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ABSTRACT: The present work is the second part in our three-part series on the
comparison of many-particle representations for the selected configuration interaction
(CI) method. In this work, we present benchmark calculations based on our selected CI
program called the iterative configuration expansion (ICE) that is inspired by the CIPSI
method of Malrieu and co-workers (Malrieu et al. J. Chem. Phys. 1973, 58, (12),
5745−5759). We describe the main parameters that enter in this algorithm and perform
benchmark calculations on a set of 21 small molecules and compare ground state
energies with full configuration interaction (FCI) results (FCI21 test set). The focus is
the comparison of the performance of three different types of many-particle basis
functions (MPBFs): (1) individual Slater determinants (DETS), (2) individual spin-
adapted configuration state functions (CSFs), and (3) all CSFs of a given total spin that
can be generated from spatial configurations (CFGs). An analysis of the cost of the calculation in terms of the number of
wavefunction parameters and the energy error is evaluated for the DET-, CFG-, and CSF-based ICE. The main differences for the
three many-particle basis representations show up in the number of wavefunction parameters and the rate of convergence toward the
FCI limit with the thresholds of the ICE. Next, we analyze the best way to extrapolate the ICE energies toward the FCI results as a
function of the thresholds. The efficiency of the extrapolation is investigated relative to the FCI21 test set as well as near FCI
calculations on three moderately sized hydrocarbon molecules CH4, C2H4, and C4H6. Finally, we comment on the size-inconsistency
error for the three many-particle representations and compare it with the error in the total energy. The implication for selected CI
implementations with any of the three many-particle representations is discussed.

1. INTRODUCTION
The selected configuration interaction (sCI) method has
recently seen a resurgence and has established itself as a
powerful tool for quantum chemistry as evidenced by various
recent studies.1−11 As the use of sCI methods becomes more
widespread, the need for a thorough understanding of various
characteristics of sCI methods such as convergence thresholds,
extrapolation techniques, and error bars, becomes increasingly
important. The absence of comparable experimental data on the
one hand and infeasibility of full configuration interaction (FCI)
calculations for large molecules on the other renders a rigorous
benchmarking of sCI calculations on realistic molecules a rather
difficult endeavor. There have been attempts toward a thorough
benchmark of sCI methods by various groups recently, such as
the benchmarking of the Gaussian-2 set using semistochastic
heat-bath configuration interaction12 (SHCI) by Yao et al.13

Stochastic methods such as the full configuration interaction
quantum Monte Carlo (FCIQMC) method pioneered by Alavi
and co-workers also have their own standardized algorithms for
benchmarking and extrapolation, which depends on the type of
FCIQMC algorithm used.14−17 Another such effort is illustrated
by the recent work of the adaptive sampling CI by Tubman et
al.16,18 Benchmarking efforts have also been make for the
calculation of vertical excitation energies employing sCI
methods by Loos et al.19 Along with benchmarking efforts,

recent collaborative initiatives on comparing various approaches
together with sCI have also appeared.20,21

A subject that, to the best of our knowledge, has hardly ever
been studied before, is the question of which many particle basis
is best suited for sCI calculations?Here, we address this question
by exploring three different types of many-particle basis
functions (MPBFs). The most straightforward choice is to
expand the many particle wavefunction in terms of individual
Slater determinants (DETs). Alternatively, one can construct
individual spin-adapted configuration state functions (CSFs).
Lastly, selection can be performed on individual spatial
configurations (CFGs) that are then allowed to bring in all
CSFs arising from any given configuration. Most existing sCI
methods are based on the DET basis and use the total DET
count (Nd) as the ordinate for convergence and parallel scaling
analysis.20−23 These criteria make transferability of thresholds
difficult for sCI methods that are based on CFGs and CSFs. In
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the present work, we examine a general approach for the analysis
of the characteristics of a sCI method by comparing the
thresholds, extrapolation techniques, and error bars for three
different types of MPBFs including individual DETs, CFGs, and
CSFs. The similarities and differences between the threeMPBFs
are presented and discussed. We present the advantages and
drawbacks of each type of MPBF in terms of the types of
problems adapted for each case.
As a by-product of this work, a systematic benchmark set of 21

small molecules for approximate FCI methods (FCI21) is
devised to systematize future benchmarking and comparisons
such as those that exist for density functional theory
methods.24,25 We further augment the FCI21 set with a clear
and simple protocol that can be followed to obtain reproducible
results for a comparison with other sCI methods and with
various types of MPBFs.26

This paper is the second in a series of papers on our sCI
method called the “iterative configuration interaction” (ICE)
method. In Part I of this series, we have presented an in-depth
description of the algorithm and implementation details of the
ICE in terms of tree data structures and recursive matrix element
algorithms.26 In the present paper (Part II), we shall describe the
numerical performance of the associated thresholds and
investigate a simple but effective extrapolation schemes. In
Part III, we will present systematic case studies on inorganic and
organic molecules for accessing the strengths and weaknesses of
the three MPBFs and explore the limits of the ICE method.
The outline of the paper is as follows: First, we briefly recall

the algorithm of the ICEmethod followed by a description of the
thresholds entering the protocol. We also describe the
methodology for obtaining the statistics from benchmark data.
This is followed by the results, which consist of three parts: First,
we present the benchmark results on the FCI21 set for the three
types of MPBF. Second, we present a general extrapolation
scheme for obtaining near FCI energies, and finally, we test the
size-inconsistency error as a function of the thresholds of the
ICE method. In the conclusions, the main strategies and
guidelines for performing calculations using the ICE are
outlined.

2. METHODOLOGY
The details of the algorithm and the associated implementations
have been explained in Part I of this series. Therefore, we will
only sketch the main steps of the algorithm and provide details
about the parts necessary for the benchmarking and
extrapolation.
2.1. Iterative Configuration Expansion. The ICE

algorithm is inspired by the groundbreaking and original
configuration interaction by perturbation with multiconfigura-
tional zeroth-order wavefunction selected by iterative process
(CIPSI) paper by Huron, Malrieu, and Rancurel,27 which
appeared in 1973. The original CIPSI algorithm was later
modified to a “three class”CIPSI algorithm by Evangelisti et al.28

Our ICE algorithm closely resembles the three class CIPSI but
differs in some important aspects. The main difference of the
ICE with the three class CIPSI algorithm is that the ICE is
designed as an approximate full CI method rather than as a
multi-reference perturbation theory (MRPT) method. Con-
sequently, emphasis is placed on convergence of the variational
energy where possible. Only the selection part relies on MRPT.
However, the perturbative energy calculated can be used as a
measure of the quality of the initial references during the
iterations and for extrapolating to the FCI limit as will be

explored below. Second, the ability to work with three different
types of MPBFs is a significant difference from both algorithms
and has important implications for practical applications.
However, the fundamental intellectual basis of this work
unambiguously is the pioneering work for Malrieu and co-
workers.
The algorithm is summarized in Figure 1.

The main steps of the algorithm which has been implemented
in the ORCA program package29−31 are as follows:

a) The ICE procedure is “seeded” by a rationally chosen |0⟩th

order set of MPBFs |ΦI
(0)⟩ ∈|Ψ0⟩, which are expected to

represent a dominant part of the state of interest.
However, this is not strictly required as the algorithm
will also find states that have not been anticipated. Other
than a manually input set of initial MPBFs, |Ψ0⟩ can be
also be constructed automatically by performing an initial
complete active space self-consistent field (CASSCF)
calculation with a smaller CAS space. Here, the |ΦI

(0)⟩′s ∈
ΨCAS will correspond to the CASSCF root of interest.

b) An initial selection is performed by generating the
possible single and double excitations relative to the
initial configurations. The selection is performed by
evaluating the second-order Epstein−Nesbet perturba-
tion energy32,33 (PT2) relative to all initial MPBFs
individually. Excited MPBFs with a perturbation con-
tribution of larger than the first threshold TVar are
included in the (“selected”) variational space.

