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Abstract

We study the assessment of the accuracy of heterogeneous treatment effect (HTE) estimation, 

where the HTE is not directly observable so standard computation of prediction errors is not 

applicable. To tackle the difficulty, we propose an assessment approach by constructing pseudo-

observations of the HTE based on matching. Our contributions are three-fold: first, we introduce a 

novel matching distance derived from proximity scores in random forests; second, we formulate 

the matching problem as an average minimum-cost flow problem and provide an efficient 

algorithm; third, we propose a match-then-split principle for the assessment with cross-validation. 

We demonstrate the efficacy of the assessment approach using simulations and a real dataset.
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1 Introduction

Nowadays the heterogeneous treatment effect (HTE) estimation under the Neyman-Rubin 

potential outcome model1;2 is gaining increasing popularity due to various practical 

demands, such as personalized medicine3;4, personalized education5, and personalized 

advertisements6. There are a number of works focusing on estimating the HTE using various 

machine learning tools: LASSO7, random forests8, boosting9, and neural networks10. 

Despite the vast literature on HTE estimation, evaluating the accuracy of an HTE estimator 

is in general open.

An assessment approach measures the performance of estimators on future data and guides 

estimator comparison. Aware that a large proportion of HTE estimators involve hyper-

parameters, such as the amount of penalization in LASSO-based estimators, number of trees 

in random-forests-based estimators, efficient model selection or tuning methods are ultra-

important.
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The major difficulty of the HTE assessment is attributed to the “invisibility” of HTE. 

Standard assessment methods evaluate the performance of a predictor by comparing 

predictions to observations on a validation dataset. The approach is valid since the 

observations are unbiased realizations of the values to be predicted. In contrast, in the 

potential outcome model we observe the response of a unit under treatment or control, 

whereas the value to be predicted, i.e., HTE, is the difference of the two. Therefore, HTE is 

not observable, and the standard assessment methods can not be applied.

In this paper, we design a two-step assessment approach. In the first step, we match treated 

and control units and regard the differences in matched pairs’ responses as the HTE pseudo-

observations. In the second step, we compare predictions to the pseudo-observations and 

compute the prediction error. We propose a distance based on proximity scores in random 

forests for matching. We also introduce a matching method that minimizes the average pair 

distance instead of the more commonly used total distance11, and provide an efficient 

matching algorithm adapted from the average minimum-cost flow problem.

For conducting the assessment approach with cross-validation, we recommend a match-

then-split principle. Explicitly, we first perform matching on the complete dataset, then split 

the matched pairs into different folds for cross-validation. Since the quality of matched pairs 

deteriorates as the sample size decreases, the pairs constructed by matching first are more 

similar than those obtained by splitting first. We remark that matching first does not snoop 

the data since the distance has no access to the HTE.

The organization of the paper is as follows. In Section 2, we introduce the HTE assessment 

background and discuss related works. In Section 3, we introduce the assessment approach 

with a hold-out validation dataset. In Section 4, we discuss how to conduct the assessment in 

the framework of cross-validation. In Section 5, we compare several assessment approaches 

on synthetic data. In Section 6, we illustrate the assessment approach’s performance on a 

real data example. In Section 7, we extend the assessment approach to handle various types 

of responses. In Section 8, we provide discussions on future works.

2 Background

2.1 Potential outcome model

We consider the Neyman-Rubin potential outcome model with two treatment assignments. 

Each unit is associated with a p dimensional covariate vector X independently sampled from 

an underlying distribution ℙ. Given covariates X, a binary group assignment W ∈ {0, 1} (1 

for the treatment group and 0 for the control group) is generated from the Bernoulli 

distribution with success probability e(X), i.e., the propensity score12;13. Each unit is also 

associated with two potential outcomes Y (0), Y (1). We observe Y (1) if the unit is under 

treatment and Y (0) if the unit is under control. Let ν(x) and μ(x) be the treatment and 

control group mean functions respectively. We assume the potential outcomes follow

Y (1) ∣ X = ν(X) + ε,
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Y (0) ∣ X = μ(X) + ε,

where ε is some mean zero noise independent of X, W. We define HTE as the difference of 

the group mean functions: τ(x) := ν(x) − μ(x). The treatment effect is heterogeneous because 

it depends on the covariates. We summarize the data generation model as follows,

Xiidℙ,
W ∣ X Ber(e(X)),

Y ∣ W , X = μ(X) + W ⋅ τ(X) + ε .
(1)

Model (1) has implicitly made the following assumptions14.

Assumption 1—(Stable unit treatment value assumption). The potential outcomes for any 
unit do not depend on the treatments assigned to other units. There are no different versions 
of the treatment.

Assumption 2—(Unconfoundedness). The assignment mechanism does not depend on the 
potential outcomes given confounders:

Y (1), Y (0) ⫫W ∣ X .

2.2 Matching

Matching is commonly used in the estimation of average treatment effect on the treated 

(ATT) in observational studies15;16;17. The primary goal of matching is to make the 

treatment and control groups comparable and reduce the confounding bias. A matching 

method consists of two parts: matching distance and matching structure17. Matching 

distances describe similarities between a pair of units, and matching structures characterize 

matches’ skeletons.

There are plentiful options for matching distances. Arguably the most popular choice is 

based on the propensity score12;13. The propensity score summarizes the information to 

balance the covariate distribution in a scalar function, and the propensity score matching 

reduces the confounding bias. Another branch of distances focuses on covariates. To begin 

with, exact matching pairs a treated unit with a control unit only if they share the same 

covariates. Though exact matching produces pairs of the best quality, the method is only 

feasible on the dataset with a limited set of discrete covariates. To enable the matching, 

metrics like Mahalanobis distance18;19 reduce the dimension of covariates and encapsulate 

the similarity regarding covariates in scalars. An alternative distance is based on prognostic 

scores that summarize the covariates’ dependence on the potential outcomes. The prognostic 

score matching brings a desirable form of balance to uncontrolled studies20.

In terms of the matching structure, there are also several choices. Pair-matching is the 

simplest structure, where pairs of one treated unit and one control unit are formed. However, 

when the group sizes are not balanced10, pair-matching will discard a considerable number 
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of observations. This gives birth to 1 to k (k to 1) matching21, that is each treated (control) 

unit is matched to k control (treated) units. Nevertheless, 1 to k (k to 1) matching poses a 

rigid restriction that all treated (control) units should be matched to the same number of 

control (treated) units. To provide more flexibility, methods allowing treated units matched 

to a variable number of control units have been discussed22. Nevertheless, those matching 

methods require each control unit to be used at most once. Full matching11;23 further relaxes 

the restriction allowing a set of one-to-multiple and multiple-to-one matches. Furthermore, 

full matching moves forward from ATT estimation to allow average treatment effect (ATE) 

estimation.

In the following, we introduce the notations of matching used in the paper. Assume that 

there are n units in total: nt treated units ti 1 ≤ i ≤ nt and nc control units cj 1 ≤ j ≤ nc. We 

define a match π as a function from treated units to the subsets of control units, and let 

πij 1 ≤ i ≤ nt, 1 ≤ j ≤ nc be the indicators whether the treated unit ti and the control unit cj are 

matched. Let Π be the associated set of matched pairs

Π: = ti, cj :cj ∈ π ti ,

and denote the number of pairs in set Π as |Π|. There is a bijection between matches and sets 

of matched pairs, and we use the two notations exchangeably. We define the multiplicity 

number of the treatment group in match π as

Mtπ: = maxti∑cj
1 cj ∈ π ti ,

and similarly we define Mc
π. Let dti, cj be a distance defined for each treatment-control pair 

(ti, cj). We denote the total distance and the average distance of a match π under dti, cj by

Dtot(π): = ∑
ti

∑
cj ∈ π ti

dti, cj, Dave(π): =
Dtot(π)

Π .

