
Mistiming Death: Modeling the Time-Domain Variability of Tumor 
Apoptosis and Implications for Molecular Imaging of Cell Death

Seth Gammon1,a, Brian J. Engel1,a, Gregory J. Gores2, Erik Cressman3, David Piwnica-
Worms1, Steven W. Millward1,*

1.Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX

2.College of Medicine, The Mayo Clinic, Rochester, MN

3.Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, TX

Abstract

Purpose.—Apoptosis, in the context of cancer, is a form of programmed cell death induced by 

chemotherapy, radiotherapy, and immunotherapy. As this is a central pathway in treatment 

response, considerable effort has been expended on the development of molecular imaging agents 

to non-invasively measure tumor apoptosis prior to quantitative changes in tumor dimensions. 

Despite these efforts, clinical trials directed at imaging apoptosis by PET, SPECT, and MRI have 

failed to robustly predict response to treatment with high sensitivity and specificity. Although 

these shortcomings may be linked to probe design, we propose that the combination of variability 

in the timing of maximal in vivo tumor apoptosis and sub-optimal sampling times fundamentally 

limits the predictive power of PET/SPECT apoptosis imaging.

Procedures.—Herein, we surveyed the literature describing the time-course of therapy-induced 

tumor apoptosis in vivo and used these data to construct a mathematical model describing the 

onset, duration, amplitude, and variability of the apoptotic response. Uncertainty in the underlying 

time of initiation of tumor apoptosis was simulated by Gaussian, uniform, and Landau 

distributions centered at the median time-to-maximum apoptotic rate derived from the literature. 

We then computationally sampled these models for various durations to simulate PET/SPECT 

imaging agents with variable effective half-lives.

Results.—Models with a narrow Gaussian distribution of initiation times for tumor apoptosis 

predicted high contrast ratios and strong predictive values for all effective tracer half-lives. 

However, when uncertainty in apoptosis initiation times were simulated with uniform and Landau 

distributions, high contrast ratios and predictive values were only obtained with extremely long 

imaging windows (days). The imaging contrast ratios predicted in these models were consistent 
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with those seen in pre-clinical apoptosis PET/SPECT imaging studies and suggest that uncertainty 

in the timing of tumor cell death plays a significant role in the maximal contrast obtainable. 

Moreover, when uncertainty in both apoptosis initiation and imaging start times were simulated, 

the predicted contrast ratios were dramatically reduced for all tracer half-lives.

Conclusions.—These studies illustrate the effect of uncertainty of apoptosis initiation on the 

predictive power of PET/SPECT apoptosis imaging agents and suggest that long integration times 

are required to surmount uncertainty in the time domain of this biological process.

Introduction

Programmed cell death (PCD) plays a key role in organ development, normal functioning of 

the immune system, neonatal survival, and tissue homeostasis1. Apoptosis (Type 1 PCD) is 

triggered by both external (e.g. TRAIL ligand) or internal (e.g. DNA damage) signaling 

events. Apoptosis is characterized by pyknosis, chromosomal fragmentation, and membrane 

blebbing2. In most cases, apoptosis is the default PCD pathway, although inactivation of this 

pathway in cancer (e.g. through p53 inactivation) can lead to subsequent engagement of 

alternate pathways, such as autophagic and necrotic death programs3.

In cancer, normal apoptotic programming is often inactivated or subverted to permit tumor 

cells to proliferate in the presence of significant genomic derangement, metabolic crisis, and 

cellular stress4. Most clinical cancer treatments exert their therapeutic effect by tipping the 

balance between pro- and anti-apoptotic signaling toward induction of the apoptotic death 

program. While our understanding of the molecular mechanisms of apoptotic cell death has 

grown significantly since the inception of chemotherapy and radiotherapy, our ability to 

measure cell death clinically has remained limited to monitoring tumor size after a full 

course of treatment by non-targeted anatomical imaging (RECIST5). One of the central 

goals of personalized cancer treatment is to determine whether a given therapeutic regimen 

triggers high levels of tumor cell apoptosis and to adjust treatment in real-time until 

sufficient tumor death is achieved. Molecular imaging of apoptosis could serve this purpose 

as a generalized pharmacodynamic imaging biomarker of treatment efficacy and 

dramatically accelerate the realization of personalized medicine.

Numerous molecular imaging agents have been developed to visualize tumor apoptosis in 

pre-clinical animal models and can be broadly divided into caspase substrates6–8, caspase 

inhibitors (e.g. isatin derivatives)9–10, phosphatidylethanolamine ligands (e.g. duramycin and 

cinnamycin)11 and phosphatidylserine ligands (e.g. Annexin V, the C2A domain of 

synaptotagmin-112 and phosphatidylserine-binding antibodies and peptides13,14–16. These 

agents are typically paired with a fluorophore or radionuclide whose half-life roughly 

matches the biological half-life of the probe. Thus, most fast clearing peptides and small 

molecules are labeled with short-lived radionuclides such as fluorine-18 (half-life = 109 

min) and most slow clearing proteins/antibodies are paired with long-lived radionuclides 

such as technetium-99m or indium-111 (half-lives in hours to days) or fluorescence 