∑= − ⟨Φ | ̂ |Φ ⟩ Δ
∈

−E HJ
PT

I
I J JI

2,0

generators

(0) (1) 2 1

(1)

where the denominatorΔJI
−1 is the energy difference and is

given by eq 2 below.

Δ = ⟨Φ | ̂ |Φ ⟩ − ⟨Φ | ̂ |Φ ⟩H H( )JI J J I I
(1) (1) (0) (0)

(2)

c) The many-particle Hamiltonian is diagonalized over the
set of the set of presently selected MPBFs, thus defining
the initial many particle states.

d) The eigenfunctions arising from the diagonalization are
analyzed with respect to the leading contributions to the
roots found. MPBFs with a weight of larger than the
second threshold TGen are considered as “generator”

Figure 1. Flowchart of the ICE algorithm. The two parameters that
determine the accuracy and convergence criteria are the generator
threshold TGen and the variational selection threshold TVar.
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MPBFs. This is also illustrated in the flowchart of the ICE
algorithm in Figure 1.

e) The generator part of the present wavefunction is
renormalized thus defining the “contracted generator
wavefunction”. The renormalized wavefunction and
energy are obtained by diagonalizing the Hamiltonian in
the generator space as given by eqs 3−6 below. The
reason being that the PT2 expressions given in eqs 1 and 6
are valid only if the zeroth-order wavefunction
(∑I ∈ generatorsCI|ΦI

(0)⟩) is an eigenfunction of the
Hamiltonian.34,35

̂ = · ̂ ·

= |Φ ⟩⟨Φ | ∀ ∈

†H

I

P P PH with

generatorsI I

G G Ggen

(k) (k)
(3)

Ù Ù̂ |Ψ ⟩ = |Ψ ⟩∼H EN
k

N
k

N
k
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Here, PG is the projector in the generator space and Ĥgen is
the projected Hamiltonian. Care has to be taken to ensure
that the energetic ordering of the states is maintained in
the projected Hamiltonian Ĥgen.

f) For the subsequent selection that generates all single and
double excitations from each of the generator MPBFs.
Here, the selection is performed with respect to the
interaction of the excited MPBFs and the contracted
generator wavefunction and MPBFs with perturbation
energies larger than TVar are added to the variational
space.

i

k

jjjjjjj
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where ΔJn
−1 represents the energy denominator for the

contracted selection for the nth root and is given by eq 7

Δ = ⟨Φ | ̂ |Φ ⟩ − ∼+ +H E( )Jn J
k

J
k

n
k( 1) ( 1) ( )

(7)

Here, the quantities C̃I
n and Ẽn

(k) are the renormalized
coefficients and energy at the kth iteration for the nth root,
respectively.

g) Convergence of the wavefunction and energy is checked.
If convergence has not yet been achieved, the algorithm
proceeds by going back to step (d). The energy change
from k to k + 1 iteration can be calculated as ΔEn = En

k −
En
k + 1. Once the energy difference at the k + 1th level is

smaller than a small, predefined value (e.g., 10−14), the
calculation is considered to be converged.

h) For a multi-state ICE, we follow the strategy of state-
averaging. Hence, before selection begins, the PT2
contribution of each new MPBF needs to be summed
for all roots as shown in eq 8 below. Once the PT2 energy
EJ
PT2, k + 1 for all the newly generated MPBFs has been

calculated, the selection of important new MPBFs can be
made. Here again, TVar dictates the value of EJ

PT2, k + 1

beyond which a newly generated MPBF is to be included
in the variational space, i.e., EJ

PT2, k + 1≥ TVar. Note that a
vast majority of the generatedMPBFs will be rejected and

only a small number will satisfy the criteria listed before as
will be shown later. Importantly, the total PT2 energy
Erest
PT2, (k + 1) of those MPBFs that have been rejected can

then be estimated by summing over their contribution
over all states.

∑=+ +E E n( )J
PT k

N
J
PT k2,( 1) 2,( 1)

(8)

The rest of the steps are similar to the single-state ICE.
The three parameters that will be required in the following

benchmarking analysis are the two thresholds TGen and TVar
and PT2 energy of the discarded MPBFs EPT2 = ∑JEJ

PT2, also
referred to as the “rest” energy, which will be used during the
extrapolation.
In the following analysis, we shall use the combined parameter

τ = ( )Log10
TGen
TVar

, which is convenient for compressing TGen

and TVar into one single parameter that controls the overall
accuracy (and cost) of the algorithm. Where it becomes
necessary to show both TGen and TVar, e.g., in the
extrapolation section, it is convenient to label the calculation
with the two parameters TGen and τ as ICE(A, τ) (A = −
Log10(TGen)). For example, a calculation with TGen =10−4 and
TVar =10−11 will be labeled as ICE(4,7).

2.2. Statistics and Error Estimation.The natural reference
for the ICE methods is provided by actual FCI calculations.
Hence, the FCI21 benchmark set is chosen such that FCI
calculations are possible on all the molecules included.
Benchmarking mainly concerns the study of the error in the
ICE energy EICE vs the FCI energy EFCI as a function of the two
thresholds TGen and TVar. In order to test the largest spread of
the values of TGen and TVar, we performed calculations in steps
of factors of 10. The range for TGen is chosen to be from 10−2 to
10−8 and for TVar from 10−6 to 10−14, thus leading to a total of
64 calculations for each of the 21 molecules and a total of 1344
data points. The average error was estimated by taking the mean
of the 21molecules for each pair of TGen and TVar values. Note
that since the ICE is a variational method, the errors in the
energy with respect to FCI are always positive. The error bars
were estimated by calculating the variance σ2 of the error in the
21 molecules for each pair of TGen and TVar parameters.34,35

3. BENCHMARK RESULTS
The accuracy of the ICE algorithm for DETs, CFGs, and CSFs is
performed by comparison of themolecules in the FCI21 set with
the FCI energy. The cc-pVDZ double-ζ basis set36 was used for
all the molecules except N2, O2, F2, and CH4 for which the
Ahlrichs split valence (SV)37 basis (without polarization
functions) was kept on the heavy atoms in order to make the
FCI calculations feasible. The geometry was optimized at the
FCI level for the ground state with the given basis set, the
converged distances, and angles are given in Table 1, which also
shows the number of electrons and orbitals correlated for each
molecule. The coupled-cluster energies for closed shell
molecules was also calculated at CCSD, CCSD(T), CCSDT,
and CCSDT(Q) levels of theory using the MRCC program of
Kaĺlay et al.38 The converged FCI energies along with the
coupled-cluster energies for the FCI21 set are given in Table 2
below.

