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Abstract

COVID-19 is increasingly affecting human health and global economy. Understanding the 

fundamental mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is 

highly demanded to develop treatments for COVID-19. SARS-CoV and SARS-CoV-2 share 

92.06% identity in their N protein RBDs’ sequences, which results in very similar structures. 

However, the SARS-CoV-2 is more easily to spread. Utilizing multi-scale computational 

approaches, this work studied the fundamental mechanisms of the nucleocapsid (N) proteins of 

SARS-CoV and SARS-CoV-2, including their stabilities and binding strengths with RNAs at 

different pH values. Electrostatic potential on the surfaces of N proteins show that both the N 

proteins of SARS-CoV and SARS-CoV-2 have dominantly positive potential to attract RNAs. The 

binding forces between SARS-CoV N protein and RNAs at different distances are similar to that 

of SARS-CoV-2, both in directions and magnitudes. The electric filed lines between N proteins 

and RNAs are also similar for both SARS-CoV and SARS-CoV-2. The folding energy and binding 

energy dependence on pH revealed that the best environment for N proteins to perform their 

functions with RNAs is the weak acidic environment.
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1. Introduction

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is currently affecting 

human health and global economy seriously. A similar situation happened in 2003 with 

SARS-CoV, which also belongs to Coronavirus family. SARS-CoV and SARS-CoV-2 share 

92.06% identity in their N protein RBDs’ sequences [1,2]. Both SARS-CoV and SARS-

CoV-2’s genomes encode nonstructural replicase polyproteins and structural proteins [1], 
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including the nucleocapsid phosphoprotein (N protein). The main function of N protein is to 

link envelopes to the +RNA. The N protein of SARS had shown to play a crucial role in 

regulating viral RNA synthesis in replication and transcription [3]. Understanding the 

fundamental mechanisms of how N proteins Receptor Binding Domains (RBDs) of SARS-

CoV and SARS-CoV-2 bind RNAs is highly demanded for developing new antiviral drugs 

and vaccines [4].

Some groups studied the N proteins of SARS-CoV and SARS-CoV-2 using experimental 

methods. Sisi Kang et al. [3] utilized chemical experiments and X-ray analysis to obtain the 

structure of N protein of SARS-CoV-2, which helped revealing potential drug targeting sites. 

Veverka V’s laboratory [5] performed NMR-based titration experiments, combined with 

computational model, to build the complex model of the Nucleocapsid N-Terminal RNA 

binding Domains (N-NTD) with RNA. Unfortunately, only a few groups have conducted 

research on the structure and function of N proteins of SARS-CoV. Peter Kuhn’s team [6] is 

one of them who characterized the structures of the N-NTD of SARS-CoV. Compared with 

experimental studies, some effort has been also made to investigate SARS-CoV and SARS-

CoV-2 using computational approaches. Most of these computational studies focused on the 

spike (S) proteins of the SARS-CoV and SARS-CoV-2 [7,8], including discoveries of 

potential drug targets for SARS-CoV-2 [9-11], few works focused on N proteins. Some 

studies calculated the electrostatic potential on N protein surfaces in coronavirus [3,5,6]. 

Electrostatic features of N proteins help us understanding different mechanisms of RNA 

recognition and assembly. Other calculations between N proteins and RNAs explore more 

fundamental principles for their binding mechanisms.

Due to the relatively high cost of experiments and the rapid development of computational 

algorithms [12,13], computational methods are now widely used to study biology 

phenomena, including biomolecular structures [14,15], biomolecular interactions [16-18], 

pH dependence of protein-protein/DNA/RNA interactions [19,20], etc. Using such state of 

art computing techniques, a lot of efforts have been contributed to study viruses [7,21,22]. In 

this work, several computational approaches are used to study nucleocapsid proteins of 

SARS-CoV and SARS-CoV-2, including DelPhi [23], DelPhiForce [24,25], DelPhiPKa 

[26,27]. The electrostatic features are critical in analyzing the interactions between the N 

protein and RNA. Thus, the electrostatic potential, electric field lines and electrostatic forces 

were analyzed based on the structures of N proteins of SARS-CoV/SARS-CoV-2 RBDs and 