reporters. These allow sampling of tumor apoptosis across time scales ranging from minutes 

to days.
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Despite the diversity of apoptosis molecular imaging probes in the pre-clinical space, there 

are no molecular imaging technologies available to visualize and quantify tumor apoptosis in 

the clinic. Clinical trials with Annexin-based SPECT agents in several cancers including 

breast, head and neck, lung, and lymphoma failed to show robust prediction of response 

based on imaging shortly after chemotherapeutic or radiation treatment (20–50% increase in 

tumor uptake)17. More recent studies with ICMT-11 likewise showed only a modest contrast 

ratio between apoptotic and normal tissue and subsequently limited predictive power18. Both 

strategies showed great promise in pre-clinical studies14, 19, yet struggled to attain the 

sensitivity and specificity required for clinical decision-making.

The spatial and temporal heterogeneity of therapy-mediated tumor cell apoptosis confounds 

traditional molecular imaging strategies. Many cancer treatments trigger low-level apoptosis 

in only a fraction of tumor cells at any given time20–22. This phenomenon is linked to the 

cell cycle, local therapeutic concentration, local partial pressure of oxygen (hypoxia), and 

tumor clonal heterogeneity23. The functional result is heterogeneity of apoptosis following 

treatment which is further compounded by high background apoptotic activity arising from 

increased tumor cell turnover24. Finally, most therapies require weeks to months in order to 

generate anatomically detectable response (decreased tumor volume) indicating that 

apoptosis induction persists over a long period of time. In contrast, most molecular imaging 

strategies sample the tumor for minutes to hours. This timescale is governed by six probe-

related rate constants: perfusion, clearance, isotopic decay, metabolism, activation, and 

retention.

Because of the significant, robust, and reproducible efforts of the molecular imaging and 

pathology communities over the past 20 years, a substantial body of data describing in vivo 
tumor apoptotic responses are now available. These new data may enable better reporter 

design or better selection of apoptosis imaging applications. After reviewing years of IHC 

data and in vivo experiments, we propose that these data indicate that the predictive power 

of apoptosis imaging is limited not only by the biochemical robustness of the reporters, but 

also by the underlying temporal uncertainty in the activation of the biological process.

To investigate the potential effects of variability in the initiation of apoptosis and imaging 

integration time on image contrast and predictive power, a mathematical model of tumor 

apoptosis was developed based on a survey of the pre-clinical literature. This model was 

designed to study the imaging properties of cell death reporters on a macroscopic scale 

based on the spatial resolution of PET/SPECT/CT. Therefore, in the following analysis, 

tumor refers to the bulk tumor immune microenvironment (TIME) - the heterogeneous 

mixture of tumor, immune, and stromal cells that individually undergo cell death and 

contribute to the total signal in the tumor compartment. We simulated variability in initiation 

of apoptosis using uniform, Gaussian, and Landau probability distributions centered at the 

median time of maximal apoptotic response from the literature. Predicted contrast ratios and 

Area Under the Receiver-Operator Curves (AUROCs) were calculated for each model as a 

function of total integration (imaging) time and compared to observed data in the PET/

SPECT apoptosis imaging literature. Finally, variability in imaging start time relative to the 

initiation of therapy was simulated using the same approach described above to determine 

the combined effect of variability in apoptosis initiation time and imaging procedure 
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initiation. Our results predicted that robust molecular imaging of apoptosis is profoundly 

time-dependent and that long integration (imaging) times are necessary to compensate for 

uncertainty in apoptosis initiation and imaging start time.

Methods

Model Construction

We surveyed the literature to identify studies where a time course of tumor apoptosis was 

explicitly determined by ex vivo analysis (Figure 1). Acceptable methods to identify and 

quantitate tumor apoptosis included immunohistochemical staining for cleaved caspase 3/7, 

TUNEL assay, or tissue morphology (Gold standards). Only studies that provided 

quantitative measurement of tumor apoptosis were used. The apoptotic response from each 

study was extracted, normalized to time 0 hrs, and then plotted against time to obtain an 

integrated apoptotic response curve. From these curves, the full width at half-maximum 

(FWHM, hours), fold-change at maximum, and time to maximum (hours), were extracted. 

All data were converted to mean or median ± standard deviation as necessary. Standard error 

of the mean was converted to standard deviation (SD) by multiplying SEM by the square 

root of the number of replicates. Interquartile range was converted to SD as described25. 

95% confidence intervals were converted to SD as described26. The resulting data were 

normalized to baseline values and the features described above were extracted. Although the 

apoptotic response curves fell into six categories (unimodal, bi-modal, hyperbolic, 

sigmoidal, exponential, and biphasic – see Figure 2), the majority of studies showed a 

unimodal response that was used to construct the mathematical model.