3.1. Comparison of Variational ICE vs FCI Energy. In
order to clearly present all the data and the various aspects of the
error analysis with TGen and TVar thresholds, two types of plots
are chosen. First, the error vs TVar is plotted in order to show

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00081
J. Chem. Theory Comput. 2021, 17, 2868−2885

2870

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00081?rel=cite-as&ref=PDF&jav=VoR


the rate of convergence with the parameters along with the
variance in the error for the FCI21 set. In the second type of plot,
the variation of the average energy error is shown in a contour
plot with TGen and TVar together to facilitate the comparison
of DET, CFG, and CSF ICE. In this way, all the different aspects
of the dependence of error and error bars with TGen and TVar

can be studied. Each point in Figures 2a−c and 3 gives the
average of the error together with the variance for each of the 21
molecules as described in Section 2.2.
From inspection of Figure 2, the following observations are

made:

a) Decreasing TVar with a fixed value of TGen leads to a
plateau behavior, and hence decreasing TVar beyond the
plateau does not improve the error. This implies that in
order for there to be substantial change in the wave-
function, TGen has to be decreased. Actually, the
excitation order of MPBFs in |Ψk⟩ (with respect to
|Ψ0⟩) is controlled by TGen, whereas TVar has no effect
on the excitation order. Therefore, for a sufficiently small
TVar, an improvement in energy is achieved by adding
functions, which have a higher excitation order compared
to those present in |Ψk − 1⟩. This precisely is what is
achieved by decreasing TGen.

b) The convergence with TGen for a given sufficiently small
TVar is exponential for all three variants of the ICE. This
is very satisfying since this implies that one does not have
to tighten both TGen and TVar for approaching the FCI
limit. It is enough to fix a sufficiently large TGen/TVar
ratio (as done by introducing the parameter τ) and then
decrease TGen to systematically approach the FCI
energy. This strategy will be used in the extrapolation
scheme described below.

c) The plateau behavior with TGen for a fixed large TVar is
less pronounced with CFG-ICE and CSF-ICE. However,
the DET-ICE variant shows a plateau with TGen for a
fixed large TVar as can be seen in Figure 3a.

d) The error bars giving the variance of the energy have a
constant value with decreasing TVar for a fixed TGen.
Therefore, it appears that the variance decreases mainly
with a decrease in TGen and is unaffected by decreasing
TVar.

Table 1. Geometries and the Dihedral Angles for the 21
Diatomic Molecules Used in the Present Benchmarking Seta

molecule
distance
(Å)

angle
(°)

dihedral
(°)

ground
state FCI dim.

H2 0.7609 1Σ+ (2e,10o)

LiH 1.6136 1Σ+ (4e,19o)

BeH 1.3570 2Σ− (5e,19o)

BH 1.2551 1Σ+ (6e,19o)

CH 1.1424 2Σ− (7e,19o)

NH 1.9863 1Σ+ (8e,19o)

OH 0.9796 2Σ− (9e,19o)

FH 0.9200 1Σ+ (10e,19o)

Li2 2.7139 1Σg
+ (6e,28o)

Be2 4.4269 1Σg
+ (8e,28o)

Li2 2.7139 1Σg
+ (2e,26o)

Be2 4.4269 1Σg
+ (4e,26o)

B2 1.6531 1Σg
+ (6e,26o)

C2 1.2728 1Σg
+ (8e,28o)

N2 1.1368 1Σg
+ (10e,16o)

O2 1.2786 3Σg
− (12e,16o)

F2 1.4186 1Σg
+ (14e,16o)

CH4 1.1015 109.5 120.0 1A1 (8e,28o)
240.0

NH3 1.0277 103.5 107.7 1A1 (8e,28o)

H2O 0.9668 101.9 0.0 1A1 (8e,23o)

HF 0.9203 1Σ+ (8e,18o)
aThe ground state is given in D∞h, C∞v, or the highest Abelian
symmetry of the molecule.

Table 2. List of 21 Molecules Used for Benchmarking the ICE TGen and TVar Parametersa

molecule FCI CCSD CCSD(T) CCSDT CCSDT(Q)

H2 −1.163673 −1.163673
LiH −8.014803 −8.014792 −8.014792 −8.014803 −8.014803
BeH −15.189297
BH −25.216401 −25.213458 −25.214831 −25.215255 −25.215307
CH −38.382084
NH −55.026422 −55.009514 −55.016383 −55.024254 −55.024839
OH −75.561655
FH −100.230595 −100.226228 −100.228149 −100.228246 −100.228660
Li2 −14.901465 −14.901405 −14.901460 −14.901463 −14.901465
Be2 −23.235159 −23.234835 −23.235080 −23.235136 −23.235153
Li2 −14.900671
Be2 −29.2343
B2 −49.252200 −49.228166 −49.243773 −49.246299 −49.249561
C2 −75.730031 −75.697370 −75.726797 −75.726013 −75.731056
N2 −109.016590 −109.005099 −109.014143 −109.014165 −109.016627
O2 −149.672045
F2 −198.757772 −198.750591 −198.756217 −198.756318 −198.757841
CH4 −40.322818 −40.319708 −40.322373 −40.322699 −40.322813
NH3 −56.403537 −56.398826 −56.402861 −56.403180 −56.403544
H2O −76.242083 −76.238216 −76.241384 −76.241591 −76.242139
HF −100.228876 −100.226235 −100.228226 −100.228349 −100.228805

aThe FCI and coupled-cluster energies for closed shell molecules is also shown.
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e) The variance in the error of the FCI21 set slightly
decreases upon going from DET, CFG to CSF-ICE, as
expected. First, this is due to the generally larger absolute
error for DET-ICE compared to CFG-ICE and CSF-ICE
with a given TGen and TVar. The second reason is due to
the normalization of the wavefunction. TheCFG andCSF
MPBFs are more compact compared to the DET MPBF,
and hence the wavefunction expansion in CFG and CSF

basis is shorter than that in the DET basis. This implies
that for a given threshold TGen and TVar, the
wavefunction |Ψk⟩ will be closer to the FCI one for the
CFG and CSFMPBF than the DETMPBF irrespective of
the type of molecule.

A comparison of variations with both TGen and TVar

together can be made using a contour plot of the error versus the

Figure 2. FCI21 benchmark set average error in the variational ICE energy for DET, CFG, and CSF-ICE vs TGen and TVar shown in (a), (b), and (c),
respectively. The vertical lines represent the variance in the error for the 21 molecules. TVar is shown on the x axis with decreasing values of TGen as
shown by the different curves. The coupled-cluster average errors are shown as horizontal lines for comparison.

Figure 3.Comparison of the average error as a function of the two thresholds TGen and TVar. The average error for the DET, CFG, and CSF-ICE are
shown in Log2[ΔE] mH.
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two parameters as shown in Figure 3a−c for DET, CFG, and
CSF-ICE, respectively, below. As one can see, the behavior is
qualitatively similar for the DET, CFG, and CSF MPBF, as
expected. More interestingly, the convergence with TGen is
faster than the convergence with TVar for CFG-ICE and CSF-
ICE as can be seen from the steepness of the contours. However,
for DET-ICE, the dependence on TGen and TVar are more
symmetrical. Next, we shall analyze the convergence of the “rest”
PT2 contribution and the effect of adding it to the variational
energy.
3.2. Comparison of Variational and PT2 ICE vs FCI

Energy. In this section, we present a comparison of the
variation and perturbative energy for the FCI21 benchmark set.
Before presenting the data for the three types of MPBFs, we first
present an illustrative example to highlight the difference
between DET, CFG, and CSF MPBFs during the calculation of
the perturbative energy contributions.
3.2.1. Illustrative Example: Butadiene. The calculation of

the perturbative energy estimate of the singly and doubly excited
MPBFs from a set of generator MPBFs is achieved using
Epstein−Nesbet partitioning of the Hamiltonian as described in
Section 2.1. In order to understand the difference in the
perturbative energy calculation between the DET, CFG, and
CSFs MPBFs, first we shall show a simple example of the
butadiene (C4H6) molecule (see Figure 4 below).