2.3 Related works

In the literature of HTE, a number of works24;25;26;10 perform accuracy assessment by 

predicting the response: on the training data, the treatment and control group mean functions 

are estimated, and the difference of the two is regarded as the HTE estimator; on the 

validation data, prediction errors of group mean functions are computed and used to assess 

the HTE estimator’s accuracy. The drawback is that large prediction errors of group mean 

functions do not ruin out accurate HTE estimation. In other words, the estimators of mean 

group functions may be of poor quality while the difference is still a reasonably good 

estimator of the HTE. This may happen when the HTE enjoys better properties than the 

mean group functions, such as higher sparsity or smoothness27. Moreover, if an HTE 

estimator comes without estimates of the mean group functions, predicting the response can 

not be carried out.
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Athey and Imbens propose an assessment method based on covariate matching28. Each unit 

in the validation data is paired with a unit in the opposite treatment status and close 

concerning the covariates. In this way, a pseudo-observation of HTE is obtained for each 

pair by taking the difference of the responses, and from here standard prediction error 

computations can be applied. The method makes considerable progress in avoiding 

estimating the control group mean function, but is limited to the case where the number of 

covariates is not too large.

Athey and Imbens also propose the honest validation for causal recursive partitioning29. 

Honest validation applies some tree structure to the training data and the validation data, and 

compares the HTE estimates based on the training and validation data. The method relies on 

the homogeneity of HTE at each terminal node, and it is not obvious how to generalize the 

method to other HTE estimators.

We finally review two assessment methods for the average treatment effect (ATE) 

estimation. Synth-validation30 generates synthetic data based on the observed data with a 

sequence of possible ATEs and evaluates the ATE estimators’ performance by comparing 

them to the known effects. The approach can not be easily extended to HTE evaluation since 

the number of possible configurations of HTE increases exponentially with regard to the 

covariate dimension. Another approach called within-study comparison31 contrasts ATE 

estimators from observational studies with those from randomized experiments. The 

approach is not effective for assessing HTE estimators due to the small sample size in each 

heterogeneity subgroup.

3 Assessment with hold-out validation dataset

3.1 General framework

In this section, we consider the HTE assessment with a hold-out validation dataset. We 

consider the following validation error of an HTE estimator τ(x)

error = 1
nt

∑
ti

τti − τ Xti
2 . (2)

In the ideal world, for each treated unit, there is an identical copy that goes under control. 

We can replace τti in (2) by the difference of the two outcomes. In the real world, no 

identical copy exists. As a surrogate, we construct a match π between treated units and 

control units, and regard the differences in responses as the HTE pseudo-observations. We 

then estimate the validation error (2) by

error(π) = 1
Π ∑

ti, cj ∈ Π
Y ti − Y cj − τ Xti

2 . (3)
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The proposition below characterizes the bias and variance of the validation error estimator 

error(π) conditioned on the covariates and the treatment assignments. Define the oracle 

validation error of a match π as

error(π) = 1
Π ∑

ti, cj ∈ Π
τti − τ Xti

2 . (4)

The validation error estimator equals the oracle validation error if the match π is perfect and 

the potential outcomes are noiseless. For a treated unit ti and a control unit cj, define the 

difference in the control group mean function values as bti, cj = μ Xti − μ Xcj . For a match 

π, define the mean squared differences in the control group mean function values as 

bπ
2 = 1

|Π| ∑ ti, cj ∈ Πbti, cj
2 .

Proposition 1.—Assuming model (1), Var(ε) = σ2, Var(ε2) = κσ4, we have

1 −
bπ2

error(π)

2
≤ E[error(π)] − 2σ2

error(π) ≤ 1 +
bπ2

error(π)

2
,

Var(error(π)) ≤
Mtπ + Mcπ − 1

Π (4κ + 8)σ4 + 32σ2 bπ2 + error(π) .

According to Proposition 1, the bias of the validation error is more problematic in match 

construction. The following example of random matching shows the bias may not vanish 

even if we have infinite data, while the variance will always go to zero. Assume there is only 

one binary covariate following the Bernoulli distribution with success probability one half. 

Let the control group mean function be μ(x) = 1 x = 1 , and the propensity score be e(x) = 

e2x−1/(1+e2x−1). On the one hand, the average squared difference bπ
2 of random pair-

matching is (1 + e2)/(1 + e)2 in expectation, and the bias of error(π) is non-zero independent 

of the sample size. On the other hand, the variance upper bound is inversely proportional to 

the number of pairs and will vanish as long as the multiplicity numbers Mt
π, Mc

π go to 

infinity slower than the number of pairs |Π|, e.g., Mt
π, Mc

π are fixed at constant level.

Proposition 1 suggests that (1) a smaller average squared difference bπ
2 will result in smaller 

upper bounds for both the bias and the variance; (2) a larger multiplicity numbers Mt
π, Mc

π

will lead to a smaller bπ
2 and thus a smaller bias, but possibly a larger variance. Since the bias 

is the primary concern, we recommend minimizing similar quantities of bπ
2 and enforcing 

constant order multiplicity numbers Mt
π,Mc

π. In the following, we design a matching method 

following the idea.
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3.2 Matching distance

Motivated by Proposition 1, we match treated and control units with similar control group 

mean function values. On the validation data, we first build a random forest on the control 

group which learns the control group mean function. Next, we compute each treatment-

control pair’s proximity score: the number of trees that the two units end up in the same 

terminal node. We define the proximity score distance by subtracting the proximity score 

from the total number of trees. The proximity score distance is a pseudo-metric. A smaller 

proximity score distance suggests a closer pair in the eye of the random forest.

We compare the proximity score distance with other popular matching distances. Propensity 

score distances are of little relevance here because two units similar in the control group 

mean function values are not necessarily close in the propensity scores, and vice versa. 

Exact covariate matching serves the goal but is usually unrealistic. Besides, distances based 

solely on covariates often treat covariates equally and are inefficient when only a small 

proportion of the covariates are informative to the control group mean function.

Prognostic score distances20 are the most relevant. Prognostic scores are introduced to 

provide a form of balance desirable for ATE estimation. Prognostic scores summarize the 

association between covariates and control group potential outcomes. Mathematically, we 

call ψ(X) a prognostic score if Y (0) ⫫ X | ψ(X). Prognostic scores are not unique, and the 

control group mean function is a valid prognostic score. We consider the prognostic score 

distance: the absolute difference of control group mean function values. In comparison with 

the prognostic score distance, the proximity score distance admits two advantages. First, the 

absolute difference of control group mean function values rely more heavily on accurate 

estimates and are less robust to outliers. The reason is that the proximity scores only depend 

on the tree structures, while the control group mean function estimates also depend on the 

responses at each terminal node. Second, as Figure 1 shows, matching on distances based on 

estimated control group mean functions may pair units close in estimates but far apart in the 

influential covariates, while matching on the proximity score distance will result in pairs 

with close estimated control group mean functions as well as similar influential covariates. 

The latter is less likely to produce spurious treatment-control pairs.

We highlight that to ensure objectivity, only the control group is used for learning the 

proximity score distance. As discussed by Hansen20, models fitted only to the control units, 

i.e., the realizations of Y (0), in general do not carry information about the HTE, i.e., the 

differences Y (1) − Y (0). In other words, the proximity scores based on the control group 

can be viewed as nuisance to the HTE, and the theoretical foundation of conditioning on 

such statistics can be traced to the conditionality principles illustrated, for example, by Cox 

and Hinkley32. In contrast, if both the treatment and the control groups are touched in the 

proximity score distance construction, the distance is no longer ancillary to the HTE and is 

prone to data dredging.
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3.3 Matching structure

Given a distance, by Proposition 1, we aim to find a match in which (1) paired control units 

and treated units are close regarding the provided distance; (2) as many units as possible are 

used; (3) no units are overused.