Model Analysis

All mathematical models were constructed in Mathematica version 10. Tumor baseline 

apoptosis was modeled as a low frequency oscillator with a Gaussian distribution of high 

frequency noise. Induced tumor apoptosis was modeled as a Gaussian response additive to 

the baseline and constrained to the median fold-change, time to maximum response, and 

FWHM parameters obtained from the literature survey (Table 1). 2000 apoptosis initiation 

times were randomly selected from a Gaussian distribution (mean at 48 hours; SD 24 hours), 

a truncated Gaussian distribution (mean at 24 hours; SD 24 hours), an asymmetric heavy-

tailed Landau distribution (mean at 48 hours; sigma = 1) a truncated Landau distribution 

(mean at 24 hours, sigma = 1), or a random (uniform) distribution. These apoptosis 

induction times then were utilized to build induced and baseline time series. An unweighted 

numerical integration was calculated for both the induced and background apoptosis states 

for durations of 0.5 to 216 hours starting at 24 hours. This yielded a virtual n = 2000 dataset 

for both baseline and induced cell death. From these data, an ROC curve was plotted and the 

AUROC and SEM calculated (GraphPad Prism 8). An example time series model can be 

found in Figure 1.

A similar methodology was utilized to test the influence of variations in post-treatment 

imaging time on the AUROC. Apoptosis initiation times were modeled as a Landau 

distribution as indicated above. Then, 2000 imaging start times were selected from either a 

Gaussian distribution (mean 48 hours, SD 24), a heavy tailed Landau distribution (mean 48 
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hours, sigma = 1), or a random (uniform) distribution. Time courses and numerical 

integration were then conducted for these data points as above.

Results

Using the literature search heuristic described in Figure 1, we analyzed previous studies of 

in vivo tumor apoptosis where tumor apoptosis as a function of post-treatment time was 

explicitly measured by ex vivo histopathology or immunohistochemical analysis (cell 

morphology, cleaved caspase 3, or TUNEL). From this we extracted the shape of the 

apoptosis-versus-time curve for each study as well as the full width at half maximum 

(FWHM), the time to maximum apoptotic response (treatment is initiated at t = 0), the 

maximum fold-change of apoptotic response over background (untreated tumor), and the 

standard deviation of the maximum response (SD). No obvious correlation between 

treatment type and the time-course of apoptotic response was observed. As seen in Table 1, 

the majority of the apoptosis time curves were unimodal (15/29, 52%) with a median post-

treatment time-to-maximum of 24 hours. The median fold-change over non-treated tumors 

was 2.87. A minority of curves were bi-modal (4/29, 14%) or monotonic (10/29, 34%). For 

the purposes of subsequent simulations, only the unimodal model was considered. Graphical 

representations of the apoptosis time curves are provided in Figure 2. All of the extracted 

curves can be found in Supplementary Figure 1.

Formation of Induction Models:

A mathematical model of tumor apoptosis was constructed to understand the effect of 

sampling (integration) time on the expected imaging contrast ratio. However, since apoptosis 

may not be a phase-locked process, the initiation time of apoptosis could be intrinsically 

uncertain and was therefore considered a variable in the simulation. The underlying 

distribution of the initiation of cell death was simulated with a truncated Gaussian, Gaussian, 

truncated Landau, Landau, or uniform distribution. This is not to be confused with the shape 
of the cell death function itself which was confined to a Gaussian (unimodal) distribution. To 

prevent the initiation of apoptosis prior to day 0, the truncated Gaussian and Landau 

distributions were utilized such that the peak of induction would occur at 24 hr, the median 

time-to-maximum for unimodal responses (see Table 1). In this model, the probability of cell 

death induction prior to the start of treatment was set to 0. For the non-truncated Gaussian 

and Landau distributions, peak apoptosis was set at 48 hr which minimizes initiation prior to 

time 0. We note that while 48 hour initiation was not the median initiation time, it was 

represented within the ex vivo data sets. Integration times were varied between 30 minutes 

and 216 hours.

The Gaussian Induction Model:

As seen in Figure 3, for very well controlled initiation of cell death, a diagnostic ROC can be 

achieved with integration times < 1 hr which is consistent with typical PET radiotracers. 

Indeed, contrast ratios approaching 2 were observed with diagnostically acceptable AUROC 

> 0.9 depending upon the peak of apoptosis induction. However, these models demonstrated 

diminishing returns with integration time. Since Gaussian distributions truly converge to 0, 

and since the initiation times in this model were effectively known a priori, the AUROC for 
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longer integration times begins to decrease after reaching a peak at 50–75 hours. Once the 

probability of initiating cell death effectively reaches 0, integration covering these times only 

adds noise without adding any useful information or predictive power. Both Gaussian 

models reflect cases where the induction of cell death shows low variability and the time to 

maximal induction is known with high confidence.

The Landau Induction Model:

A second model of tumor apoptosis was constructed where the initiation of tumor apoptosis 

was simulated by a Landau distribution. This is effectively a “long-tailed” asymmetric 

Gaussian distribution centered around 48 hours post-treatment and represented moderate 

levels of uncertainty regarding the initiation of tumor cell death (Figure 4). A truncated 

Landau distribution centered at 24 hours post-treatment was also used. In these models, 

contrast ratios approaching 2 could be obtained with relatively short integration times 

(contrast ratio = 1.9 with a 3 hour integration time). However, predictive power was 

significantly decreased relative to Gaussian induction models and longer integration times 

were required to yield an AUROC of > 0.8. Even at the longest integration times, significant 

variation in the simulated contrast ratios led to AUROC values that approached, but did not 

reach, unity. In contrast to the Gaussian models, minimal diminishing returns were found for 

the longest integration times.