The butadiene molecule (cc-pVDZ basis for hydrogen atoms
and SV basis for the carbon atoms) has 62 orbitals and a total of
22 electrons (22e,62o). The closed shell restricted Hartree−
Fock (RHF) configuration (i.e.,[2 2 2 2 2 2 2 2 2 2 2 0...0] ) is
chosen as the |0⟩th order wavefunction |Ψ0⟩. The perturbative
contribution of all the singly and doubly excited MPBFs starting
from |Ψ0⟩ in DET, CFG, and CSF MPBFs has been calculated
and is given in Figure 5 below.
The butadiene molecule was chosen for a demonstrative

purpose here since the space of singly and doubly excited
MPBFs from |Ψ0⟩ is large enough for a somewhat general
comparison of the behavior of perturbative energy contribution
in the DET, CFG, and CSFMPBFs. The main conclusions from
Figure 5 showing the spread of the perturbative contribution for
the three many-particle representations are the following:

a) The CFG and CSF many-particle representations show a
similar spread of the perturbative contribution. Both
MPBFs contain about a maximum of 50,000 MPBFs
having a perturbative energy contribution of EI

PT2 ≥ 10−7

mEh as shown in Figure 5b. Note that the total number of
singly and doubly excited MPBFs in the CFG and CSF
basis is the same and is 158,202.

b) The DETmany-particle representation on the other hand
has a total of 912,186 single and doubly excited DETs,
which is about 1 order of magnitude larger than the CFG
and CSF MPBFs. This is not unexpected as DETs are
expanded in an Ms = 0 basis and not a spin eigenbasis.

c) The spread of the perturbative energy contribution for the
DET basis is much larger than CFG and CSF basis. As
shown in Figure 5b, there are about 200,000 DETs that
have a non-negligible perturbative energy contribution
compared to about 50,000 for the CFG and CSF case.
This is due to the fact that every double excitation on a
closed shell configuration generates a single configuration,
which can be made up of one, two, four, or six
determinants. This indicates that at least four times
more DETs (than CSFs) are required for taking into
account all MPBFs with a non-negligible perturbative
energy contribution at least for C2H4.

Figure 4. Butadiene molecule used in the analysis of the PT2 energy
contribution with DET, CFG, and CSF MPBFs. The cc-pVDZ basis is
taken for hydrogen atoms and the SV basis for the carbon atoms
resulting in a FCI space of (22e,62o).

Figure 5. Perturbative energy calculation on the butadiene molecule with a FCI space of (22e,62o) using the cc-pVDZ basis for hydrogen and SV basis
for carbon. The RHF configuration is chosen as the |0⟩th order wavefunction |Ψ0⟩. a.) The PT2 energy density defined as the number of MPBFs with a
given magnitude of EI

PT2 energy contribution (in millihartree). The distribution is close to an asymmetric Gaussian with long tails, as expected. The
individual contribution of each MPBF is given in panel (b). The total number of singles and doubles is larger for DET MPBF than CFG and CSF
MPBFs, as expected. The dashed lines indicate the peak values of the PT2 contributions for each curve to enable a quantitative comparison.
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d) A direct consequence of this larger spread in the DET
basis is that the perturbative contribution brought in by a
single DET is about 1 order of magnitude smaller than
that of a single CSF. This is more clearly seen in Figure 5a,
which shows the total number of MPBFs that have a given
EI
PT2 contribution.

e) From the comparison of the PT2 energy density for DET,
CFG, and CSF MPBFs given in Figure 5a, it is easy to
identify the average value of EI

PT2 brought in by a single
MPBF. This value is about 10−7 mEh for CFG and CSF
MPBF and about 10−9 mEh for DET MPBF. Therefore,
the energy brought by most of the DETs is more than two
orders of magnitude smaller than that for the CFG and
CSF MPBFs.

f) This average value of EI
PT2 can be used in order to estimate

the minimum values of the thresholds TGen and TVar
adequate for a reliable FCI energy approximation.

3.2.2. Benchmark Results.Now, we shall present the analysis
on the FCI21 benchmark data. Once the newMPBFs are chosen
as described in Section 2.1, the perturbative energy contribution
of the rejected set of MPBFs can be added to the total energy in
order to estimate the FCI value as given in eqs 9 and 10 below:
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oo∑= ∀ <E E E TVarPT
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K
PT

K
PT

2
2 2

(9)

= ++E E EPT
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The following are two points about the “rest” PT2 energy
(EPT2) that need to be emphasized:

a) As the perturbative estimate is calculated using the
Epstein−Nesbet zeroth-order Hamiltonian, it will tend to
be overestimated.37,38 The extent of this overestimation
needs to be benchmarked as a function of TGen and
TVar. It is expected that the CFG-ICE will show a
relatively larger overestimation due to the fact that all the
CSFs of a given singly or doubly excited CFG are included
while calculating its PT2 contribution.

b) Note that since only the generator MPBFs are used to
calculate the perturbative contribution, part of the PT2
correction due to the “spectator”MPBFs is lost and a bias
is introduced. On the other hand, this PT2 contribution
due to generators comes essentially free of cost, whereas a
full PT2 contribution would require additional non-trivial
computational effort. This bias can be systematically
removed upon decreasing the TGen threshold.

The error in the energies with the “rest” PT2 correction of the
FCI21 set can be compared to the FCI results for the three
variants as given in Figure 6a−c for DET-ICE, CFG-ICE, and
CSF-ICE respectively. Note that in contrast to the variational
energy, the PT2 corrected energies can become lower than the
FCI energy. In order to plot all values with the thresholds TGen

Figure 6. Absolute errors for the DET, CFG, and CSF-ICE including the perturbative correction due to the MPBFs not included in the variational
space. Panels (a), (b), and (c) give the absolute error for DET, CFG, and CSF-ICE respectively.
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and TVar, the absolute value of the energy error is plotted in the
figures below.
There is a range of interesting observations and differences

between the DET, CFG and CSF-ICE numbers. The major
points are summarized below:

a) The PT2 correction for the DET-ICE behaves very
differently compared to the CFG-ICE and CSF-ICE. The
main reason for this fundamental difference is due to the
fact that the PT2 contribution due to a single DET is in
general much smaller than the PT2 contribution due to a
single CSF belonging to the same configuration as shown
in the previous section. Consequently, the thresholds

cannot be directly compared for DET-ICE and CSF/
CFG-ICE.

b) The most significant observation is that the perturbative
energy estimate is larger by at least an order of magnitude
for the CFG-ICE and CSF-ICE compared to the DET-
ICE, thus corroborating the finding of the previous
section. For the DET-ICE, even with a small TGen value
of 10−6 and large TVar value of 10−6, the perturbative
contribution is negligible compared to the variational
correlation energy. However, for the CFG-ICE and CSF-
ICE, the perturbative contribution for TGen 10−6 and
TVar 10−6 is so large that the total energy error increases

Figure 7.Comparison of the Log of the absolute values of the PT2 contribution Log2[|ΔEPT2|] in mEh for the DET, CFG, and CSFMPBF. The bright
yellow regions represent a large ΔEPT2, and dark regions represent vanishing ΔEPT2 contributions.

Figure 8.Comparison of the total number ofMPBFs in the variational space for the (a) DET-ICE, (b) CFG-ICE, and (c) CSF-ICE variants with TGen
and TVar. The data for the plots is taken from the average values corresponding to the FCI21 set.
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from 1 to about 10 mH as can be seen in Figure 6b,c. This
also follows from the analysis in the previous section
where the average energy brought in by a single CSF was
shown to be about 10−6 mH.

c) The Evar +PT2 energy error increases with decreasing TGen
( and a fixed TVar) for the CFG-ICE and CSF-ICE
variant due to the fact that upon increasing TGen (i.e.,
moving down vertically in Figure 6b and Figure 6c), the
PT2 contributions become larger. This is because the
Epstein−Nesbet PT2 theory tends to overestimate the
PT2 contribution and, as a result, the total energy
overshoots, becoming more negative compared to the
FCI energy. Therefore, the PT2 absolute error increases
with decreasing TGen for a fixed TVar.

d) The variance of the errors shows a similar behavior as
compared to the variational energies.