To illustrate the three criteria, we consider the example in Figure 2. There are two clusters 

G1, G2, where units in the same cluster share similar covariates and units in different clusters 

differ in covariates. As a result, control group mean function values are similar within 

clusters but different across clusters. We further assume that the units in cluster G2 are more 

likely to be treated, and the opposite for cluster G1. We observe more treated units in cluster 

G2 and more control units in cluster G1. There are three match candidates: in panel (a) each 

treated unit is matched to exactly one control unit and all the units are used, but there are 

undesirable matches across clusters; in panel (b) one-to-one matching is conducted and no 

pairs consist of units from different clusters, but part of the control units and the treated units 

are not used; in panel (c) there are no across-cluster pairs, every unit is matched, the treated 

units in cluster G1 are used twice and similarly for the control units in cluster G2. Among the 

three matches, panel (c) satisfies the three properties aforementioned and is the most 

favorable candidate.

The example is motivated by the confounding phenomenon in observational studies. 

Confounders influence both the propensity score and the control group mean function. If we 

cluster the units according to the confounder values, control group mean function values and 

proportions of treated units will be different across clusters – the scenario in Figure 2.

To find a match with the desired properties, we propose the following matching structure

min
π

Dave (π) (5)

mc ≤ ∑
ti

1 cj ∈ π ti ≤ Mc, ∀cj, (6)

mt ≤ ∑
cj

1 cj ∈ π ti ≤ Mt, ∀ti, (7)

with pre-specified mc, mt, Mc, Mt ≥ 0. The lower bounds in the multiplicity constraints (6), 

(7) guarantee that as many units as possible are used. The upper bounds in the multiplicity 

constraints (6), (7) enforce that no units are matched excessively. The objective function (5), 

focusing on the average distance, prefers a match with more good quality pairs to fewer poor 

quality pairs. Particularly for the example in Figure 2, the total distance minimization may 

rule out panel (c) while the average distance minimization always prefers panel (c). In the 

following, we discuss the multiplicity constraints (6), (7), and the objective function (5) in 

detail.

3.3.1 Multiplicity constraints—Arguably the most common multiplicity parameters 

are Mt = Mc = 1, and mt = 1, mc = 0. The constraint requires each treated unit to be matched 
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to one control unit and no control units are used multiple times. The constraint can be 

stringent if multiple control units are close to one treated unit and vice versa. Consider the 

example in Figure 2. If Mt = Mc = 1, mt = 1 are enforced, a proportion of the control units in 

cluster G1 will be matched to the treated units in cluster G2. If we relax mt = 1 and avoid 

pairs across clusters, part of the control units in cluster G1 and part of the treated units in 

cluster G2 will not be matched as in panel (b). If we consider Mt = Mc = 2, mt = mc = 1, 

there will be treated units in cluster G1 matched to multiple control units, and the same for 

the control units in cluster G2 as in panel (c). The match contains no pairs of units from 

different clusters and uses all the data. Therefore, we recommend Mt and Mc to be 

reasonably large and mt = 1 if nt ≤ nc.

3.3.2 Objective function—The major difference between the aforementioned matching 

and the full matching11 is the objective function: the former focuses on the average distance, 

and the latter focuses on the total distance. If the number of matched pairs is fixed, the total 

distance minimization and the average distance minimization are equivalent. This is the case 

in pair-matching where the number of matched pairs equals that of the treated units. 

However, when the number of matched pairs is not fixed, the average distance minimization 

and the total distance minimization may favor different matches.

The following proposition further illustrates how the average distance minimization and the 

total distance minimization are different. We call a matching method invariant to the 

translation of distance if for any distances d1, d2 such that d2(ti, cj) = d1(ti, cj) + c for some 

constant c, the resulted matches are the same. We call a matching method invariant to the 

scale of distance if for any distances d1, d2 such that d2(ti, cj) = c·d1(ti, cj) for some positive 

constant c, the resulted matches are the same.

Proposition 2.: If the optimization problem (5) is feasible,

1. the average distance minimization is translation and scale-invariant, and the total 

distance minimization is scale-invariant but not translation-invariant;

2. given multiplicity parameters Mt, Mc, mt, mc, let πave and πtot denote an optimal 

solution of the average distance minimization and the total distance minimization 

respectively, then

Dave πave ≤ Dave πtot , Dtotal πave ≥ Dtotal πtot , Πave ≥ Πtot .

By Proposition 2, if Dave(π) is relevant to bπ
2, error πave  will be less biased and variant 

compared to error πtot . In Section 5, we demonstrate that the method minimizes the 

average proximity score distance is also associated with small bπ
2. Besides, the average 

distance minimization produces a larger number of pairs, which further reduces the variance 

of error πave .

Reconsider the example in Figure 2. We further assume that distances between units in the 

same cluster are Δ, and those between units across clusters are Δ+δ. As demonstrated in 
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Figure 3, there are two match candidates: in panel (a), there is one across-cluster pair, the 

total distance is 3Δ+δ and the average distance is Δ+δ/3; in panel (b), there are no across-

cluster pairs, the total distance is 4Δ and the average distance is Δ. The average distance 

minimization always prefers the match with no across-cluster pairs in panel (b). On the 

contrary, the total distance minimization prefers the match with unfavorable across-cluster 

pairs in panel (a) if Δ > δ. The translation-invariance makes the average distance 

minimization robust to distance inflations, i.e., the distance shifts up by a constant.

The example is motivated by multiple popular distances. Consider the semi-oracle distance 

dti, cj = Y ti(0) − Y cj(0) 2
. Let μ1 and μ2 be the control group mean function values in cluster 

G1 and G2. The expectation of the semi-oracle distance equals 2σ2 for within-cluster pairs 

and 2σ2 + (μ2 − μ1)2 for across-cluster pairs. As the noise magnitude increases, the distance 

inflates. Another motivating distance is dti, cj = Xti − Xcj 2
2. Suppose that the group mean 

function only depends on the first covariate and units are clustered according to it, then the 

distance is ∑k = 2
p Xk, ti − Xk, cj

2
 for within-cluster pairs and 

X1, ti − X1, cj
2 + ∑k = 2

p Xk, ti − Xk, cj
2
 for across-cluster pairs. As the number of nuisance 

covariates increases, the covariate distance shifts up.

3.3.3 Computation—There are two major approaches to solve the matching problem 

with total distance minimization. The first approach reformulates the matching problem as a 

minimum-cost flow problem22;11. If the distances are positive, there exists a feasible integral 

flow achieving the minimal cost. The optimal integer flow corresponds to a solution to the 

aforementioned matching problem. The minimum-cost flow algorithm runs in O(n2 log(n)) 

on sparse graphs (constant order Mt
π, Mc

π as n → ∞). On dense graphs (Mt
π,Mc

π = O(n)), 
finding a minimum flow takes O(n3) time.

The second approach casts the matching problem in the language of linear programming. 

Let πij denote whether the treated unit ti and the control unit cj are matched. The total 

distance minimization problem can be rewritten as

min ∑
i = 1

nt
∑

j = 1

nc
dijπij

mc ≤ ∑
i = 1

nt
πij ≤ Mc, ∀j,

mt ≤ ∑
j = 1

nc
πij ≤ Mt, ∀i,

0 ≤ πij ≤ 1,

where we relax the integer constraints πij ∈ {0, 1} to the linear constraints πij ∈ [0, 1]. In 

fact, as shown in the following, the extremal points defined by the linear constraints are all 

integer vectors. Thus the simplex method will output an optimal solution of integer values. 

In this way, we avoid the computationally heavy integer programming.
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We show that the extremal points of the feasible regions are integer-valued. We rewrite the 

linear constraints in the matrix form Aπ ≤ b, where both the coefficient matrix A and the 

coefficient vector b are integer-valued. The coefficient matrix A defined by the linear 

constraints is totally unimodular33, i.e., each subdeterminant of A is 0, 1, or −1. Then for any 

integer vector b, the polyhedron {π : Aπ ≤ b} is integral34, i.e., a convex polytope whose 

vertices all have integer coordinates.

Unfortunately, the two major approaches can not be directly applied to the average distance 

minimization problem. Standard minimum-cost flow problem requires to input the flow 

value, or equivalently the total number of pairs in the match. However, the flow value is not 

directly available in the average distance minimization. Linear programming entails a linear 

objective function, while the average distance is non-linear.

