. 

Idiosyncratic brain–behavior relationships were identified in brain regions (i.e., rLPFC) for 

which the within-subject models (green arrows) were better fit on average than the between-

subject models (purple arrows). Neural geometries were then used to predict the patterns of 

interference within a separate attentional search task that used the same stimulus set (grey 

arrow).
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Table 1.

Summary of various techniques used in RSA.

Technique Description Pros (+), Cons (−) References

ANN-based RSA Method of specifying RSA models 
based on artificial neural network 
representations.

+ more direct link between data and formal 
models
+ less computationally intensive than 
estimating unit-to-unit mappings
− cannot predict response to novel conditions

• [82], see also [140]
• [13,16]

Full-factorial RSA Type of experimental approach that 
uses crossed factors and multiple 
regression to decompose neural 
coding.

+ efficiently boost model specificity
+ test interaction of representations
+ handles complex designs
− number of trials, experimental time

• [63,108]; see also [122], 
discussion in [58]; see [124] 
for related technique

Single-trial RSA Analytic procedure for fitting RSA 
models at single trial level.

+ test within-subject brain–behavior 
relationships
+ supports hierarchical or joint modelling
− autocorrelation confounds

• [63,64]
• [141-143]
• e.g., [144]

Cross-task RSA Type of analysis that examines 
similarity structure within battery of 
tasks.

+ assess “neural construct validity”
+ use to rigorously assess replication

• [88]; see also [95]
• [99]

RSA fingerprinting Method of assessing presence of 
stable individual differences in 
representational structure.

+ mitigates individual differences due to 
anatomical factors
− requires repeated measures

• [114]; see also [54]

Cross-subject RSA Method of assessing task-dependent 
similarity in response topographies.

+ useful when individuals can be 
meaningfully grouped (e.g., by genetic 
relation)
− potential confounds with univariate activity

• [115] see discussion in [92]

Unbiased similarity 
measures

Type of similarity measure for which 
the expected value is not impacted by 
measurement error.

+ useful for unbalanced designs
− increased variance
− each condition must appear in >1 run

• techniques: [13,96,97,124]
• unbalanced design: e.g., 
[75]
• increased variance: [145]

Representational 
“connectivity” 

analysis

Type of analysis that examines 
covariation in coding strength (across 
region, timepoint). When constrained 
by RSA models, this covariation is 
assessed along specific coding 
variables.

+ test representational interactions (e.g., b/w 
PFC and downstream coding
+ constrained or unconstrained by RSA 
models
− third variables, directionality

• PFC–downstream 
interactions: e.g., [3,146]
• unconstrained: [60,147]; 
constrained: e.g., see 
interaction analyses in [108]
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