The Uniform Induction Model:

To reflect very low levels of certainty regarding cell death initiation times, induction of 

apoptosis was simulated to occur randomly from 24 hours to 11 days post-treatment (Figure 

5). Short integration times (30 minutes – 9 hours) in this model, yielded median contrast 

ratios of < 1.3 with poor predictive value (AUROC ~ 0.6). Median contrast ratios 

approaching 1.5 were only obtained for integration times longer than 216 hours. ROC 

analysis showed high predictive power for the 216 hour integrator (AUROC ~ 0.9).

Imaging Start Time Uncertainty:

In addition to simulating uncertainty in the initiation of tumor death, we sought to determine 

the effect of imaging start time uncertainty on the median contrast ratio in the Landau 

model. This uncertainty represented the variability of patient imaging time following the 

start of treatment and was simulated using Gaussian, Landau and uniform probability 

distributions centered at 48 hours post-treatment. When the cell death initiation time and 

imaging start time were allowed to vary, the diagnostic potential of even the longest 

integration time dramatically decreased from ~ 0.9 to ~ 0.7 (Figure 6). We still continued to 

observe a mild increase in the AUROCs with increasing integration time, but because the 

peak of apoptosis induction could be easily missed, adding additional integration time 

yielded substantially less predictive power than when the imaging start time was fixed and 

early. Notably, both the uniform and Landau distributions of imaging start time yield similar 

diagnostic power.
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Discussion

We have examined the effects of several key timing variables on the final diagnostic value of 

hypothetical molecular imaging reporters for cell death. In vivo, the signal of any injectable 

reporter represents the convolution of two processes, with each process defined by multiple 

rate constants. The first process to consider is the activity of the imaging agent. This 

includes the local uptake and washout of the reporter, binding/association with the biological 

target, dissociation from the target, biological half-life (clearance), and the half-life of the 

reporter (radioactive isotope). The second process under consideration is the underlying 

time-dependent shape of the local target concentration. This is a combination of multiple 

rate constants including target synthesis, target degradation, target compartmentalization, 

and target inhibition. If the target is an enzyme, the time dependent kcat and Km as well as 

the local concentration of any required co-substrates or co-factors also becomes relevant to 

the analysis. Finally, the biological clearance rate of the associated target complex, either 

through inactivation or clearance by the immune system (apoptotic bodies), must be taken 

into account in order to define the effective concentration of target over time.

In order to parse this multi-variate problem we chose to model an ideal scenario. The model 

was fundamentally optimistic as it assumed that both wash-in and wash out were 

instantaneous (delta functions). In the case of a real reporter undergoing biological clearance 

and radioactive decay, wash-in and washout kinetics will yield a decrease in the underlying 

contrast ratio by broadening the response function over time, resulting in exponential 

weighting of earlier time points. To deal with the complexity of the underlying target 

concentration, descriptive models were utilized based upon a literature review of the shapes 

and timing of cell death (both apoptosis and necrosis) after a single insult. The most 

commonly described shape of the cell death response was either unimodal or monotonic 

(which could be the initiation of a variety of distributions). This shape was utilized for the 

underlying time course to be interrogated and the height and width were set by the median 

value of the contrast ratios and FWHM described in the literature. These descriptive models 

were varied in their initiation of apoptosis by including multiple different models of 

induction, and applying the same models to tracer injection times. Each was sampled with 

different integration times.

Each integration time could be mapped onto the fastest off-rate constant for a given reporter. 

For example, consider a long-circulating, high-affinity antibody (koff measured in hours to 

days with a comparable systemic clearance rate). If this antibody were labeled with 

carbon-11 (half-life 20.3 min), it would fall within the short integration time regime. If it 

were labeled with a longer lived isotope such as zirconium-89 it would fall within the long 

integration time regime. Similarly, small molecules with short biological half-lives fall 

within the short integration time regime regardless of the conjugated radionuclide. Less 

intuitively, biological clearance of the bound target also effectively decreases the integration 

time. At some point during cell death caspases will lose their catalytic activity and 

membrane compromised cells will be cleared from the milieu by the immune system, 

effectively shortening the integration time. These rate constants would also be context 

dependent. For example the rate of clearance of apoptotic bodies from normal non-immune 

privileged sites is fast, but in immune privileged sites such as a tumor or the eye41 rates 

Gammon et al. Page 7

Mol Imaging Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could be much slower. The convolution of rate constants for all of these processes and 

interactions defines the available imaging time window (integration time). We propose that 

short integration times, driven by rapid radionuclide decay, fast systemic clearance, or 

transient target availability would be particularly susceptible to timing variability in the 

initiation of apoptosis. Conversely, long integration times would more robustly sample the 

apoptotic landscape leading to higher contrast ratios and predictive power. If true, this 

presents a compelling argument for the use of long-circulating probes conjugated to long-

lived radionuclides that target long-lived epitopes/activities within the microenvironment of 

the dying tumor.