RNAs. It was found that SARS-CoV and SARS-CoV-2 have similar electrostatic potential 

distributions on their binding surfaces, which demonstrated that the net charges play a 

significant role to attract the RNAs. In addition, DelPhiPKa was implemented to calculate 

the binding energy pH dependence. Such method has been proved successful and reliable 

[20,28-30]. The pH effects on the binding energies for N proteins’ RBDs interacting with 

RNAs and folding energies of N proteins was analyzed, which demonstrated the optimal pH 

for N proteins’ folding and binding with RNAs. Such details assist us to understand how the 

N proteins’ RBDs recognize RNAs. These findings pave the way for research on future 

coronavirus-caused diseases. No experimental studies have been conducted to reveal the 

differences between the biology functions of SARS-CoV and SARS-CoV-2. Therefore, this 

work of comparing the N proteins of SARS-CoV and SARS-CoV-2 can also be useful for 

future experimental design.
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2. Methods

2.1. Structure preparation

The complex structure of SARS-CoV-2 with the Double Strand RNA (dsRNA) was obtained 

from Protein Data Bank (pdb ID: 7ACS [5]). The SARS-CoV structure was obtained from 

Protein Data Bank (pdb ID: 2OFZ [6]), which does not include the dsRNA structure. 

Therefore, the complex structure of dsRNA combined with SARS-CoV N protein was 

modeled by aligning the SARS-CoV structure to SARS-CoV-2 based on the template of 

7ACS using Chimera [31]. This study is mainly focused on the electrostatic features of 

Nucleocapsid N-Terminal RNA binding Domains (N-NTDs) of SARS-CoV and SARS-

CoV-2. In the SARS-CoV N protein structure, the N and C terminals are not determined [6]. 

Figure S1 shows the complex structures of SARS-CoV-2 N protein RBD binding with RNA, 

which is determined by NMR experiments [5]. The NMR structures demonstrate none of the 

N or C terminals of SARS-CoV-2 binds to RNAs, therefore the N and C terminals are 

extremely flexible. Due to this experimental evidence, N and C terminals of SARS-CoV-2 

were deleted in this work. After the deletion, we obtained the same length of N proteins for 

SARS-CoV-2 and SARS-CoV.

2.2. Electrostatic Calculations using DelPhi and DelPhiForce

DelPhi [23] and DelPhiForce [24,25] tools focus on accurate calculations and visualizations 

of the electrostatic potential and forces for biomolecules. They were used to calculate the 

electrostatic potential and total force for the N protein RBD and RNA binding domain. 

Finite difference (FD) method is implemented in the DelPhi and DelPhiForce tools to solve 

the Poisson-Boltzmann equation (PBE):

∇ ⋅ [ϵ(r)∇ϕ(r)] = − 4πρ(r) + ϵ(r)κ2(r)sinh(ϕ(r) ∕ kBT), (1)

Where ф(r) is the electrostatic potential, ε(r) is the dielectric permittivity, ρ(r) is the 

permanent charge density according to the atomic structure, κ is the Debye–Huckel 

parameter, kB is the Boltzmann constant, and T is temperature.

The electrostatic potential of the SARS-CoV N protein and SARS-CoV-2 N protein with 

RNA domain was calculated by DelPhi. Their surfaces were visualized by Chimera [31] 

using the color scale range from −1.0 to 1.0 kT/e (see Figure 1). In order to compare the 

directions and strengths of electrostatic forces, the N protein and RNA was separated from 5 

Å to 40 Å with the step size of 5 Å using StructureMan [32]. Then at each position, the 

electrostatic force was calculated by DelPhiForce. The visual molecular dynamics (VMD) 

[33] was implemented to visualize the total forces and the electric field lines between N 

protein and RNA.

2.3. Folding energy calculation methods

DelPhiPKa [26,27] was implemented to calculate pKa values of nucleotides of RNAs’ and 

proteins’ ionizable residues. The net charge of the unfolded state was calculated with the 

following equation:
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Qu(pH) = ∑i = 1
N 10−2.3y(i)(pH − pKa(i))

1 + 10−2.3y(i)(pH − pKa(i)) , (2)

where the summation is all titratable groups, y(i) is −1 for acidic groups and +1 for basic 

groups.