We propose an algorithm for the average distance minimization. The algorithm is derived 

from the average minimum-cost flow solver designed by Chen35. Explicitly, we search for 

the optimal flow value via binary search. In each sub-routine, we fix a flow value and solve a 

minimum-cost flow problem.

Let the time of solving one minimum flow problem on a certain graph be a unit, which 

ranges from O(n2 log(n)) to O(n3) depending on the graph structure. The average distance 

minimization problem only takes log(n(Mt+Mc)) time units. In other words, the algorithm is 

of the same time complexity as solving one minimum-cost flow problem up to logarithmic 

factors of the maximal number of pairs.

Finally, we summarize the assessment approach with a hold-out validation dataset in 

Algorithm 1.

4 Assessment with cross-validation

In practice, hold-out datasets may be costly. Cross-validation is a popular validation 

paradigm that uses the whole dataset for training while providing a reasonably good 
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evaluation of the estimation performance. In this section, we discuss how to conduct the 

assessment approach under the framework of cross-validation.

The standard cross-validation consists of two steps: first, split the data into several folds 

randomly equally; second, train on all but one fold, conduct validation on the left-out fold, 

and repeat this for each fold. Naively integrating the assessment approach and the standard 

cross-validation framework raises the issue: the former splitting hurts the later matching. 

Consider the most favorable case where the samples are perfectly paired. By splitting first, 

we may assign two perfectly paired units to different folds, thus missing the ideal match.

To tackle this problem, we propose to do matching before splitting, short as match-then-

split. Particularly, on the whole dataset, we obtain proximity score distances and solve the 

average distance minimization problem to obtain the optimal match. We next split the 

samples into folds preserving the pair-structures. In this way, we avoid assigning matched 

units to different folds. Recall the perfectly matched example. If we apply the match-then-

split principle, all perfect pairs will be matched and stay in the same fold.

A natural concern of the match-then-split principle is data snooping. Note that the proximity 

score distance is obtained solely on the control group data, and the treatment group is not 

touched. The one-sided data provides no information for the differences between the two 

groups. Therefore, splitting after matching is blind to the validation target and fair.

A new difficulty arises in data splitting to keep matched units together. We represent a match 

by an undirected graph where each node denotes a unit. There is an edge between two nodes 

if and only if the two units are matched. The pair-preserving constraint means that connected 

components should stay together. Since each unit is allowed to be matched multiple times, 

there may exist large connected components as depicted in Figure 4. The graph may be 

connected in the extremist scenario, and splitting without breaking pairs is impossible.

To enable proper splitting, we modify the average distance minimization problem. Beyond 

the multiplicity constraints (6), (7), we further restrict the maximal path length of the graph 

to be at most three – a constraint also adopted in full matching11. As proved in Lemma 1, 

under the maximal depth constraint, only two possible types of connected components are 

allowed: (1) one treated unit with multiple matched control units; (2) one control unit with 

multiple matched treated units. The maximal size of the connected components is upper 

bounded by 1+max{Mt, Mc} – usually small compared to the sample size. In this way, we 

can assign the connected components randomly into folds without destroying the pair-

structures.

In full matching, the constraint is automatically fulfilled. However, this is not true for the 

average distance minimization. In fact, no known efficient network algorithm works under 

the path length constraint. As a surrogate, we propose the following heuristic pruning 

algorithm. Particularly, we start with the solution of the average distance minimization. We 

call an edge (ti, cj) removable if the treated unit ti is matched to more than one control unit, 

and the control unit cj is matched to more than one treated unit. As shown in Lemma 1, the 

new constraint is equivalent to the condition that there are no removable edges in the graph. 

We iteratively prune the highest cost removable edge until the set of removable edges is 
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empty. See Figure 4 for an example. The approach is summarized in Algorithm 2. We call 

the matching with pruning “FACT matching”: “Full matching constraints” and “Average 

CosT minimization”.

Lemma 1.

In the graph representing a match, the following constraints are equivalent:

1. the maximal path length is at most three;

2. there are only two types of connected components: one treated unit with multiple 

control units and vice versa;

3. there is no such edge (ti,cj) that ti is connected with multiple control units and cj 

is connected with multiple treated units.

The pruned match possesses several appealing properties. First, pairs after pruning are a 

subset of the matched pairs of the average distance minimization. Thus multiplicity 

constraints (6) and (7) are satisfied. Second, if the match without the path-length constraint 

can avoid low-quality pairs, the pruned match will automatically avoid those pairs by 

choosing from existing pairs. Third, by eliminating the removable pair with the maximal 

distance each time, we are heading greedily towards the optimal solution with the path-

length constraint.

5 Simulation

In this section, we compare various validation methods under the cross-validation 

framework on the synthetic data generated from model (1).

We consider the following validation methods for comparison.

• Response prediction (prd). On the training data, we estimate the treatment and 

control group mean functions. On the validation data, we compare the out-of-

sample predictions with the observations;

• Covariate distance with FACT matching (cvr). We compute validation errors as 

described in Section 4 with Mahalanobis distance1 and FACT matching;
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• Proximity score distance with full matching2 (full). We compute validation errors 

as described in Section 4 with the proximity score distance and full matching;

• Proximity score distance with FACT matching and the split-then-match principle 
(S-M). We first split samples randomly into folds, then match within folds using 

the proximity score distance and FACT matching. The rest of the steps are the 

same as described in Section 4;

• Prognostic score distance with FACT matching (prgn)3. We compute estimation 

errors as described in Section 4 with the prognostic score distance4 and FACT 

matching;

• Proximity score distance with FACT matching (combo). We compute estimation 

errors as described in Section 4 with the proximity score distance and FACT 

matching.

Table 1 summarizes the characteristics of the validation methods.

There are a number of tuning parameters. As for the random forests to compute the 

proximity score distance and the prognostic score distance, we determine the number of 

trees and the number of variables randomly sampled as candidates at each splits by the out-

of-bag mean-squared errors. In terms of the maximal group sizes in full matching and FACT 

matching, we experiment with a grid of values. As the group size increases, the distance 

objectives first decrease then stabilize, and we choose the “elbow point”5.

We consider the following four data generation settings.

• Setting I. Setting I serves as the default. There are in total 200 units and each unit 

is associated with 10 covariates generated i.i.d. uniformly from [−1, 1]. The 

HTE, treatment and control group mean functions are linear of the first 5 

covariates. The treatment assignment is randomized, i.e., the propensity score is 

always 0.5. We use 10-fold cross-validation;

• Setting II. Compared to setting I, in setting II we only increase the number of 

covariates from 10 to 100. The HTE, treatment and control group mean functions 

remain the same, and are independent of the additional covariates. Only 5% of 

the covariates are meaningful, and the rest are nuisances;

1For a treated unit ti and a control unit cj, the Mahalanobis distance is defined as Xti − Xcj
⊤Σ−1 Xti − Xcj , where Σ denotes 

the covariance matrix. When Σ is unknown, we replace Σ by the empirical covariance matrix.
2We use the full matching from the R package optmatch.
3The codes of proximity score distance construction and FACT matching are available at https://github.com/ZijunGao/causal-
validation.
4For a treated unit ti and a control unit cj, we define the prognostic score distance as ∣ μ Xti − μ Xcj ∣. Here μ( ⋅ ) is the 

estimated control group mean function from the random forest used to compute the proximity score distance.
5In simulations, we set multiplicity lower bounds mt = 1, mc = 0 if nt ≤ nc, and mt = 0, mc = 1 if nt > nc. We set multiplicity upper 
bounds Mt = Mc = 3 for setting I to III in Table 2, and Mt = Mc = 5 for setting IV. More details of the selection of maximal group 
sizes are included in the appendix.
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• Setting III. Compared to setting I, in setting III we only increase the number of 

folds in cross-validation from 10 to 25. After splitting, there are around 8 units in 

each fold;

• Setting IV. Compared to setting I, setting IV is more realistic with two major 

changes. First, we let the propensity score depend on the covariates and be 

correlated with the group mean functions and the HTE. Second, we also change 

the group mean functions to non-linear functions while keeping the HTE linear. 