Given the inherently small difference in apoptotic activity between treated and untreated 

tumors (< 2.9-fold, Table 1), we predicted that the integration time would have a significant 

effect on the predicted contrast ratio. The variability in the time until maximum apoptotic 

response in pre-clinical studies also suggested that long integration times would be critical to 

obtain acceptable contrast ratios in cases of timing uncertainty. When the onset of apoptosis 

was known with high certainty, as reflected in the Gaussian model, the predicted contrast 

ratio of the imaging procedure was nearly 100% of the theoretical contrast ratio for all 

integration times. However, when the initiation of tumor apoptosis was highly uncertain, as 

in the uniform model, the predicted contrast ratio and AUROC were linearly dependent on 

integrator times > 72 hours and effectively integrator time-independent at < 72 hours. 

Moreover, the predictive power of imaging as measured by AUROC never reached a 

clinically-relevant value for integration times < 200 hours. Although this model suggested a 

somewhat unreasonable level of uncertainty in the initiation of tumor cell death (between 1 

and 8 days post-treatment), the model nevertheless illustrated how the combination of short 

imaging times and high biological uncertainty degraded image contrast and predictive 

power.

A more realistic depiction of the uncertainty in tumor apoptosis initiation was provided by 

the Landau model. In this model, most cases of tumor apoptosis occurred in the predicted 

time range, but a smaller number of cases occurred at much longer post-treatment times. 

Contrast ratio was still strongly dependent on integration time, but acceptable AUROC 

values were obtained with integration times less than 72 hours. This interrogation time could 

be obtainable using 89Zr-conjugated antibodies or other agents with similarly long isotopic 

and biological half-lives. Short integration times in this model were predicted to result in 

reasonable, but not clinically actionable predictive values (AUROC ~ 0.75).

A survey of the PET/SPECT apoptosis imaging literature (Table 2) indicates that the Landau 

model appropriately simulated variability in the timing of apoptosis initiation. The extracted 

normalized data can be found in Supplementary Figure 2. Imaging time course data 

provided in these studies was strikingly similar to the ex vivo histopathology data shown in 

Table 1. When only the unimodal responses were considered, the median values of FWHM 

and time to maximum apoptotic response in rodents corresponded almost perfectly to those 

obtained by ex vivo analysis. In addition, the median fold-change at max (1.99) was very 

close to the predicted contrast ratio for the 3 hour integrator in the Landau model (1.9). 

When only 18F- and 99mTc-based tracers are considered, the median contrast ratio in rodent 

models dropped to 1.8. In human studies where a unimodal response was observed, the fold-
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change at max was slightly higher than in rodent models (3.7), while the FWHM was 

significantly reduced (14.1). Although this represented only a single data point, it suggests 

that the magnitude of the apoptotic response in a clinical setting may be higher than in pre-

clinical rodent models although the duration of the response (FWHM) may be significantly 

shorter. When the more rapid onset of this response was considered (4 hours until max 

response versus 24 hours in rodents), a long integration time may still be essential to avoid 

missing the bulk of the apoptotic signal in human tumors. Given the paucity of apoptosis 

imaging data in human patients, we are reluctant to draw definitive conclusions regarding 

the optimal integration time from this sparse data set.

Our simulations indicated that addition of uncertainty in the start of the imaging procedure 

would dramatically reduce the contrast ratio and predictive power of nearly all PET/SPECT 

apoptosis imaging agents. Although this variable may be less relevant in pre-clinical 

imaging studies where imaging experiments are tightly controlled, it is likely to play a major 

role in clinical settings, particularly in the case of clinical trials. While PET operational data 

in the literature were scarce, a report by Beyer and colleagues showed a 3–7 day wait time 

between referral and imaging at 30% of PET imaging facilities. In 15% of sites, the post-

referral wait time could exceed 8 days. Clinical imaging trial protocols often allow similar 

flexibility between treatment and imaging in order to maintain patient recruitment levels. 

Our models indicate that 24 h of imaging time variability would significantly degrade 

predictive power of apoptosis imaging to values far below the level where clinical decisions 

can be made.

Limitations of the models.

As enumerated earlier, this model represented an ideal imaging experiment. Multiple doses 

during the course of treatment, as is common with cancer therapeutics, could affect cell 

death dynamics and broaden response. Broadening the response would ultimately decrease 

the susceptibility of the shorter lived reporters to multiple variables but particularly, the 

uncertainty in the timing of the injection of the imaging agent. The onset of apoptosis would 

also be less important (but not fall to zero) depending on whether multiple treatments caused 

a spike followed by return to baseline, or increased the baseline level of tumor cell death 

(best case scenario). Unfortunately, there were very few examples of multiple intervention 

therapy associated with apoptosis time course studies in the literature. However, these would 

be exciting and highly informative studies and we look forward to incorporating the results 

into our models as more pre-clinical and clinical data become available. It is also worth 

considering that the value of apoptosis imaging diminishes as the course of therapy goes on 

and collapses to zero once anatomic imaging of tumor size is completed (RECIST). The 

primary benefit from cell death imaging is rapid evaluation of treatment efficacy which 

would be most beneficial if carried out early in the therapeutic course. The use of apoptosis 

imaging in the context of multiple therapeutic interventions would therefore have to be 

carefully considered to balance clinical information with patient risk.