In order to better understand the EPT2 contribution, in Figure
7a−c, we show a contour plot of the log of the absolute value of
the perturbative energy EPT2 (i.e., Log2[|ΔEPT2|]) for the DET-
ICE, CFG-ICE, and CSF-ICE with TGen and TVar thresholds.
As expected, there is a large PT2 contribution for larger values of
TVar as shown by the horizontal yellow block in Figure 7 for all
types of MPBFs. This is due to the fact that, as TGen decreases,
the ICE tends to an MRPT type method with an EN zeroth-
order Hamiltonian, which is known to overestimate the PT2
contribution.39,40 However, the perturbative contribution
decreases exponentially with decreasing TVar. Note that, as
remarked earlier, the PT2 contribution is largest for the CFG-
ICE as shown by the yellow region in Figure 7b.
Therefore, not surprisingly, small values of TGen and TVar

seem to be ideal for an accurate prediction of the FCI energy.
However, as we shall analyze in detail in the next section,
decreasing the thresholds implies an increase in the total number
of variational parameters in the wavefunction.
In summary, adding the PT2 energy to the variational ICE

energy is a mixed blessing. On one hand, it can reduce the error
of the calculation relative to the FCI results. On the other hand,
the convergence to the FCI limit is far less smooth due to the
overshooting of the Epstein−Nesbet second-order energy and
one can also undershoot the FCI energy. Hence, extrapolation
appears to be a more promising strategy to improve the
variational ICE results as will be discussed below.
3.3. Comparison of Variational Parameters. As the

solution of a large eigenvalue problem is the rate-limiting step in
a sCI procedure, the number of variational parameters in DET,
CFG, and CSF representation plays a major role in determining
the efficiency of the method. Clearly, the number of variational
parameters depends on the values of the two thresholds TGen
and TVar in addition to the choice of the MPBF used. As the

thresholds approach zero, the number of variational parameters
(i.e., number of CSFs or DETs) approaches their respective FCI
dimensions, which can be prohibitive. Analysis of the number of
variational parameters with respect to the two thresholds TGen
and TVar can provide important information about the
compactness of the wavefunction for the respective threshold
regimes. In the present section, we study the increase in the
number of wavefunction parameters for the three variants of the
ICE as a function of the two parameters TGen and TVar.
Figure 8 shows the variation of the wavefunction parameters

with the two thresholds TGen and TVar. As expected, the
number of variational parameters increases with decreasing
thresholds for all three representations. Notice that although the
number of wavefunction parameters keeps on increasing with a
decrease in TVar (and fixed TGen), the total error in energy
stays constant as shown in Figure 2. Therefore, beyond a certain
value of TVar, including more MPBFs of the same excitation
order (due to fixed TGen) does not improve the wavefunction.
This observation is in agreement with the analysis of 3.2.1 where
it was shown beyond a threshold (10−6 for CSF/CFG and 10−9

for DET) adding additional MPBFs has a negligible effect on the
total energy.
The number of wavefunction parameters also increases upon

a decrease in TGen. A comparison of the logarithm number of
wavefunction parameters with both thresholds TGen and TVar
together is given in Figure 9 where a contour plot is shown with
the number of wavefunction parameters against TGen and
TVar. For all three MPBFs, there is a similar rate of increase in
the number of parameters with a decrease in TGen or TVar.
The increase in the number of wavefunction parameters with

decreasing thresholds is accompanied by a decrease in the error
in the energies with respect to the FCI values. Notice that, as one
would expect, the smallest energy error occurs at the top right
corner of Figure 3, which also corresponds to the largest
magnitude of parameters (see Figure 9). There is a direct
connection between the number of MPBF and the computa-
tional time required for the calculation. In the next section, we
shall study this connection before commenting on the most
efficient scheme to vary TGen and TVar.

3.4. Timing Analysis. The most time-consuming part of
each ICE iteration is the Davidson diagonalization step as
explained in Part I and shown in Figure 1. The diagonalization of
the selected space is crucial to generate the next best
wavefunction |Ψk + 1⟩, which is expanded in the basis of the
“selected” MPBFs. Therefore, the size of the selected space of
MPBFs at each ICE step is directly related to the cost of the total
calculation. As shown in the previous section, the total number
of MPBFs increases with decreasing thresholds TGen and TVar;
consequently, the cost of the calculation increases with

Figure 9.Comparison of the logarithm of the number of wavefunction parameters (DETs or CSFs) (i.e., Log2[#MPBFs]) for the three many-particle
representations plotted against the two thresholds TGen and TVar.
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decreasing TGen and TVar as illustrated for the NH3 molecule
in double-ζ basis (as described in Section 3.1) in Figure 10. A
more detailed analysis of the parallel scaling and computational
efficiency on larger molecules will be given in Part III of the
current series of papers.
Therefore, a cost-benefit analysis can help to understand the

most effective path to systematically vary TGen and TVar value
for which we get the best energy for the least computational
time. This analysis will be performed in the following section for
the three many-particle representations.
3.5. Optimal Thresholds. In order to be able to extrapolate

energies obtained with progressively tighter thresholds, one
needs to identify the optimal way to reduce the thresholds. This
choice can be made by looking at the efficiency of an ICE
calculation, which is dependent on the following two factors:
First, the cost of the calculation, which is proportional to the
number of wavefunction parameters needed to optimize.
Second, the accuracy of the calculation obtained at a given
TGen and TVar. A tighter choice of thresholds will permit a
more accurate result while at the same time incurring a large cost

of calculation. In order to obtain a “cost-benefit index”
(CBindex), the function shown in eq 11 has been used:

= · [# ] + · [|Δ |]A B E

CBindex(TGen, TVar)

( Log MPBFs Log )2 2 (11)

where the two constants and serve to scale the cost due to the
total number of MPBFs (#MPBFs) and the energy error (ΔE),
respectively. Here the number of MPBFs in the calculation has
been used as a proxy of the total computational time as described
in Section 3.4. In the present case, A was set to 1 and B to 0.7 in
order to obtain comparable magnitudes for CBindex.
Using the function given in eq 11 we can plot the total

CBindex versus the two thresholds TGen and TVar as Figure 11.
There is a clear region of parameters (shown in darker colors),
which has the best cost-benefit ratio. These regions are slightly
different for the DET, CFG, and CSF-ICE. General trends can
be seen from the above plots, which are the following:

Figure 10.Timing comparison with respect to TGen and TVar for the NH3molecule in the cc-pVDZ basis. Contour lines give the time in 10zminutes,
where z is the label shown on the contour line.

Figure 11. Cost-benefit index plot for the three types of the ICE vs the two thresholds TGen and TVar. Units are arbitrary but identical for the three
plots. The paths show the most optimal way to increase the accuracy while keeping the cost of the calculation approximately constant. This
corresponds to following paths in red and orange with τ = 3 and τ = 7, respectively, and decreasing TGen.
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a) In order to decrease the error, one would benefit from
decreasing the TGen while keeping TVar fixed rather than
the other way around. This is more important for smaller
TGen thresholds. For example, in order to improve the
error obtained at TGen = 10−4 and TVar = 10−9, it is more
advantageous to decrease the TGen to 10−6 while keeping
TVar constant (=10−9) than keeping TGen = 10−4 and
decreasing TVar to 10−11. This manner of optimal change
of parameters is shown visually with the two lines on the
upper section of Figure 11 above.

b) In Figure 11, one can also see a region of constant cost-
benefit value with decreasing TGen and a fixed TVar. This
implies that the increase in the wavefunction parameters
(due to decreasing TGen) is compensated for by a more
accurate energy. This suggests an efficient protocol for
obtaining better energies at minimal cost, which shall be
described below.

c) For small molecules, it is convenient to use a single
parameter τ (see Section 2.1) such that the energies are
converged with respect to TVar, such as τ = 7 and a small
enough value for TGen=10−4 to achieve CCSDT(Q)
quality results as will be described below in more detail.

d) In practice, for larger molecules, the optimal thresholds
seems to be to fix τ to a small value such as τ = 3 (i.e.,
TGen/TVar =103) or τ = 4 (i.e., TGen/TVar =104) and
decrease TGen alone. This strategy leads to the smallest
computational cost while at the same time obtaining the
best possible total energy. This will be discussed in more
detail in Section 3.7.