The reason for adding non-linear terms into the control group mean function 

instead of the HTE is that, according to domain knowledge, the control group 

mean function, e.g., blood pressure, is usually influenced by more factors than 

the HTE, e.g., the difference in blood pressure induced by therapy, and in a more 

complicated way.

The signal-noise-ratios of all settings are below one. Table 2 summarizes the characteristics 

of the simulation settings.

We evaluate the tuning performance of the validation methods applied to the following 

LASSO-based HTE estimator7:

(α, β) = argmin
α, β

1
2n ∑

i = 1

n
Y i − Xi

⊤α − W i ⋅ Xi
⊤β 2 + λ α 1 + β 1 . (8)

The approach (8) estimates the control group mean function by X⊤α and the HTE by X⊤β . 

We add ℓ1 penalties of α and β since the true control group mean function and the true HTE 

depend on only a few covariates. The approach is not the state-of-art of HTE estimation. 

However, our emphasis is on the validation step but not the estimation step and the estimator 

serves our goal well: an HTE estimator making variable selection and involving only one 

tuning parameter. We expect that a good validation method should be able to select the best 

tuning parameter for the estimator (8).

To evaluate the tuning performance, for each setting in Table 2, we run the validation 

methods in Table 1 with a sequence of tuning parameters Λ. We pick the tuning parameters 

λmethod with the minimal validation errors. We then solve (8) on the whole dataset with the 

selected hyper-parameters to obtain βλmethod  and compute the estimation error 

MSEmethod : = βλmethod − β 2
2. Meanwhile, we define the oracle estimation error as 

MSEoracle : = minλ ∈ Λ βλ − β 2
2. For comparison, we compute the log ratio of MSEmethod 

over MSEoracle:

log MSEmethod
MSEoracle

, (9)

referred to as relative MSE in the following. The smaller the relative MSE is, the better the 

validation method performs.
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In Figure 5 we present box plots of the relative MSE. Overall, the combo and the prgn 
methods produce the smallest relative MSEs. The cvr method is problematic in Setting II, 

since the covariate distance’s quality deteriorates in the presence of many irrelevant 

covariates. The S-M method produces a large relative MSE in setting III, since there are 

fewer units in each fold and matched pairs are of lower quality. The full method is less 

attractive in setting IV – a setting similar to the example in Figure 3 where the average 

distance minimization (FACT matching) is preferred over the total distance minimization 

(full matching). The prd method is always dominated by the combo and the prgn methods. 

We also compare the mean squared differences bπ
2 in all simulation settings. The results of bπ

2

agree with those of the relative MSE, and the combo method always produces the smallest 

bπ
2. The plots can be found in the appendix.

Furthermore, we compare validation error curves. Figure 6 presents the error curves of 

validation error estimators in the setting IV6. The combo method produces the smallest 

biases across different λ. The validation error estimators’ biases are more problematic than 

the variances. We also regress average validation error curves over the oracle error curve. In 

Table 3 we present coefficients and R2 of the regressions. Both ideal values are one. The 

results agree with those of the relative MSE: the combo method leads the performance, and 

the cvr method, S-M method, full method are not very promising in setting II, III and IV 
respectively. We also observe that compared to the combo method, the prgn method is 

performing worse regarding the validation error curve.

6 Real data example

We compare the validation methods on the national supported work (NSW) program 

data36;37. We use the validation results obtained from a randomized evaluation of the NSW 

program as the oracle, and compare with the results on an observational dataset combining 

the treated units from the NSW randomized evaluation and the non-experimental control 

units from the 1978 panel study of income dynamics (PSID).

The National Supported Work Demonstration is a program aiming to study whether and how 

employment benefits disadvantaged workers to get and hold unsubsidized jobs. Qualified 

applicants were randomly assigned to treatment and guaranteed with jobs for 9 to 18 

months. We focus on the subset 7 with 185 treated units and 260 control units, referred to as 

the NSW-NSW dataset in the following. Pre-intervention variables include pre-intervention 

earnings, marital status, race, education and age. The distributions of pre-intervention 

variables in the treatment and control groups are very similar except hispanic and no-degree 
8.

We follow Dehejia and Wahba’s analysis and create an observational control group based on 

the PSID9. The control group consists of 128 units with the same set of pre-intervention 

6Plots of error curves in the setting I, II, III can be found in the appendix.
7We use the RE74 subset treatment and control groups considered by Dehejia and Wahba37.
8None of the pre-intervention variable distributions except hispanic and no-degree are significantly different at the 5% level across the 
treatment and control groups.
9We use the PSID-3 group considered by Dehejia and Wahba37.
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variables. We then construct an observational study dataset combining the NSW treatment 

group and the PSID control group, referred to as the NSW-PSID dataset in the following. 

Unlike the NSW-NSW dataset, the pre-intervention variables in the NSW-PSID dataset are 

significantly different across the treatment and control groups: the control group are on 

average 12.4 years older, less likely to be black (45% versus 84%), more likely to be married 

(70% versus 19%) and earn $1079 more in the year before the program. Table 4 summarizes 

the pre-intervention variables’ characteristics of the NSW-NSW and the NSW-PSID 

datasets.

To prepare the data for the LASSO estimator in (8), we log-transform the heavy-tailed pre-

intervention income and the post-intervention income10. We center and normalize the 

continuous pre-intervention variables education, age and pre-intervention income in both 

datasets by the means and standard deviations in the NSW-NSW dataset. We add two-way 

interactions between the 7 pre-intervention variables, which amounts to 28 features in total.

We evaluate the validation methods in Table 1 applied to the LASSO estimator (8). On the 

NSW-NSW dataset, we compute as described in Section 4 the 20-fold cross-validation errors 

with a sequence of tuning parameters11. We also obtain the LASSO estimates based on the 

full NSW-NSW dataset corresponding to the sequence of tuning parameters. On the NSW-

PSID dataset, we compute the hold-out validation errors of the LASSO estimates from the 

full NSW-NSW dataset as described in Section 3. We finally compare the LASSO estimates 

selected from the two datasets. For each validation method, we regard the selected estimate 

based on the validation errors of the NSW-NSW dataset as the oracle, and expect it to select 

the same estimate based on the NSW-PSID dataset. Table 5 demonstrates the results.

According to Table 5, the full method and the combo method select the same LASSO 

estimates across datasets, while the other validation methods do not pick consistent 

estimates. In particular, the prgn method selects the most different estimates since the 

response is rather noisy and the prognostic score distance produces doubtfully close pairs. 

Often randomized experiment data like the NSW-NSW dataset are rare and expensive to 

acquire compared to observational study data like the NSW-PSID dataset. With a validation 

method making consistent selections across datasets, we can assess an HTE estimate using 

observational study data while arriving at the same result as using randomized experiment 

data.

The selected LASSO estimates of the combo and the full methods coincide on both datasets. 

The selected estimate concludes that there is an overall 13.3% improvement in the post-

intervention income brought by the NSW program12. The finding of the overall positive 

effect agrees with previous works36;37 though we analyze the log-transformed income while 

10We use log(1+RE75) as the pre-intervention income and log(1+RE78) as the post-intervention income, where RE75 and RE78 
denote the earnings (in dollars) in the calendar year 1995 and 1998 respectively.
11In the real data example, we set multiplicity lower bounds mt = 1, mc = 0 for the NSW-NSW dataset, and mt = 0, mc = 1 for the 
NSW-PSID dataset. We set multiplicity upper bounds Mt = Mc = 5. More details of the maximal group sizes selection can be found in 
the appendix.
12The overall improvement is evaluated on the treatment group and computed as 1/nt∑W i = 1τ i, for the τ  selected by the combo 

and the full methods. The overall improvements evaluated on the NSW-NSW control group and the NSW-PSID control group are 
10.6% and 9.5% respectively.
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they focus on the original income. The LASSO estimate also suggests that subgroups black 

and married, young and married, young and high pre-intervention income benefit more from 

the program.