The pKa values of SARS-CoV N protein and SARS-CoV-2 N protein with RNA domain 

were calculated by DelPhiPKa. The pKa range was set from 0 to 14 with an interval of 0.5 in 

the calculations. The pH-dependence of the folding free energy using the equation:

ΔN(pHfolding) = 2.3RT∫pHi

pHf
(Qf(pH) − Qu(pH)d(pH)), (3)

Where Qf(pH) and Qu(pH) are the total net charge of folded and unfolded states. R is the 

universal gas constant taken as 1.9872 × 10−3 kcal
Mol ∗ K . T is the temperature, which is 300 K.

2.4. Binding energy calculation methods

The pH-dependence of the binding energy of N proteins with RNAs was modeled by 

obtaining the pH-dependence of the net charge of the complexes and their components. The 

pH dependence of the stability of the complexes and their components using the equation:

ΔN(pHbinding) = 2.3RT∫pHi

pHf
(Qt(pH) − Qn(pH) − Qr(pH))d(pH) (4)

where ΔN(pHbinding) is the pH-dependence of the binding free energy, Qt(pH), Qn(pH), and 

Qr(pH) are the net charges of complex, N protein and RNA, R is the universal gas constant 

taken as 1.9872 × 10−3 kcal
Mol ∗ K  . T is the temperature, which is 300 K.

3. Results and discussion

There are no experimental studies which investigated the differences between the biology 

functions of SARS-CoV and SARS-CoV-2. Therefore, this work which compared the N 

proteins of SARS-CoV and SARS-CoV-2 can be used for future experimental design. The 

mutations between SARS-CoV and SARS-CoV-2 N proteins were analyzed to show the 

distribution of mutations on the SARS-CoV-2 N protein. Furthermore, the electrostatic 

features of N proteins of SARS-CoV and SARS-CoV-2 were investigated. Finally, the 

binding and folding energies of the complexes and their components were calculated and 

analyzed.

3.1. Mutations between SARS-CoV and SARS-CoV-2

The structures of N protein RBDs of SARS-CoV and SARS-CoV-2 are very similar (the 

RMSD is 0.967Å). We aligned the sequences of N protein RBDs of SARS-CoV and SARS-

CoV-2 using clustal omega [34] to analyze their sequence differences. The positions of the 
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mutation sites are marked in Figure 1 with orange color. Most of the mutation sites in the N 

protein RBD are distributed on or closed to the hairpin-like structure. It suggests that the 

flexibilities of the hairpin-like structure N protein RBDs may be different between these two 

viruses. The flexibility of the SARS-CoV-2 N protein’s hairpin-like loop structure is shown 

in Figure S1.

3.2. Electrostatic potential on surfaces

The electrostatic features are important for protein structure and functions. We calculated the 

electrostatic potential of the N proteins of SARS-CoV and SARS-CoV-2. With the analysis, 

the binding interfaces of N proteins showed dominantly positive electrostatic potential (see 

Figure 2) while the RNAs are negatively charged. Thus, the N protein RBDs are attracted by 

RNAs because the two interfaces have opposite net charges. Such a phenomenon is common 

in the interactions between biomolecules [7,35]. The electrostatic features of N proteins and 

RNAs indicate that the electrostatic binding forces between N proteins and RNAs may 

enhance the stabilities of the complexes.

3.3. Electric field lines

The N protein structures of SARS-CoV and SARS-CoV-2 binding with RNAs are shown in 

Figure 3. From the complex structures, it is obvious that the RNAs bind to the hairpin-like 

loop of the N proteins. The structures of SARS-CoV and SARS-CoV-2 are very similar 

except the hairpin-like loops. Because the hairpin-loops are much more flexible than the rest 

of the N protein structures. Note that the N and C terminals have been removed from both of 

the N proteins to obtain more stable structures, because these terminals are too flexible and 

have no contribution to the binding interactions. The details are shown in the methods 

section.