As stated above, we have considered only a unimodal model of tumor apoptosis to predict 

the contrast ratio and predictive power of molecular imaging agents. As seen in Tables 1 and 

2, there was evidence of both bimodal and monotonic apoptosis response curves in the 
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literature. It was not clear that any improvements in contrast ratio or predictive power would 

be observed in bimodal responses since the minor peak typically occurs soon after treatment 

(<4 h) and is significantly more narrow than the major peak. This could lead to 

underestimation of the total apoptotic response at early imaging time-points, particularly if 

imaging fell between the minor and major peaks.

The monotonic apoptotic responses comprise a large fraction of the time courses 

documented in the literature (~34%) and could be sub-categorized into exponential, 

hyperbolic, sigmoidal, and biphasic (Figure 2). It was unclear whether these curves 

represented the early part of a long-duration unimodal response that was not interrogated by 

the addition of later sampling times. If this were the case, these curves may represent a 

sufficiently low-frequency apoptotic process as to be amenable to apoptosis imaging with 

short integration times. Future modeling studies will be carried out to validate this 

hypothesis.

Finally, the number of papers here are clearly insufficient to discriminate the shape of the 

underlying distribution of apoptotic response. Initiation times and FWHM are also subject to 

sparse sampling of the underlying time course. To address this, we tested multiple 

distributions to identify common results that were robust to the underlying ground truth. 

When required, we utilized median rather than mean values to generate our models. The 

median was a descriptor of the central location that was less sensitive to changes in the 

shape of the underlying distribution particularly if the underlying distribution involved heavy 

tails and/or asymmetry. As additional cell death time course data become available, we 

anticipate further refinement of our models.

Implications for Molecular Imaging.

A unimodal, high-frequency model of tumor apoptosis was chosen to study the effect of 

image timing variability on image contrast and predictive power. For processes that were 

indeed truly well-controlled, the unimodal response appeared, at first glance, to be a 

sufficiently well-defined and predictable process for molecular imaging with short 

integration times. While this assumption may hold in pre-clinical mouse tumor models 

where the tumor is more homogeneous (grown from a clonal population), pharmacokinetic 

variability is constrained through the use of inbred strains, and imaging procedures could be 

scheduled precisely, it is likely to break down when these factors are no longer present. 

Indeed, our models suggested that significant time variability in the apoptotic response was 

likely to preclude the utility of short integration times, and by extension, fast clearing probes 

with short half-life radionuclides. Only in the case where there was minimal uncertainty in 

the initiation of tumor apoptosis were these probes predicted to yield sufficient contrast and 

predictive power for clinical use. Besides apoptosis and necrosis, there are many emerging 

forms of cell death all of which likely co-exist. If one of these biological systems 

consistently leads to long, broad induction with high target stability, then short-lived 

reporters might re-emerge with new targets of interest.

Because it will be rare to fully define the underlying distribution of both the initiation of cell 

death, and the shape of the cell death process, it is important to consider the integration 

times that were most robust to the underlying models. The results in this work suggested that 
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longer integration times relative to standard 18-fluorine and 11-carbon isotopes will be 

necessary for high contrast ratios when the timing of tumor apoptosis is uncertain. In the 

case of PET/SPECT, this implies that slow-clearing probes conjugated to long-lived 

radioisotopes have a greater chance of detecting tumor cell death with high predictive power 

(AUROC > 0.9). This is supported by promising pre-clinical data of radiolabeled anti-

phosphatidylserine antibodies and longer circulating Annexin V analogues, although 

translation to the clinic has yet to be demonstrated36, 49. If the underlying process of necrosis 

is more stable or broader than apoptosis then this might also explain the potential utility of 

the PS class of reporters. The requisite longer-lived isotopes, however, will require a 

concomitant trade-off with unfavorable dosimetry profiles. In oncologic applications with a 

single imaging time point this may indeed be an acceptable safety trade off, but careful 

consideration is required for patient populations with better expected outcomes. This 

conclusion is also supported by the time course imaging data from bioluminescence imaging 

studies. As seen in Table 2, contrast ratios obtained from bioluminescence imaging in split 

luciferase systems (e.g. pcFluc-DEVD) showed significantly higher fold-change at max 

values than those obtained in nuclear imaging studies. In these systems, imaging signal is 

being continuously produced at the site of apoptosis and effectively provides days of 

integration time with no apoptosis-independent signal decay. Although these models are 

non-translatable, they do provide an existence proof of high contrast from long integration 

times of apoptotic reporters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Extraction of Tumor Apoptosis Time Course Data from the Literature.
The tumor apoptosis literature was surveyed and filtered according to the criteria described 

in the top two boxes to obtain time-series data relating the amplitude of tumor apoptosis to 

the time post-treatment. The number at the bottom of each box indicates the number of 

manuscripts that met the stated criteria. The resulting time series data (Table 1) were used to 

construct a mathematical model of tumor apoptosis (red line) and background apoptosis 

