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Abstract

Chronic obstructive pulmonary disease (COPD) is a common inflammatory disease associated 

with restricted lung airflow. Quantitative computed tomography (CT)-based bronchial measures 

are popularly used in COPD-related studies, which require both airway segmentation and 

anatomical branch labeling. This paper presents an algorithm for anatomical labeling of human 

airway tree branches using a novel two-step machine learning and hierarchical features. 

Anatomical labeling of airway branches allows standardized spatial referencing of airway 

phenotypes in large population-based studies. State-of-the-art anatomical labeling methods are 

associated with mandatory manual reviewing and correction for mislabeled branches—a time-

consuming process susceptible to inter-observer variability. The new method is fully automated, 

and it uses hierarchical branch-level features from the current as well as ancestral and descendant 

branches. During the first machine learning step, it differentiates candidate anatomical branches 

from insignificant topological branches, often, responsible for variations in airway branching 

patterns. The second step is designed for lung lobe-based classification of anatomical labels for 

valid candidate branches. The machine learning classifiers has been designed, trained, and 

validated using total lung capacity (TLC) CT scans (n = 350) from the Iowa cohort of the 

nationwide COPDGene study during their baseline visits. One hundred TLC CT scans were used 

for training and validation, and a different set of 250 scans were used for testing and evaluative 

experiments. The new method achieved labeling accuracies of 98.4, 97.2, 92.3, 93.4, and 94.1% in 

the right upper, right middle, right lower, left upper, and left lower lobe, respectively, and an 

overall accuracy of 95.9%. For five clinically significant segmental branches, the method has 

achieved an accuracy of 95.2%.
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1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is an inflammatory disease that causes 

restricted lung airflow. COPD is the fourth leading cause of death in the United States of 

America affecting over 328 million people worldwide.1,2 Quantitative computed 

tomography (CT)-based measures of bronchial morphology are popularly used in COPD-

related research and clinical studies exploring the pathophysiology and mechanism of the 

disease occurrence and progression.3-6 For example, Smith et al. observed that, when the 

same anatomic airway segments are evaluated across subjects, airway walls, on average, are 

thinner in smokers with COPD compared with normal non-smokers.7 The important 

precursory steps for quantitative CT-based analysis of bronchial morphology are, first, 

segmentation of the airway lumen tree, followed by labeling of major anatomical branch 

segments in the extracted airway tree. Anatomical labeling of airway branches enables 

standardized spatial referencing and matching of airway phenotypes among individuals in 

large population-based studies.

Several computerized airway tree labeling algorithms are available in literature. For 

example, Mori et al. presented a rule-based classification method.8 This method suffers from 

errors related to false branching and branching variability beyond the finite rule-base, and, 

once, an error is committed, it propagates through the tree triggering additional errors. 

Kitaoka et al. developed a mathematical reference model of human airway tree with 

geometric and topologic features representing individual branches and inter-branch 

relationships and used this model for matching and anatomical branch labeling for test cases.
9 This approach was further extended where a reference model was generated from a large 

set of human airway tree data mitigating the effects of anatomical branching variabilities, 

and, also, skeletal pruning was added to reduce false branching.10 Feragen et al. used the 

notion of geometric tree-space to map individual airway trees on to the tree-space and use 

geodesic distance analysis for matching and anatomical labeling.11,12 Other researchers have 

used statistical modeling of individual anatomical branches from a training set and 

determine branch labels in a test set using breadth-first search and probability maximization.
13,14 However, these methods still need manual intervention to achieve an accuracy suitable 

for large research and clinical studies.

In this paper, we present an automated algorithm for anatomical labeling of human airway 

tree branches using a novel two-step machine learning and hierarchical features. The method 

uses geometric and topologic features of the current as well as ancestral and descendant 

generations through a series of neural network (NN)-based machine learning classifiers. 

During the first machine learning step, candidate anatomical branches are differentiated 

from insignificant topological branches, often, responsible for variations in airway branching 

patterns. The second machine learning step is designed for lung lobe-based classification of 

anatomical labels for valid candidate branches.