7 Extension to general exponential family

In the previous sections, we focus on continuous responses. There are other types of 

outcomes worthwhile to study. For instance, doctors measure whether the patients who 

underwent the operation or not survive to a certain time spot to study the effectiveness of 

surgery; agencies compare the times of bicycles used from automated bicycle counters 

before and after the policy is enforced to investigate the influence of a policy encouraging 

non-motor vehicles. In this section, we extend the aforementioned assessment approach to 

address multiple types of responses.

We generalize the model (1) to the general exponential family, which deals with a wide 

range of responses, including binary data and count data. Mathematically, we assume

Y ∣ W , Xindκ(Y ) ⋅ exp{η(X, W )Y − ψ(η(X, W ))}, (10)

where η(x, w) represents the natural parameter, ψ(η) is the cumulant generating function, 

and κ(y) is the carrying density. We write

η(x, w) = μ(x), w = 0,
ν(x), w = 1,

and focus on the quantity τ(x) := ν(x)−μ(x). The model (10) with Gaussian distribution is a 

sub-case of the model (1).

Next, we extend the validation criterion, i.e. the mean squared error in (4). We first state the 

following result regarding conditional likelihoods.

Proposition 3.

Consider n pairs of data {(Xi1,Xi2,Wi1,Wi2, Yi1, Yi2)}, where μ(Xi1) = μ(Xi2), Wi1 = 1, Wi2 

= 0, and Yi1, Yi2 are generated independently from model (10) given Xij, Wij. Then the 
conditional likelihood of {Yij} given {Yi1 + Yi2} does not depend on μ(x).

Proposition 3 implies that with pairs perfectly matched on control group mean function 

values, the conditional likelihood, which serves as a valid criterion for the HTE estimation 

assessment, can be evaluated without μ(x). For example, consider the Gaussian distribution, 

the log conditional likelihood equals ∑i = 1
n Y i2 − Y i1

2 up to scale.

If data comes in perfectly matched pairs, the condition μ(Xi1) = μ(Xi2) is automatically 

satisfied. Examples of Proposition 3 with perfectly matched pairs can be found in the book 

by Argesti38. When such data are not available, we can apply the matching method based on 

the proximity score distance to construct pairs such that μ(Xi) ≈ μ(Xj). Based on the matched 
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pairs, we compute the conditional likelihood pretending the pairs are perfectly matched, and 

use the conditional likelihood as the criterion for assessment.

8 Discussion

The paper discusses an assessment approach of HTE estimators by constructing pseudo-

observations based on matching. In terms of the matching, we suggest to use the proximity 

score distance and minimize the average distance. When conducting the assessment 

approach under the cross-validation framework, we suggest to match before split.

Our proposed method can be further enhanced by existing matching ideas such as exact and 

near-exact matching16. In particular, augmentations motivated by domain knowledge could 

help HTE assessment when the proximity score learning is onerous, possibly due to limited 

samples or a large number of covariates. For instance, in the selective serotonin reuptake 

inhibitors (SSRIs) example discussed by Rosenbaum17, exact matching on gender is 

enforced with the belief that the potential outcomes would differ significantly across male 

and female subjects. To incorporate the gender constraint into our method, we can partition 

the validation samples according to gender and match within each subgroup. A more flexible 

alternative is incorporating the restriction into the proximity score distance, e.g., adding a 

large value to the distance if a treatment-control pair differs in sex.

The pseudo-observations can also be used for data calibration. Given an estimator, the 

standard calibration tunes the prediction bands’ widths on the hold-out data to achieve the 

exact coverage. As for the calibration of an HTE estimator, observations’ coverage is not the 

fundamental goal. We can construct pseudo-observations as discussed and determine the 

prediction bands’ widths by covering a certain proportion of the pseudo-observations.

A limitation of the assessment approach is the computation of matching. Solving a matching 

problem exactly is generally computationally heavy. Even if in the simplest case where each 

treated unit is mapped to exactly one control unit and the distance matrix is not sparse, 

minimizing the total/average distance takes O(n3) time. Thus, fast approximate matching 

algorithms are desirable to make the validation method scalable.
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12: Appendix

12.1 Proofs

Proof of Proposition 1.

We prove for bias and variance respectively. The expectations are taken with regard to the 

noise ε.

For bias, under model (1)
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E[error(π)] = E 1
Π ∑

ti, cj ∈ Π
Y ti − Y cj − τ Xti

2

= 1
Π ∑

ti, cj ∈ Π
E μ Xti − μ Xcj + τ Xti − τ Xti + εti − εcj

2

= 1
Π ∑

ti, cj ∈ Π
bti, cj + τ Xti − τ Xti

2 + 2σ2

= error(π) + 2
Π ∑

ti, cj ∈ Π
bti, cj ⋅ τ Xti − τ Xti + bπ

2 + 2σ2 .

(11)

By Cauchy-Schwarz inequality,

1
Π ∑

ti, cj ∈ Π
bti, cj ⋅ τ Xti − τ Xti

≤ 1
Π ∑

ti, cj ∈ Π
bti, cj

2

1
2 1

Π ∑
ti, cj ∈ Π

τ Xti − τ Xti
2

1
2

= bπ
2

1
2 ⋅ error(π)

1
2 .

(12)

Plug (12) into (11), and divide both sides by error(π),

E[error(π)] − 2σ2
error(π) ≤ 1 + 2

bπ2
error(π) +

bπ2
error(π) = 1 +

bπ2
error(π)

2
.

Similarly for the lower bound of the bias.

For variance, let δti, cj = τ Xti − τ Xti  for simplicity. Define the neighborhood of a matched 

pair (ti, cj) as

Nti, cj
π = ti′, cj′ ∈ Π:ti = ti′ or cj = cj′, ti′, cj′ ≠ ti, cj .

Since each treated unit falls into at most Mt pairs, and each control unit falls into at most Mc 

pairs,

Nti, cj
π ≤ Mt + Mc − 2. (13)

Under model (1),
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Var (error(π)) = Var 1
Π ∑

ti, cj ∈ Π
Yti − Ycj − τ Xti

2

= Var 1
Π ∑

ti, cj ∈ Π
bti, cj + δti, cj + εti − εcj)2

= 1
Π 2 ∑

(ti, cj) ∈ Π
Var((bti, cj + δti, cj + εti − εcj)2)

+ ∑
ti, cj) ∈ Π(ti′, cj′) ∈ Nti

π, cj

Cov((bti, cj + δti, cj + εti − εcj)2, (bti′, cj′ + δti′, cj′ + εti′ − εcj′)
2) .

Since 2 Cov(ξ1, ξ2) ≤ Var(ξ1) + Var(ξ2) for any random variables ξ1, ξ2,

Var (error(π)) ≤ 1
Π 2 ∑

ti, cj ∈ Π
Var bti, cj + δti, cj + εti − εcj

2

+ 1
2 ∑

ti, cj ∈ Π ti′, cj′ ∈ Ntiπ, cj
π

Var bti, cj + δti, cj + εti − εcj
2 + Var bti′, cj′ + δti′, cj′ + εti′ − εcj′

2

.

By (13),

Var(error(π)) ≤ 1
Π 2 ∑

ti, cj ∈ Π
Var bti, cj + δti, cj + εti − εcj

2

+ ∑
ti, cj ∈ Π

Nti, cj
π ⋅ Var bti, cj + δti, cj + εti − εcj

2

≤
Mt + Mc − 1

Π 2 ∑
ti, cj ∈ Π

Var bti, cj + δti, cj + εti − εcj
2 .