Given that these variations are highly systematic, an
extrapolation scheme to recover the FCI energy from successive

calculations with tighter thresholds should be computationally
attractive. We will investigate this subject in the next section
after a brief summary of the threshold defaults extracted from
the benchmarking analysis.

3.6. Summary of Benchmarking Analysis. The ORCA
default since 2015 has been ICE(4,7), which leads to results that
are better than CCSDT(Q) quality. In these calculations due to
the small value of τ, the rest energy is so small that adding it to
the variational energy leads to insignificant changes. Notice that
the setting with ICE(4,3) provides similar results to the much
tighter ICE(3,7) setting at a much lower computational cost (c.f.
Table 3, timings). Therefore, for molecules with larger FCI
spaces, thresholds with τ = 3 and successively smaller TGen
values combined with an extrapolation scheme might be a better
choice. This will be analyzed in more detail in Section 3.7.
Finally, we would like to point out that with ICE(2, 7) or ICE(3,
3), we obtain results that are comparable to CCSD(T) quality,
while with ICE(3, 7) or ICE(4, 3) CCSDT(Q) quality is
reached. Further tightening the thresholds to ICE(4, 7)
surpasses the accuracy of CCSDT(Q) results for the FCI21
benchmark set.

3.7. Extrapolation Scheme. 3.7.1. Extrapolation Proto-
col. As the objective of a sCI calculation is to approximate the
FCI energy as closely as possible and any sCI method must
introduce truncation thresholds, it is tempting to devise
extrapolation schemes that allow one to estimate the FCI
energy obtained at zero threshold. Such an extrapolation scheme
has been studied in great detail by Buenker and Peyerimhoff in
the early 1970s41,42 and by Angeli and Persico et al. in a series of
papers in the late 90s.39,43,44 Since these pioneering contribu-
tions, a number of extrapolation schemes have appeared in the

Table 3. Comparison of the EnergyDeviation for ICEwith Various Threshold Values (TGen) and Ratios (τ) andCoupledCluster
(CC) with Respect to FCI Energiesa

aThe corresponding timings for obtaining the errors are also given in seconds. The colors show comparable error range for the ICE and CC
calculations. Numbers in parentheses beside the errors give the variance with respect to the FCI21 set.
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literature for sCI methods, which can be divided into two types:
(1) the extrapolation with weight of the generator coefficients

(or equivalently generator thresholds) as done by the original
papers by Buenker and Peyerimhoff and by Angeli and Persico et

Figure 12. Extrapolation of the error (vs FCI) with respect to the generator threshold TGen. The three ratios τ = 3,5, and 7 are shown in red, blue, and
brown, respectively, to illustrate the exponential convergence in the two cases. The R2 value gives the quality of a straight line fit to the data, which
corresponds to the FCI21 benchmark set.

Figure 13.Convergence of the error in energy (relative to FCI) vs the PT2 “rest” energy (EPT2). The four ICE protocols used are compared with each
other for all three MPBFs. A linear fit to the data is shown in dashed lines.
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al. and others18,43−46 and (2) extrapolation with respect to the
PT2 energy correction due to the rejected configurations as
done, e.g., by Holmes et al.47,48 Inspired by the later studies, we
have followed a slightly modified approach here.
In our case, there are two thresholds TGen and TVar.

However, as pointed out above below, one can devise a
composite threshold by fixing the ratio of TGen/TVar
represented by τ and varying only TGen. Once a composite
parameter (τ) is chosen, the energies can be extrapolated against
TGen (this scheme is represented as ICE(−Log10(TGen), τ) as
explained in Section 2.1). Here, we chose TGen with a fixed τ as
the unique parameter for performing the extrapolation. As born
out by our calculations (vide inf ra), the convergence of the
correlation energy tends to be exponential with respect to the
threshold TGen (keeping τ fixed) shown Figure 12. In fact, our
observation that the energies can be extrapolated as a function of
the weight of the generators is in agreement with the work by
Angeli et al.40 and others.
Moreover, by design of the ICE algorithm, the error in the

energy decreases with a decrease in the PT2 contribution of the
rejected MPBFs (EPT2) known as the “rest” energy. This is in
agreement with the finding that the energies can be extrapolated
against the “rest” PT2 energy (EPT2) with the extrapolated value
(EPT2

∞ ) obtained as EPT2→ 0. Moreover, it has been realized that
an extrapolation of the energy with the “rest” PT2 contribution
tends to be more linear than the extrapolation relative to the
thresholds.47 Therefore, we use a simple (two-point) linear
function to estimate the extrapolated energy as a function of EPT2
as shown in eq 12 below:

β= − ·| |∞E E EICE ICE PT2total (12)

The parameters EICE
∞ and β are obtained by a fit to the data

obtained by varying TGen for a fixed τ. Here, EICEtotal represents

the total energy, i.e., EICEtotal = EICEvar + EPT2. Obviously, two
calculations are enough to determine the parameter β. However,
successive data points can be added to continuously improve the
fit.With three calculations (three-point fit) ormore, one can also

obtain the confidence interval (ΔEICE
∞ ) of the extrapolated

energy as shown in eq 13:

Δ = | − |∞ ∞ ∞E E EICE ICE point point(2 ) ICE(3 ) (13)

Upon convergence or close to convergence, a two-point
extrapolated energy (EICE(2point)

∞ ) and three-point extrapolated
energy (EICE(3point)

∞ ) will be very close and hence ΔEICE
∞ will be

close to 0. Thus, a confidence interval of ΔEICE
∞ = 0 will imply a

high confidence of the extrapolation for small enough TGen and
τ values. Note that this extrapolation scheme is general and
transferable for any MPBF and essentially comes without
additional overhead or changes to the ICE algorithm.

3.7.2. Application on the FCI21 Data Set. As an illustration
of our extrapolation scheme, we plot the energy convergence of
the FCI21 set with a series of calculations ICE(A, τ) (with τ =
3,4,5, and 6) . As shown in Figure 13, the total energy converges
linearly as a function of the EPT2 toward the FCI energy for all
four schemes ICE(A,3), ICE(A,4), ICE(A,5), and ICE(A,6).
A linear fit to obtain the extrapolated energy EICE

∞ can be
obtained by a choice of two calculations with TGen =m and
TGen =n for a given fixed τ, which we shall denote by EP(m/n,
τ) − ICE. A three-point extrapolation would be denoted as
EP(m/n/k, τ) − ICE.
In order to access the accuracy of the extrapolated energy EICE

∞

with a two-point fit, we have performed an analysis of a series of
systematic choices EP(m/n, τ) − ICE for the FCI21 benchmark
set.
The series of extrapolated energies withm = 4 tom = 7 show a

monotonically increase in accuracy for the FCI21 set as shown in
Table 4. It is clear from Table 4 that the average absolute error
(including the variance) of the extrapolated ICE energies with τ
= 3 and τ = 7 are smaller than 1 mH for all the molecules in the
FCI21 irrespective of the two points chosen EP(m/n). However,
the accuracy of the extrapolated energy increases with
decreasing TGen, as expected. Note that the calculations with
τ = 3 are at least an order ofmagnitude cheaper than that with τ =
7. However, the quality of the extrapolated energies with τ = 7 is
better than that with τ = 3.