To further explore the electrostatic interactions, we calculated the electric field lines between 

N protein RBDs and RNAs (see Figure 4). Densities of field lines represent the strengths of 

electrostatic interactions. From the electric field line distributions, it is clearly shown that 

both N proteins of SARS-CoV and SARS-CoV-2 have strong attractive binding forces to 

RNAs. The residues with dense field lines on the RNA interface areas are the same, which 

are ADE2, URA9, CYT10 and ADE11. On the other side, the key residues generating dense 

field lines on N proteins of SARS-CoV and SARS-CoV-2 are also the same (note that the 

sequence numbers of SARS-CoV and SARS-CoV-2 have 41 residues difference). For 

SARS-CoV, the key residues are: ARG93, ARG96, ARG108, PRO152; for SARS-CoV-2, 

the corresponding identical key residues are: ARG52, ARG55, ARG67, PRO111. In each 

case, three out of four N proteins’ dense field lines generating residues are arginine. Also, 

those key residues that produce the dense electric field lines do not have any mutation from 

SARS-CoV to SARS-CoV-2, which means that these residues are conserved.

3.4. Electrostatic forces

Electrostatic forces of SARS-CoV and SARS-CoV-2 N proteins’ RBDs with RNAs at 

distances from 5 Å to 40 Å with a step size of 5 Å were separated by StructureMan [32] and 

calculated by DelPhiForce at each position (see Figure 5). The directions of the blue arrows 

are illustrated to show the directions of net forces between N proteins and RNAs. The arrows 
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are normalized to the same size for better visualizations. From the figures, the electrostatic 

forces of N proteins attract the corresponding RNAs. It clearly showed that the directions of 

arrows are different by comparing SARS-CoV and SARS-CoV-2 N protein RBDs with 

RNAs at distance of 5 Å. It may because of the hairpin-like loop structure at the top of the N 

protein, which is more flexible as shown in Figure S1.

While Figure 5 only focuses on the directions of the electrostatic forces, the magnitudes of 

these electrostatic forces of SARS-CoV and SARS-CoV-2 are shown in Figure 6. The 

electrostatic forces between N proteins’ RBDs and RNAs decrease as the distances increase. 

It is obviously shown that SARS-CoV and SARS-CoV-2 have similar electrostatic forces at 

different distances. SARS-CoV-2 has relatively stronger forces than SARS-CoV, except at 

the distance of 5 Å. Figure 6 only compares the magnitudes of the forces between SARS-

CoV and SARS-CoV-2. However, the directions of the forces are also important for 

electrostatic forces, which is shown in Figure 5.

3.5. Binding energies

In protein-DNA/RNA complexes, it is common that the binding energies depend on the pH 

environment [29,30]. The pH-optimum is the pH at which the complex has maximal 

electrostatic binding energy [28]. To demonstrate the pH dependence in the binding process 

of N proteins and RNAs, DelPhiPKa was implemented to calculate the binding energies. It 

should be mentioned that the binding energies calculated using DelPhiPKa method are 

relative binding energies rather than absolute energies. By default, the binding energy at pH 

0 is set as reference, which is 0 kcal/mol. The relative energy profile can be used to study the 

binding energy dependence on pHs.

The results are shown in Figure 7. From the binding energy curves, it is obvious that for both 

SARS-CoV and SARS-CoV-2, the binding energy is stable within a wide range of pH (from 

5.5 to 10). Such pH independent binding energy phenomena were also found in some other 

related studies [19].

3.6. Folding energies

The net charges of SARS-CoV and SARS-CoV-2 are calculated with DelPhiPKa [26,27]. 

The pH range was set from 0 to 14 with an interval of 0.5. Figure 8 shows the calculated 

folding energies of SARS-CoV and SARS-CoV-2 at different pH values. The pH-

dependence of the folding free energy demonstra that SARS-CoV and SARS-CoV-2 have 

the same pH-optimum value where the folding energy is the most favorable at this pH (here 

the pH-optimum value is 5.5). In addition, N proteins of SARS-CoV and SARS-CoV-2 have 

similar inverted funnel-shaped folding energy curves. These curves indicate that the pH-

dependences of folding energies of SARS-CoV/SARS-CoV-2 N proteins binding with RNAs 

are very similar. And the combination of the folding energy and binding energy profiles 

demonstrates that the N proteins perform their functions best at pH 5.5.