Recall that Var(ε) = σ2, Var(ε2) = κσ4,

1
Π ∑

ti, cj ∈ Π
Var bti, cj + δti, cj + εti − εcj

2

≤ 2
Π ∑

ti, cj ∈ Π
Var εti − εcj

2 + 4 bti, cj + δti, cj
2Var εti − εcj

= 2
Π ∑

ti, cj ∈ Π
(2κ + 4) ⋅ σ4 + 8 ⋅ bti, cj + δti, cj

2σ2

≤ (4κ + 8) ⋅ σ4 + 32σ2 ⋅ bπ2 + error(π) .
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□

Proof of Proposition 2.

For C > 0,

∑
ti, cj ∈ Π

C ⋅ dti, cj = C ⋅ ∑
ti, cj ∈ Π

dti, cj,

thus the total distance optimization is invariant to scaling. The example in Figure 3 implies 

that the total distance minimization is not invariant to translation.

For C1, C2 > 0,

1
Π ∑

ti, cj ∈ Π
C1 ⋅ dti, cj + C2 = C2 +

C1
Π ∑

ti, cj ∈ Π
dti, cj,

thus the average distance minimization is invariant to both scaling and translation.

Let πave, πtot be the optimal solution of average distance minimization. By the optimality 

condition,

Πave =
Dtot Πave
Dave Πave

≥
Dtot Πtot
Dave Πtot

= Πtot .

□

Proof of Lemma 1.

We prove the equivalence by showing (1) ⟹ (2), (2) ⟹ (3), (3) ⟹ (1).

(1) ⟹ (2): we prove by negation. If (2) is not true, then there exists a connected component 

consisting of at least 2 treated units and 2 control units. Without loss of generality, assume 

the node with the highest degree in the connected component is treated, and denote the node 

by t1. Let t2 be a treated node other than t1, by the connectivity, there exists a path 

connecting t1 and t2. Notice that the graph is bipartite, then at least one control unit appears 

in the path. If there is more than one control unit in the path, the path is of length at least 4. 

Otherwise, there is only one control unit in the path, denoted by c1. Then there is another 

control unit c2 connected to t1 since t1 is connected to at least two control units. The path c2 

−t1 −c1 −t2 is of length 4. Therefore, if the maximal path is of length at most three, then the 

connected components can consist of either one control or one treated unit.

(2) ⟹ (3): we prove by negation. Assume (3) is not true, i.e. there exists an edge (t1, c1) 

that t1 is also connected to another control unit c2, and c1 is connected to another treated unit 

t2. Then the connected component containing c2 − t1 − c1 − t2 consists of at least two treated 

and two control units.
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(3) ⟹ (1): we prove by negation. Assume (1) is not true, then there exists a path of length 

4 of the type c2 − t1 − c1 − t2. In this way, for edge (t1, c1), the treated unit t1 is connected 

with two control units and c1 is connected with two treated units. □

Proof of Proposition 3.

Since Yi1, Yi2 are generated independently from model (10), the marginal density of Zi = 

Yi0 + Yi1 is

fZi(z) = ∫ fYi0 y0 ⋅ fYi1 z − y0 dy0

= exp −ψ η1 − ψ η0 ∫ κ y0 κ z − y0 exp η1y0 + η0 z − y0 dy0

= exp −ψ η1 − ψ η0 ⋅ exp η0z ∫ κ y0 κ z − y0 exp η1 − η0 y0 dy0 .

Then the conditional distribution given Zi is

f Y i0 = y0, Y i1 = z − y0 ∣ Zi = z
= κ z − y0 exp η1 z − y0 − ψ η1 ⋅ κ y0 exp η0y0 − ψ η0

exp −ψ η1 − ψ η0 ⋅ exp η0z ∫ κ y0 κ z − y0 exp η1 − η0 y0 dy0

= κ z − y0 κ y0 exp η1 − η0 z − y0
∫ κ y0 κ z − y0 exp η1 − η0 y0 dy0

.
(14)

Since μ(Xi0) = μ(Xi1), then

η1 − η0 = μ Xi1 + τ Xi1 − μ Xi0 = τ Xi1 .

Thus the conditional likelihood does not depend on μ(x). □

12.2 Synthetic data examples

We include the error curves of validation error estimators (Figure 7) in the setting I, II, III. In 

all settings, the combo method produces the smallest biases across different λ. The 

validation error estimators’ biases are more problematic than the variances.

We compare the mean squared differences bπ
2 of five matching-based validation methods in 

Figure 8. In all simulation settings, the combo method produces the smallest bπ
2. The full 

method comes second except in the setting IV. The cvr method is not very promising in 

setting I in the presence of many irrelevant covariates. The S-M method is less attractive in 

setting III with 25-fold cross-validation. According to Proposition 1, a smaller bπ
2 implies a 

less biased and variant validation estimator. As expected, Figure 8 agrees with Figure 5.

12.3 Real data example

We provide more details of the empirical study in Section 6. In complement of Table 5, we 

demonstrate the differences in selected LASSO estimates under alternative norms in Table 6.
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12.4 Maximal group size selection

We empirically demonstrate how Mt and Mc affect the assessment of HTE estimators. In 

particular, we illustrate how the number of matched pairs |Π|, the average proximity score 

distance of the resulting match Dave(π) (distance objective), the mean squared difference bπ
2, 

and the relative MSE (9) change as Mt and Mc increase 14. The former two are available 

without the underlying truth and can be used for parameter selection. The latter two can not 

be computed without an oracle and are used as measurements of matching quality and 

assessment performance. Figure 9 corresponds to setting I in Table 2, where the treatment 

assignment is randomized. Figure 10 addresses setting IV in Table 2, where the propensity 

scores vary significantly across subjects15.

In both settings, the number of pairs |Π| first increases then stabilizes, and the average 

proximity score distance Dave(π) first decreases then stabilizes. As expected in Section 

3.3.2, the mean squared difference bπ
2 — critical to the validation error estimator’s quality — 

behaves similarly to the proximity score distance Dave(π). Finally, the relative MSE first 

decreases then stabilizes or slightly increases. The relative MSE may rise for Mt, Mc 

excessively large due to additional variances.

As discussed in Section 5, we choose the “elbow point” of the average proximity score 

distance Dave(π) (distance objective) curve. In setting I (Figure 9), we select Mt = Mc = 3 

(dashed lines), while in setting IV (Figure 10), we pick Mt = Mc = 5 (dashed lines). Setting 

IV prefers larger Mt, Mc because the treatment and control groups are imbalanced at 

subregions with propensity scores far from one half, and the units in the smaller group 

should be used multiple times. The necessity of larger Mt, Mc in setting IV is also illustrated 

in the example of Figure 2.

We provide more details of choosing the multiplicity upper bounds Mt, Mc in the real data 

example (NSW-PSID dataset). In Figure 11, from left to right, we plot the number of 

matched pairs |Π| and the average proximity score distance Dave(π) (distance objective) 

against multiplicity upper bounds Mt, Mc. The number of pairs |Π| first increases then 

stabilizes, and the average proximity score distance Dave(π) first decreases then stabilizes. 

We choose the “elbow point” Mt = Mc = 5 (dashed lines) of the average proximity score 

distance Dave(π) (distance objective) curve as discussed in Section 5.
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Figure 1. 
(a): pair (t1, c2) favored by the prognostic score distance

(b): pair (t1, c1) favored by the proximity score distance

Comparison of the proximity score distance and the prognostic score distance. The blue 

curves are the true control group mean function, gray points are observations, and the red 

curves are the estimated control group mean function via least squares. For the treated unit 

t1, there are two candidate control units c1 and c2. Candidate c1 is closer with regard to the 

true control group mean function, i.e., μ xt1 − μ xc1 < μ xt1 − μ xc2 . Candidate c2 is 

closer with regard to the estimated control group mean function, i.e., 

μ xt1 − μ xc1 > μ xt1 − μ xc2 . In the left panel, the prognostic score distance prefers c2. In 

the right panel, the proximity score distance prefers c1 since there is likely to be a split 

between xt1 and xc2, and thus t1 and c2 will end up in different terminal nodes.
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Figure 2. 
Example of matching structure. There are two equal-sized clusters G1, G2, where units in the 

same cluster share similar covariates and units not from the same clusters differ in 

covariates. Control group mean function values are similar within clusters but different 

across clusters. Cluster G2 has more treated units, while cluster G1 has more control units. In 

(a), (b) Mt
π = Mc

π = 1, and in panel (c) Mt
π = Mc

π = 2.