(black line). This model was computationally integrated (e.g. shaded blue box) to obtain 

theoretical contrast ratios.
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Figure 2: Apoptosis Time Curves Observed in the Literature.
Only unimodal curves (boxed) were considered in subsequent analyses.
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Figure 3: Simulation of Tumor Apoptosis with Gaussian and Truncated Gaussian Distributions 
of Apoptosis Initiation Time.
A) Simulated signal (AU) obtained with the imaging integration time shown at the top of 

each graph. The calculated ROC for each imaging integration time is shown below. B) The 

distribution of apoptosis induction times utilized in the experiments (red = truncated 

Gaussian, black = Gaussian. C) The relationship between integration time and AUROC for 

both Gaussian models of apoptosis start time (SEM is below the size of data points).
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Figure 4: Simulation of Tumor Cell Death with Landau and Truncated Landau Distributions of 
Apoptosis Initiation Time.
A) Simulated signal (AU) obtained with the imaging integration time shown at the top of 

each graph. The calculated ROC for each imaging integration time is shown below. B) The 

distribution of apoptosis induction times utilized in the experiments (red = truncated Landau, 

black = Landau. C) The relationship between integration time and AUROC for both Landau 

models of apoptosis start time (SEM is below the size of data points).
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Figure 5: Simulation of Tumor Cell Death with a Uniform Distribution of Apoptosis Initiation.
A) Simulated signal (AU) obtained with the imaging integration time shown at the top of 

each graph. The calculated ROC for each imaging integration time is shown below. B) The 

distribution of apoptosis induction times utilized in the experiments. C) The relationship 

between integration time and AUROC for the uniform model of apoptosis start time (error 

bars show the SEM).
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Figure 6. Variable Imaging Start Time Reduces Predictive Power.
If a subject is imaged later than the peak induction of cell death, the diagnostic potential 

dramatically decreases. While longer integration time does capture the longer tails of the 

induced apoptosis, a fixed early imaging time is critical to enable AUROC > 0.85.
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Table 1:

Summary of Apoptosis Time Course Data Obtained from the Literature.

Reference Treatment Model Detection Method Curve Type FWHM (h)
Time to 
Max (h)

Fold 
Change at 

Max

SD at 
Max 
(%)

27 Cyclophosphamide Rats Cleaved cas-3 Monotonic N/A 20 2.11 35.4

28 Radiation (overall) Mice Cleaved cas-3 Unimodal 13.8 4 2.98 54.7

28 Radiation (initially 
hypoxic)

Mice Cleaved cas-3 Unimodal 15.9 8 2.57 37.5

28 Radiation (initially 
normoxic)

Mice Cleaved cas-3 Unimodal 14.5 4 9.85 48.4

29 Docetaxel Mice Cleaved cas-3 Monotonic N/A 72 4.19 35.1

30 Paclitaxel Mice Cleaved cas-3 Bimodal 1.5, 14 6 2.86 39.9

31 Irinotecan Mice Cleaved cas-3 Bimodal 3.5, >30.1 24 3.23 17.6

31 5-FU Mice Cleaved cas-3 Unimodal 16.1 8 1.86 7.9

32 Cisplatin Rats Cleaved cas-3 Monotonic N/A 96 23.8 64.7

31 Bevacizumab Mice Cleaved cas-3 Unimodal 14.2 24 2.05 7.9

31 Oxaliplatin Mice Cleaved cas-3 Unimodal 26.9 24 3.89 3.5

31 Panitumumab Mice Cleaved cas-3 Bimodal 3.1, 7.9 4 1.67 25.1

33 Birinapant Mice Cleaved cas-3 Unimodal >77 72 2.87 14

33 Irinotecan Mice Cleaved cas-3 Monotonic N/A 120 3.7 21.2

34 Cisplatin Mice Morphology Unimodal 23.2 18 4.58 NR

34 Cisplatin Mice Morphology Bimodal 52.4 18 8 NR

35 Paclitaxel (no response) Human Morphology Unimodal 31.5 24 2.08 65.5

35 Paclitaxel (partial 
response)

Human Morphology Unimodal 51.1 72 4.48 25.7

35 Paclitaxel (complete 
response)

Human Morphology Monotonic N/A 72 3.98 23.5

36 C225 Mice Morphology Unimodal 60.8 24 1.63 16.8

36 Paclitaxel Mice Morphology Monotonic N/A 96 4.55 9.5

27 Cyclophosphamide Rats TUNEL Monotonic N/A 20 1.8 19.3

37 Radiation Rats TUNEL Unimodal 59.2 48 2.07 11.6

38 Paclitaxel Mice TUNEL Monotonic N/A 72 28.34 12.5

39 Imatinib Human TUNEL Monotonic N/A 168 7.5 NR

30 Paclitaxel Mice TUNEL Unimodal 2.9 3 6.91 70.3

40 Paclitaxel Mice TUNEL Monotonic N/A 72 25.61 11.7

33 Birinapant Mice TUNEL Unimodal 89.5 72 2.18 27

33 Irinotecan Mice TUNEL Unimodal 80.5 72 2.88 10.2

Median (Unimodal Responses) Overall 26.9 24 2.87

Median (Unimodal Responses) Human 41.3 48 3.28

Median (Unimodal Responses) Rodent 19.6 24 2.87

NR = not reported. Two FWHM values are provided for the bimodal data.
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Table 2:

Summary of Apoptosis Time Course Data Obtained from Imaging Experiments.