2. METHODS

The new method relies on leveraging knowledge of the overall airway branching structure to 

compartmentalize the labeling process. The airway tree structure and the 32 anatomical 
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segments of interest are illustrated in Figure 1. Starting at the trachea, the left and right main 

bronchi (LMB and RMB) lead to the left and right lungs. Beneath the LMB and RMB, 

bronchi lead to the left and right upper lobes, right middle lobe, and the left and right lower 

lobes. In the right lung, the right upper lobe (RUL) branch leads to the upper lobe while the 

Bronchus Intermedius (BronchInt) feeds the middle and lower lobes. For the first three 

generations, the airway branching pattern is standard, and branching variabilities are mostly 

observed beyond this depth. Moreover, such variabilities of bronchopulmonary segments are 

only local phenomena. An example of such variability is trifurcations of RB1, RB2, and 

RB3 versus one bifurcation leading to RB1 shortly followed by another bifurcation leading 

to RB2 and RB3 branches.

The overall strategy of our labeling algorithm is to label the first three generations of the 

airway tree, referred to as confirmed airway branches, using simple branch features. Once 

the first three generations of branch segments are identified, entry points to each of the five 

lung lobes are located and a two-stage classification strategy is used. During the first stage, 

anatomical branches are identified, which are fed to the second stage for classifying 

bronchopulmonary segments in individual lobes.

2.1 Skeletonization and detection of confirmed airway branches

The method starts with leakage-free segmented airway lumen tree as the input, which we 

obtained from chest CT scans using our previously published iterative multi-parametric 

freeze-and-grow algorithm.15,16 This method combines deep learning and conventional 

image processing approaches to iteratively segment the airway tree volume from TLC chest 

CT scans. First, a deep learning network is used to generate a voxel-level lumen likelihood 

map from the CT image. Next, it iteratively segments the airway lumen volume from the 

voxel-level lumen likelihood map starting at a conservative likelihood threshold and 

iteratively captures finer branches by progressively relaxing its value and correcting for 

segmentation leakages. Next, the centerline representation of the airway lumen tree is 

computed using a minimum cost path-based skeletonization algorithm developed at out 

laboratory17 This method generates the curve skeleton of airway tree by iteratively growing 

new skeletal branches computed as a minimum-cost path. The meaningfulness of a skeletal 

branch is defined by its global context and scales. It is necessary to remove spurious skeletal 

branches from the airway tree centerline, since they introduce critical challenges for 

computerized airway labeling due to erroneous branching patterns and branch features. A 

local scale-based method is developed and applied to prune spurious centerline branches 

while preserving true one. The basic idea of this step is that the for valid airway tree 

centerline branches the ratio of skeletal depth to local scale will be higher. Let p be a skeletal 

voxel immediately following a junction. The skeletal subtree Sp emanating from p is pruned 

if depth(p)/scale(p) is smaller than a threshold, where scale(p) is the local airway lumen 

radius, computed as the largest distance transform value in the 26-connected neighborhood 

of p, and depth(p) is the geodesic distance from p to the farthest voxel in Sp. After pruning, 

the airway tree centerline is rotated and translated such that the trachea aligned with the 

image z-axis with its root at the origin. The first step of our method identifies the seven 

anatomical airway centerline branches (Trachea, RMB, LMB, RUL, LUL, BronchInt, and 

LLB6 in Figure 1) in the first three generations including the trachea using their tree 
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generation and relative coordinate positions. These branches are used to identify the entry 

points into each of the five lung lobes.

2.2 Anatomical branch classification

The first classification step is aimed to differentiate among valid anatomic branches from 

insignificant topological branches, often, responsible for variations in airway branching 

patterns. A fully connected NN with three hidden layers consisting of 128, 256, and 512 

neurons was trained to compute validity likelihood of topological branches. Rectified linear 

unit (ReLu) activation function is used for hidden layers, while sigmoid activation is used 

for the output layer to determine the likelihood that a given branch is an anatomical branch. 

A binary cross entropy loss function is used and a likelihood threshold of 0.3 is used for 

anatomical branches. The threshold value was determined by taking the mean minus three 

times standard deviation of anatomic branches in the training dataset.