Table 4. Comparison of the Two-Point Extrapolation Scheme EP(m/n, τ) with τ = 3 and τ = 7 and the ICE(TGen,τ) Single-Point
Energiesa

error (mH)

extrapolated E(Var+PT2)

τ τ

EP(m/n) 3 7 ICE(TGen,τ) 3 7

(4/5) 0.080(0.130) 0.040(0.050) 5 0.800(1.100) 0.070(0.080)
(5/6) 0.018(0.025) 0.005(0.012) 6 0.180(0.260) 0.013(0.016)
(6/7) 0.004(0.005) 0.004(0.006) 7 0.030(0.040) 0.002(0.005)
(7/8) 0.002(0.004) 8 0.007(0.009)

cost (seconds)

extrapolated E(Var+PT2)

τ τ

EP(m/n) 3 7 ICE(TGen,τ) 3 7

(4/5) 898.5 6312.7 5 704.7 4407.0
(5/6) 2639.6 22112.7 6 1934.8 17705.7
(6/7) 7911.0 66786.0 7 5976.2 49080.3
(7/8) 27694.0 8 21717.8

aThe FCI21 data has been used to compute the error (in mH) between the FCI energy and the ICE/two-point EP(m/n,τ) extrapolated energies.
The variance of the computed error (i.e., error bars) are given in parentheses. Timings correspond to the same FCI21 set. All results are for the
CSF-ICE variant.
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As seen from Table 4, the two-point extrapolation scheme (at
least with τ = 3) results in errors, which are about an order or
magnitude smaller than the single-point ICE(TGen,τ) calcu-
lation. Moreover, this improved error comes at a similar cost as
the parent ICE(TGen,τ) calculation with the larger TGen.
Therefore, a two-point extrapolation scheme with τ = 3 is a
viable option, which provides much improved energy estimates
at essentially negligible additional cost.
It is now tempting to test this for larger systems for which FCI

values cannot be obtained and compare the extrapolated FCI
energies to coupled-cluster ones (CCSDT(Q)) or DMRG
energies as will be done in the next section.
3.7.3. Application of Extrapolation Scheme. In order to test

the extrapolation scheme proposed in the previous section, we
carry out ICE calculations on three small polyenes in a double ζ-
basis set as shown in Figure 14 below.

The cc-pVDZ basis set is used for hydrogen atoms, and the SV
basis set is chosen for the carbon atoms for C2H4 and C4H6. The
cc-pVDZ basis was used for all atoms for the case of methane
(CH4). The geometries of the three molecules are given in
Section 1.4.1 of the Supporting Information.
3.7.3.1. Detailed Study of Ethene Molecule. In order to

illustrate the quality of the linear fit given in eq 12 for different
values of τ and to demonstrate the extrapolation procedure, we
first do an exhaustive study on the ethene molecule. The ICE
calculation and extrapolation of to obtain the FCI energies has
been done as follows:

a) The scheme ICE(TGen, τ) has been used for all the three
molecules with TGen =3,4,5,6,7, and 8 where possible.

b) Once the series of energies has been obtained, an
extrapolated FCI energy is chosen (EICE

∞ ) by fitting to
EPT2 with a straight line as we have shown for the
benchmark set. This gives a unique value of the
extrapolated energy EICE

∞ , which can be obtained by
setting EPT2 → 0 in eq 12.

Note that, close to convergence, a confidence interval can be
extracted by using three best lowest energies and comparing the
extrapolated energies obtained by the two-point fit and the
three-point fit as described in Section 3.7.1.
The extrapolation for four values of τ (4,5,6,7) is shown in

Figure 15. The corresponding extrapolated energy as compared
to CCSDT(Q), and confidence intervals is given in Table 5. As
seen from Figure 15 and Table 5, the extrapolation can be made
with a linear fit of the “rest” PT2 energy for a given τ. Smaller
values than τ = 3 give a better linear fit with decreasing TGen,
which is encouraging as they also correspond to a more compact
wavefunction (c.f. Table 5). Therefore, a two-point fit can give
reliable extrapolated energies (<1 mH).
3.7.3.2. Comparison with All Molecules. Now we can

proceed to the results for the three molecules together. These
three molecules are too large for an exact FCI calculation in the

given basis set and hence comparison cannot be directly made
with FCI results. Nevertheless, one can obtain near-FCI quality
energy for such closed shell molecules from CCSDT(Q)
calculations. First, we compare the convergence of the energies
as a function of the threshold TGen keeping τ = 3, i.e., a scheme
with ICE(TGen, 3) for decreasing values of TGen as shown in
Figure 16. The smallest feasible TGen value was 10−8 for CH4
and 10−7 for C2H4 and C4H6, which we used to obtain the best
variational energies, respectively. As can be seen from Figure 16,
convergence is exponential for all three molecules and the
energies of methane and ethene are well converged and lower
than the CCSD(T) energies.
Following the convergence of the pure variational energy, one

can proceed to the extrapolation. The variational and
extrapolated ICE, CCSDT(Q), and DMRG energies are
shown in Table 6 below.
The quality of the extrapolated energies given in Table 6 can

be compared with the energy convergence with TGen shown in
Figure 16. The convergence of the extrapolated energies is
shown in Figure 11 of the Supporting Information. The
difference between the EICE

∞ obtained by progressively adding
more accurate EICE, and EPT2 values can give reliable confidence
intervals for the extrapolated FCI energy EICE

∞ .
The main point to emphasize is that the variational and

extrapolated energies are very close to the CCSD(T) energies
for all molecules and CCSDT(Q) for CH4. In all cases, the

Figure 14. Three model systems used to check for the proposed
extrapolation scheme proposed in Section 3.5.

Figure 15.Demonstration of the linear fit procedure with respect to the
“rest” PT2 energy. Four values of the combined threshold τ have been
used to illustrate the linearity as a function of τ and TGen parameters.
Data is taken from CSF-ICE calculations on the ethene molecule with
double-ζ basis with a FCI space of (12e,36o).

Table 5. Comparison of the Extrapolated Energy Error (vs
CCSDT(Q)) and Confidence Interval for Various Values of τ
for CSF-ICEa

τ EICE(6, τ) EICE
∞ error (mEh) % NCSFs

7 −78.207186 −78.2073(2) 0.6(2) 100.0
6 −78.207172 −78.20723(8) 0.64(8) 89.1
5 −78.207142 −78.20722(3) 0.66(3) 71.1
4 −78.207066 −78.207213(1) 0.658(1) 49.0
3 −78.206841 −78.2074498 0.450 31.8

aA comparison of the CSFs (vs the largest calculation τ = 7, NCSF
=3793459) is also given in order to compare the compactness of the
wavefunction. The data is for the C2H4 molecule with double-ζ basis
and a FCI space of (12e, 36o). The best variational energy EICE(TGen, τ)
for each τ is also given for comparison. The τ = 3 extrapolated energy
is taken from the three-point formula.
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variational energies are lower than the DMRG estimates and
even the CCSD(T) energies for CH4 and C2H4 as shown in
Figure 16. The extrapolated energies are always lower than the
DMRG energies and are very close to the CCSDT(Q) values.
Therefore, this manner of extrapolation is an effective and
transferable choice for moderate to large size molecules and can
give energies comparable to the CCSD(T) values at least for the
systems studied here.
3.7.4. Summary of the Extrapolation Analysis. In

conclusion, a judicious choice of the extrapolation scheme
EP(m/n, τ) can be used to systematically reduce the error by at
least an order of magnitude with respect to the variational ICE
value. We have observed that, for small molecules, i.e., about 14
electrons, a tighter scheme with τ = 4 or τ = 5 can give an
accurate approximation (less than 0.1 mEh error) to FCI as
shown in Figure 13. However, for larger molecules with more
than 30 electrons, such tight thresholds are not feasible. In such
cases, an EP(m/n, τ) scheme with τ = 3 can be a viable
alternative to get at least results of about CCSD(T) quality.
However, unlike the latter, the ICE is not restricted to single
reference systems. Moreover, we clearly acknowledge that the
energies obtained here suffer from size-inconsistency errors,
which is the primary reason behind the lack of accuracy with

respect to CCSDT(Q) values. This size-inconsistency error will
be studied in the next section.