4. Conclusions

Due to the sequence similarity, SARS-CoV and SARS-CoV-2 have very similar functions 

and structures. Each of their genes encodes four types of structural proteins, including N 
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protein which is studied in this work. The N proteins of SARS-CoV and SARS-CoV-2 are 

similar in sequence and almost identical in structure. This study revealed some fundamental 

mechanisms of these N proteins, including their stabilities and binding strengths with RNAs 

at different pHs.

Multiple computational approaches were utilized in this work to investigate the N proteins. 

Electrostatic potential of the surfaces of N proteins show that both of the N proteins from 

SARS-CoV and SARS-CoV-2 have similar electrostatic potential distributions. The binding 

interfaces are dominantly positively charged, which results in attractive electrostatic 

interactions to RNAs. The electrostatic force analyses validated such attractive interactions. 

The binding forces between SARS-CoV N protein and RNA at different distances are 

similar to that of SARS-CoV-2, in both directions and magnitudes. Electric filed lines 

between N proteins and RNAs are also similar between SARS-CoV and SARS-CoV-2. The 

binding energy dependence to pHs shows that the binding of both N proteins with RNAs are 

stable in a wide range of pH (from pH 5.5 to 10). For folding energy dependence to pH, the 

optimal pH is found as 5.5 for both N proteins. This indicates that the N proteins perform 

their functions best in a weak acidic environment, which is perfect for theses N proteins to 

maintain their structures and perform functions surrounding RNAs.
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Figure 1. 
Mutations on SARS-CoV-2 compared with SARS-CoV. A. The structure of SARS-CoV-2 N 

proteins. The mutation sites are highlighted in orange color. B. Sequence alignment of N 

proteins of SARS-CoV and SARS-CoV-2.
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Figure 2. 
Structure and electrostatic surfaces of N proteins of SARS-CoV/SARS-CoV-2. (A) The side 

view of the structure of SARS-CoV (purple) and SARS-CoV-2 (cyan) N proteins. (B) The 

side view of the electrostatic potential on the surface of SARS-CoV; (C) The side view of 

the electrostatic potential on the surface of SARS-CoV-2; (D) The top view of the structure 

of SARS-CoV (purple) and SARS-CoV-2 (cyan) N proteins; (E) The top view of the 

electrostatic potential on the surface of SARS-CoV; (F) The top view of the electrostatic 

potential on the surface of SARS-CoV-2.
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Figure 3. 
Complex structures of N protein RBDs and RNAs. (A) SARS-CoV N protein RBD (purple) 

bind with RNA (pink); (B) SARS-CoV-2 N protein RBD (cyan) bind with RNA (blue).
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Figure 4. 
Electric field lines of complex binding domains. (A) Electric field lines of SARS-CoV N 

protein RBD and RNA; (B) Electric field lines of SARS-CoV-2 N protein RBD and RNA. 

The residues with high density of filed lines are circled and highlighted, including those on 

RNAs (yellow) and on N proteins (blue).
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Figure 5. 
Electrostatic forces of SARS-CoV and SARS-CoV-2 N protein RBDs with RNAs at 

distances from 5 Å to 40 Å. (A) Electrostatic force of SARS-CoV N protein RBD (purple) 

and RNA(pink) at distances from 5 Å to 40 Å with a step size of 5 Å; (B) Electrostatic force 

of SARS-CoV-2 N protein RBD (cyan) and RNA (light blue) at distances from 5 Å to 40 Å 

with a step size of 5 Å.
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Figure 6. 
The trends of electrostatic forces of SARS-CoV and SARS-CoV-2 N proteins’ RBDs with 

RNAs at distances from 5 Å to 40 Å. Orange and Blue colors represent SARS-CoV and 

SARS-CoV-2, respectively.
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Figure 7. 
The calculated pH dependence of the binding energy between N proteins’ RBDs and RNAs. 

(A) The binding energy of SARS-CoV N protein RBD and RNA; (B) The binding energy of 

SARS-CoV-2 N protein RBD and RNA. The pH range was set from 0.0 to 14.0 with an 

interval size of 0.5.
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Figure 8. 
The calculated pH-dependence of the folding energy of N proteins’ RBDs and RNAs. (A) 

The folding energy of SARS-CoV N protein RBD and RNA; (B) The folding energy of 

SARS-CoV-2 N protein RBD and RNA. pH ranges from 0.0 to 14.0 with an interval of 0.5.
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