Lobe-specific NN classifiers are trained for labeling anatomical branches in individual lobes. 

For example, consider the right upper lobe. All first classifier-cleared anatomical branches 

beyond the branch RUL are used to train a multi-class NN. During the training process, a 

class label of 1, 2, and 3 are assigned for RB1, RB2, RB3 branches, respectively; class label 

0 is assigned to all anatomical branches other than RB1, RB2, RB3. For this classifier, a 

fully connected NN with three hidden layers consisting of 48, 96, and 192 neurons each with 

rectified linear (ReLu) activation is used with batch size of 8. A softmax activation function 

is used for the output layer to predict class output. A weighted categorical cross entropy loss 

function is used, where the weights of each output class are calculated as one minus the 

fraction of samples of that class in the training dataset. At runtime, anatomical branches in a 

given lobe are fed to the lobe-specific classifier and a branch with the maximum likelihood 

for a given target anatomical branch is labeled as that target branch. If the maximum 

likelihood for a given target branch is below a threshold among all input anatomical 

branches, then that specific target branch is considered as missing.

For both classifiers, hierarchical geometric and topologic features are used from the 

candidate branch, its parent and grandparent, and all sibling and immediate children 

branches. For each of these branches, the following features are computed and used for 

training—(1) branch generation number, (2) branch position relative to the tree root, (3) 

Euclidean branch length, (4) projected branch length along each image coordinate axis, (5) 

branch angles with each image coordinate axis, and (6) the number of siblings and 

immediate children resulting a feature length of 90. All feature values are scaled between −1 

and 1.

3. EXPERIMENTAL RESULTS

The new airway branch labeling algorithm was trained, validated, and tested using chest CT 

scans at TLC of three hundred and fifty subjects (age (years): [45 80] ([Min Max]), 65.1±7.5 

(mean±std.); 168 female; smoking (pack-year): 48.5±26.8; COPD GOLD status (N): GOLD 

−1 (31); GOLD 0 (173); GOLD 1 (45), GOLD 2 (68), GOLD 3 (20), GOLD 4 (13)) from 

the Iowa cohort of the COPDGene study5 at their baseline visits. CT scans were acquired on 

a Siemens Sensation 64 scanner (Forchheim, Germany) at the University of Iowa 
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Comprehensive Lung Imaging Center (I-CLIC) research CT facility. The following CT 

parameters were used: 120 kV, 110 effective mAs, pitch of 1.0; and the images were 

reconstructed on 512×512 matrices using the standard B35 body kernel with 0.75 mm slice 

thickness, 0.5 mm slice spacing, and approximately 0.62±0.06 mm in-plane pixel size, 

slices: [493 808] 675.6±51.5. This study was approved by the University of Iowa 

Institutional Review Board. The dataset was randomly partitioned into one hundred training 

scans, further partitioned into eighty and twenty training and validation scans, respectively, 

and two hundred fifty scans for testing and evaluative purposes. The reference anatomical 

branch labeling was obtained by manual annotation based on airway masks and their 

centerlines using an ITK-provided graphical user interface and editing tools18 following the 

standardized bronchopulmonary anatomy up to the segmental level.19,20

Two sets of training samples were generated for the two-step classifiers as described in the 

method section. For the Step 1 classifier, a training sample vector was generated for each 

airway centerline topological branch. A total of 27,521 training samples were generated for 

this step from the one hundred chest CT scans. For the Step 2 classifier of a given lobe, a 

training sample vector was generated for each possible anatomical branch within the specific 

lobe after clearance by the Step 1 classifier. A total of 18,194 and 4,551 samples were 

generated over the five lung lobes for training and validation, respectively. For all classifiers, 

the network was trained for 200 epochs using Adam optimization algorithm21 and a learning 

rate of 1×10−4. Step 1 classifier took 2 hours and 14 minutes for training on an Intel Core 

i9-79000X CPU using a NVIDIA GeForce GTX 1080 Ti graphics card. On an average a lob-

specific Step 2 classifier required 37 minutes for training on the same machine.