Gao et al. Page 28

Stat Med. Author manuscript; available in PMC 2022 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of the average distance minimization and the total distance minimization 

(continued from the example in Figure 2). Distances between units in the same cluster and 

across clusters are Δ and Δ + δ respectively. In panel (a), there is one across-cluster pair, the 

total distance is 3Δ+δ and the average distance is Δ + δ/3; in panel (b), there are no across-

cluster pairs, the total distance is 4Δ and the average distance is Δ. The average distance 

minimization always prefers the match in panel (b), while the total distance minimization 

prefers the match in panel (a) if Δ > δ.
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Figure 4. 
Example of pruning. In panel (a), the graph is a chain of alternate treated units and control 

units. There are three removable edges (t2, c1), (t2, c2), (t3, c2). We pick the removable edge 

with the maximal distance, i.e., (t2, c2), eliminate the edge and obtain panel (b). After 

pruning (t2, c2), edges (t2, c1) and (t3, c2) are no longer removable, and the set of removable 

edges is empty. Therefore, we stop pruning. In the pruned match, units can be split into two 

connected subgroups: {t1, t2, c1} and {t3, c2, c3}. The connected subgroups either consist of 

one treated unit and multiple control units or vice versa.
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Figure 5. 
Relative MSE box plots. We display the relative MSE of the validation methods in Table 1 

under the simulation settings in Table 2. Each setting is repeated 200 times.
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Figure 6. 
Error curves of validation error estimators (setting IV). The solid curves demonstrate the 

validation error estimators’ biases. The dotted curves demonstrate the biases plus or minus 

one standard deviation of error(π) − error(π). Each setting is repeated 200 times.
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Figure 7. 
Error curves of validation error estimators (setting I, II, III). The solid curves demonstrate 

the validation error estimators’ biases. The dotted curves demonstrate the biases plus or 

minus one standard deviation of error(π) − error(π). Each setting is repeated 200 times.
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Figure 8. 

Mean squared differences bπ
2 box plots. We display the mean squared differences bπ

2 of the 

five matching-based validation methods in Table 1 under the simulation settings in Table 2. 

Each setting is repeated 200 times.

Gao et al. Page 34

Stat Med. Author manuscript; available in PMC 2022 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Selection of multiplicity upper bounds Mt, Mc in setting I. For simplicity, we set Mt = Mc. 

From the left to the right, we plot in solid curves the number of matched pairs |Π|, the 

average proximity score distance of the resulting match Dave(π), the mean squared 

difference bπ
2, and the relative MSE (9) (all aggregated over 200 trials). The dashed lines 

correspond to the selected multiplicity upper bounds Mt = Mc = 3.
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Figure 10. 
Selection of multiplicity upper bounds Mt, Mc in setting IV. For simplicity, we set Mt = Mc. 

From the left to the right, we plot in solid curves the number of matched pairs |Π|, the 

average proximity score distance of the resulting match Dave(π), the mean squared 

difference bπ
2, and the relative MSE (9) (all aggregated over 200 trials). The dashed lines 

correspond to the selected multiplicity upper bounds Mt = Mc = 5.
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Figure 11. 
Selection of multiplicity upper bounds Mt, Mc in the real data example (NSW-PSID dataset). 

For simplicity, we set Mt = Mc. From the left to the right, we plot in solid curves the number 

of matched pairs |Π| and the average proximity score distance of the resulting match 

Dave(π). The dashed lines correspond to the selected multiplicity upper bounds Mt = Mc = 5.
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Table 1:

Summary of the validation methods’ characteristics.

method abbreviation target of comparison13 matching distance matching structure split or match first

prd response NA NA NA

cvr HTE covariate dist. FACT matching match

full HTE proximity score dist. full matching match

S-M HTE proximity score dist. FACT matching split

prgn HTE prognostic score dist. FACT matching match

combo HTE proximity score dist. FACT matching match

13Since the prd method compares the observed and the estimated responses, the target of comparison is the response. Matching-based 
methods compare the constructed pseudo-HTEs and the estimated HTEs, and thus the target of comparison is the HTE.
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Table 2:

Summary of the simulation settings’ characteristics.

Simulation setting group mean functions number of covariates propensity score number of folds

I linear 10 0.5 10

II linear 100 0.5 10

III linear 10 0.5 25

IV non-linear 10 nonconstant 10
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Table 3:

Comparison of validation error curves. We average the MSEs of the validation methods in Table 1 at each 

tuning parameter in Λ under the simulation settings in Table 2. We regress validation error curves over the 

oracle error curve and present the coefficient, R2 of each regression.

method

I II III IV

coef. R2 coef. R2 coef. R2 coef. R2

prd 2.97 0.99 1.32 0.92 2.95 0.99 4.15 0.95

cvr 1.81 0.88 0.75 0.88 1.78 0.89 2.18 0.81

full 1.05 1.00 1.08 1.00 1.03 1.00 1.76 0.90

S–M 1.56 0.93 0.96 0.99 1.12 0.14 2.02 0.85

prgn 0.68 0.99 1.16 0.98 0.67 0.99 0.78 1.00

combo 0.99 1.00 1.09 1.00 0.98 1.00 1.13 1.00
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Table 4:

Pre-intervention variables’ characteristics of the NSW-NSW and NSW-PSID datasets. Standard errors are in 

parentheses. The NSW-NSW dataset contains the NSW treatment group and the NSW control group. The 

NSW-PSID dataset contains the NSW treatment group and the PSID control group. The pre-intervention 

variables are: age: age in years; education: number of years of schooling; black : 1 if black and 0 otherwise; 

hispanic: 1 if hispanic and 0 otherwise; no degree: 1 if no high school degree and 0 otherwise; married: 1 if 

married and 0 otherwise; pre-intervention income: earnings (in dollars) in the calendar year 1975.

sample size Age education black hispanic married no-degree pre-intervention 
income ($)

NSW treated 185 25.82 (0.34) 10.35 (0.10) 0.84 (0.02) 0.06 (0.01) 0.19 (0.02) 0.71 (0.02) 1532 (153)

NSW control 260 25.05 (0.33) 10.09 (0.08) 0.83 (0.02) 0.11 (0.01) 0.15 (0.02) 0.83 (0.02) 1267 (147)

PSID control 128 38.26 (1.14) 10.30 (0.28) 0.45 (0.04) 0.12 (0.03) 0.70 (0.04) 0.51 (0.04) 2611 (493)
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Table 5:

Comparison of the LASSO estimates selected from the NSW-NSW dataset and the NSW-PSID dataset by 

minimizing the validation errors. For each validation method, we compute 

τNSW − τPSID 2, t: = 1/nt∑W i = 1 τNSW − τPSID
2 1/2

 – the treatment group L2 norm of the difference of 

the selected LASSO estimates τNSW  from the NSW-NSW dataset and τPSID from the NSW-PSID dataset. 

The results regarding the L2 norm based on the NSW-NSW control group and the NSW-PSID control group 

are similar and are presented in Table 6 in the appendix.

method prd cvr full S-M prgn combo

τNSW − τPSID 2, t × 102 0.74 1.36 0.00 1.36 4.36 0.00
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Table 6:

Comparison of selected LASSO estimates from two datasets via different validation methods. For each 

validation method, we compute the NSW-NSW and NSW-PSID control group L2 norm of the difference of the 

selected LASSO estimate τNSW from the NSW-NSW dataset and τPSID from the NSW-PSID dataset.

method prd cvr full S-M prgn combo

τNSW − τPSID 2, cNSW × 102 0.60 1.12 0.00 1.49 4.76 0.00

τNSW − τPSID 2, cPSID × 102 0.60 1.12 0.00 1.53 5.33 0.00
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