Reference Treatment Model Radiotracer Curve Type
FWHM 

(h)

Time 
to Max 

(h)

Fold 
Change 
at Max

SD at 
Max 
(%)

9 Cyclophosphamide Mice [18F]F-ICMT-11 Unimodal >36 24 1.99 36.9

9 Birinapant Mice [18F]F-ICMT-11 Unimodal 15 6 1.54 42.7

42 Doxorubicin Mice [18F]F-Annexin V Unimodal 97 72 1.76 6.9

36 Paclitaxel Mice [111In]In-DTPA-PEG-
Annexin V

Monotonic N/A 96 1.75 12.8

36 C225 Mice [111In]In-DTPA-PEG-
Annexin V

Unimodal 24.8 24 1.14 21.3

31 5-FU Mice [99mTc]Tc-(CO)3-His-
Annexin A5

Bimodal 25.4 8 1.52 9.1

31 Irinotecan Mice [99mTc]Tc-(CO)3-His-
Annexin A5

Unimodal 24.4 24 1.56 1.3

31 Oxaliplatin Mice [99mTc]Tc-(CO)3-His-
Annexin A5

Unimodal 27.7 24 1.79 7.6

31 Bevacizumab Mice [99mTc]Tc-(CO)3-His-
Annexin A5

No increase 3.7 24 1.07 14.1

31 Panitumumab Mice [99mTc]Tc-(CO)3-His-
Annexin A5

Bimodal 3.2, 16 24 1.62 6.9

43 Mitomyci, Ifosfamide, 
cis-Platinum

Human [99mTc]Tc-BTAP-
Annexin V

Monotonic N/A 24 4.3 94.5

43 Adriamycin, Bleomycin, 
Vincristine, Doxorubicin

Human [99mTc]Tc-BTAP-
Annexin V

Monotonic N/A 24 2.9 0

43 Cyclophosphamide, 
Doxorubicin, 

Vincristine, Prednisone

Human [99mTc]Tc-BTAP-
Annexin V

Monotonic N/A 24 3.2 0

43 Etoposide Human [99mTc]Tc-BTAP-
Annexin V

Unimodal 14.1 4 3.7 0

44 Doxorubicin Mice [99mTc]Tc-Annexin 
V-117

Bimodal 1.5, 27.9 12 2.07 19.7

38 Paclitaxel Mice [99mTc]Tc-C2A-GST Monotonic N/A 72 3.27 43.4

40 Paclitaxel Mice [99mTc]Tc-His10-
Annexin V

Monotonic N/A 72 3.09 28.2

27 Cyclophosphamide Rats [99mTc]Tc-HYNIC-
Annexin V

Monotonic N/A 20 1.56 9.1

30 Paclitaxel Mice [99mTc]Tc-HYNIC-
Annexin V

Unimodal 3.5 3 1.79 0.6

45 Cyclophosphamide Mice Annexin-V FC Unimodal 85.8 24 1.35 26.8

38 Paclitaxel Mice Cleaved caspase-3 FC Monotonic N/A 72 35.64 6.7

40 Paclitaxel Mice Cleaved caspase-3 FC Monotonic N/A 72 22.56 12.2

46 Doxorubicin (1st dose) Mice pcFluc-DEVD Unimodal 342.9 264 23.1 34.2

46 Doxorubicin (2nd dose) Mice pcFluc-DEVD Unimodal 178.7 264 31.6 26.9

47 anti–DR5-Cy5 antibody 
(1st dose)

Mice pcFluc-DEVD Unimodal 6 4 19.5 54.8

47 anti–DR5-Cy5 antibody 
(2nd dose)

Mice pcFluc-DEVD Unimodal 5.6 4 5.88 178.8
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Reference Treatment Model Radiotracer Curve Type
FWHM 

(h)

Time 
to Max 

(h)

Fold 
Change 
at Max

SD at 
Max 
(%)

47 anti–DR5-Cy5 antibody 
(3rd dose)

Mice pcFluc-DEVD Monotonic N/A 8 4.21 172.2

47 anti–DR5-Cy5 antibody 
(subcutaenous tumor)

Mice pcFluc-DEVD Unimodal 46.2 8 11.87 56.6

29 Docetaxel Mice Z-DEVD-
aminoluciferin

Monotonic N/A 72 3.05 NR

48 Irinotecan Mice Z-DEVD-
aminoluciferin

Unimodal 35.2 24 2.02 9.8

48 Temozolimide Mice Z-DEVD-
aminoluciferin

Monotonic N/A 48 2.13 38.7

Median (Unimodal Responses) Overall 27.7 24 1.99

Median (Unimodal Responses) Human 14.1 4 3.7

Median (Unimodal Responses) Rodent 31.5 24 1.89

Two FWHM values are provided for the bimodal models. FC: flow cytometry, NR: not reported.
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