Results of intermediate steps of our airway labeling algorithm are presented in Figure 2. As 

observed in Figure 2(c), the airway tree centerline includes no apparent spurious branches, 

while visually valid branches are preserved after our pruning step. As shown in Figure 2(d), 

the method successfully identifies the first seven anatomical bronchi in the first three 

generation. Results of anatomical labeling of segmental bronchi are presented in Figures 

2(e) and (f). In these figures, red, orange, yellow, green, and blue used to denote segmental 

bronchi in the right upper, right middle, right lower, left upper, and left lower lung lobes. 

Results of anatomical labeling of segmental bronchi in right and left lungs, shown in Figures 

2(e) and (f), respectively, are correct as visually confirmed by an expert using an ITK-based 

graphical user interface with reference and computed labeled airway masks.

For quantitative evaluation, the labeling method was applied on two hundred and fifty TLC 

CT scans and the results were visually compared with manually annotated labels of 32 

anatomical bronchial segments and the labeling accuracy is presented in Table 1. For all test 

cases, the seven bronchi in the first three generations were correctly identified. The method 

achieved 98.6, 97.2, 92.3, 93.4, and 94.1% accuracies in labeling segmental bronchi in the 

right upper, right middle, right lower, left upper, and left lower lobe, respectively, and an 

overall labeling accuracy of 95.9% was achieved for all 32 anatomical bronchial segments. 

To simplify the review process and the subsequent use of the many resulting bronchial 

measures, the radiology center of the Severe Asthma Research Program4 (SARP) has 

standardized five bronchopulmonary segments, namely, RB1, RB4, RB10, LB1, and LB10. 
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For these five clinically significant bronchi, our labeling method achieved an accuracy of 

95.2%.

4. CONCLUSIONS

In this paper, we have presented an automated anatomical airway branch labeling algorithm 

using a two-step machine learning and hierarchical features. The method uses an NN-based 

machine learning approach and hierarchical geometric and topologic features from a 

candidate branch, its parent and grandparent, all sibling, and immediate children branches. A 

two-step classification approach has been introduced to compartmentalize and cope with the 

challenges of anatomic human bronchial labeling and variabilities of airway branching 

patterns. The first machine learning step differentiates candidate anatomical branches from 

insignificant topological branches, often, responsible for variations in airway branching 

patterns. The second step was designed for lung lobe-based classification of 

bronchopulmonary segments for valid candidate branches. Our experimental results suggest 

that the method is suitable for automated anatomic labeling of human bronchi up to the 

segmental level, especially, for the five clinically significant segmental branches.
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Figure 1. 
Graphical description of topological and spatial relationship among 32 anatomical human 

bronchi up to the segmental level. Segmental branches for different lobes are color-coded.
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Figure 2. 
Results of intermediate steps within our anatomical human bronchial labeling. (a) input 

chest CT image at total lung capacity, (b) segmented airway tree volume computed from (a), 

(c) airway tree centerline after skeletal pruning computed from (b), (d) anatomical labeling 

results for the seven branches in the first three generations of the airway tree, results of 

complete anatomical bronchial labeling at the segmental level with right and left lung results 

enlarged in (e) and (f), respectively.
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Table 1.

Labeling accuracy for 32 different airway anatomical branches from TLC chest CT scans of 250 test subjects 

from the COPDGene study baseline visits.

Left Lung Right Lung

Left Upper Lobe Right Upper Lobe

LB1+2 96.0 RB1 98.6

LB1 94.3 RB2 98.6

LB2 91.2 RB3 98.1

LB3 91.9 Right Middle Lobe

LB4+5 97.8 RB4+5 98.2

LB4 91.1 RB4 97.5

LB5 91.3 RB5 95.5

Left Lower Lobe Right Lower Lobe

LB6 98.0 RB6 95.6

LLL 99.0 RLL7 90.6

LB8 92.6 RB7 96.5

LB9 87.5 RLL 93.5

LB10 92.0 RB8 89.4

RB9 87.1

RB10 92.7

100% labelling accuracy was achieved for Trachea, RMB, LMB, RUL, BronchInt, LUL, LLB6.
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