3.8. Size-Inconsistency Error.The size-inconsistency error
(SIE) associated with the ICE method arises due to the
truncated CI expansion and contributes to the deviation from
the FCI energy. For a pedagogical and clear description of the
SIE for approximate CI methods, see the description by Malrieu
et al.49 Recently, an analysis of the SIE for sCI methods using
DET MPBF has been carried out by Ten-no et al.50 Here, we
shall use two examples to illustrate and compare the SIE for the
three MPBFs used in the present work.

3.8.1. Neon Dimer. The SIE in the present formulation of the
DET, CFG, and CSF-ICE can be demonstrated using the neon
dimer. In order to calculate the size-inconsistency error, we
proceed as follows: the FCI energy of the Ne atom in the cc-
pVDZ basis with (8e,8o) (with a frozen core) is calculated
followed by the energy of the Ne dimer (16e,16o) at a 10 Å
distance. The SIE can then be calculated by subtracting twice the
neon energy from that of the neon dimer as shown in q 14:

Δ = −E E E(SIE) (Ne ) 2 (Ne)2 (14)

For a size-consistent method, this difference should vanish
since the distance between the Neon atoms (10 Å) makes it an

Figure 16. Extrapolated energy for the three conjugated polyene molecules (CH4, C2H4, and C4H6) along with the DMRG and coupled-cluster
energies. The cc-pVDZ basis is used for hydrogen atoms and SV basis for carbon atoms. The correlated number of electrons and orbitals for each
system is shown as an inset. The ICE(TGen,τ = 3) protocol (i.e., TVar = TGen·10−3) is used for all points.

Table 6. Comparison of the Correlation Energies (inMillihartree)Obtained by CCSDT(Q), ICE, andDMRG for the Three Small
Polyenesa

DMRG (MaxM) ICE

size CCSDT(Q) 1000 2000 EP(m/n,3) variational extrapolated

CH4 (8e,33o) 189.9 189.9 190.0 (7, 8) 189.8 189.8
C2H4 (12e,36o) 250.3 245.6 246.1 (6, 7) 249.8 249.8
C4H6 (22e,62o) 464.9 438.1 438.7 (6, 7) 453.6 460.2

aA two-point scheme has EP(m/n,3) has been used for the extrapolation. The variational energies correspond to the most accurate calculation, i.e.,
ICE(n,3) for each molecule.
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essentially a non-interacting pair of atoms. A deviation from zero
therefore results from the size-inconsistency error introduced by
the truncation of the CI space. The error in as a function of
TGen and TVar is shown in Figure 17. Note that when TGen
and TVar go to zero, the wavefunction approaches the FCI one
and therefore the size-inconsistency error vanishes, as expected.
From this illustrative example, it becomes clear that the SIE is of
the same order of magnitude as the total error (see Figure 3) and
has to be analyzed for larger molecules. This shall be done in the
next section.
3.8.2. Ethene + Neon Atom. A more rigorous test of the SIE

can be performed using a larger system consisting of the ethene
molecule with a neon atom separated by 10 Å, thus ensuring that
the two molecules are essentially non-interacting (Figure 18).
The cc-pVDZ basis is used for Ne (8e,8o) and H, whereas the
SV basis is used for the carbon atoms; thus, the FCI space
consists of (20e, 44o) for the combined system.

A size-consistent method will give total energies, which can be
exactly written as a sum of the energies of the ethene and Ne

molecules separately. Therefore, the SIE can be obtained by
subtracting the FCI energy (or extrapolated FCI energy in the
case of ethene) of ethene andNemolecules calculated separately
from the ICE calculating involving the full system as given in eq
15:

Δ = + − −E E E E(SIE) (C H Ne) (Ne) (C H )2 4 2 4 (15)

The similarity of Figures 17 and 19 with those showing the
total energy error (Figure 3) indicate that the size-inconsistency
word error is the main ingredient missing from such selected CI
calculations. Notice also that the magnitude of the SIE for Ne2 is
almost equal to the magnitude of the total deviation from the
FCI energy of the benchmark set as shown in Figure 3,
suggesting that a large part of this deviation originates from the
SIE. Therefore, it makes it imperative to formulate a correction
of the size-inconsistency error in order to improve the accuracy
of the present selected CI scheme. This is currently a work in
progress in our laboratory.

4. CONCLUSIONS
In this second part of our three series of papers, which aims a
comparison of the three many-particle representations, we have
performed a benchmark test of comparison of the three methods
with FCI for a set of 21 diatomic molecules. There are some
interesting conclusions that emerge from the present analysis:

a) Due to the spin-adapted formalism of the CFG-ICE and
CSF-ICE, these two many-particle bases lead to a
significantly more compact many particle wavefunction
than the DET-ICE many-particle basis representation.
This allows for a better accuracy with a similar number of

Figure 17. SIE for the neon dimer separated by 10 Å, as a function of the two thresholds TGen and TVar. The SIE is calculated by taking the difference
between the energy of the Ne2 molecule and twice the energy of the Ne atom.

Figure 18. Ethene and neon example used to examine the size-
inconsistency error as a function of ICE thresholds.

Figure 19.Comparison of the SIE for the ethene and neon systemwith the neon atom at about 10 Å distance. The error is in millihartree and is given as
Log2(ΔE(ICE) − E(ICE∞)], where E(ICE∞) is the extrapolated approximate FCI energy for ethene and the exact FCI energy for the neon system
summed together.
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wavefunction parameters. This will be capitalized on in
much greater detail in concrete chemical applications in
Part III of the series.

b) The behavior of the perturbative energy contribution for
the CFG and CSF-ICE is quite different from the DET-
based ICE. This has been demonstrated by the
comparison of the spread of the PT2 energy contribution
for the three MPBFs for the butadiene molecule. The
main conclusion from this analysis is that the PT2 energy
is spread out over about 1 order of magnitude more DETs
compared to CSFs. Due to this larger spread of the PT2
energy contribution, the amount of PT2 energy brought
in by one CSFs is about four times larger than that
brought in by one DET. Therefore, even for the
perturbative energy calculation, the CSF many-particle
basis is more compact than the DET basis.

c) From our benchmark FCI21 set, the default setting of τ =
7 and TGen =10−4 reproduces 99.8% of the correlation
energy, which is better than the CCSD(T) result with
only 2% of the total time of a FCI calculation.

d) Based on the cost-benefit analysis, an extrapolation
scheme was devised, which was shown to be effective
for the benchmark set. We recommend different settings
for high-accuracy studies on small molecules and studies
on larger systems. For small systems, we find that
ICE(4,7) provides results that surpass CCSDT(Q)
quality, which is considered to be a converged level of
theory. For larger molecules, compromises have to be
made and such large τ values are not feasible. Here, we
recommend τ = 3 together with a decreased TGen value
of 10−4, which leads to excellent results and an optimal
cost/benefit ratio. Relaxing these thresholds further
comes at the expense of additional penalties in accuracy.
However, depending on the application, slightly reduced
accuracy may still be acceptable.

e) An open-ended linear extrapolation scheme was used to
reduce the residual error of the calculation while not
increasing the computational cost. Based on our results, a
two-point extrapolation EP(3/4,τ) leads to a reduction in
the error relative to ICE(4,τ) of one order of magnitude
(FCI21 set) while still being no more expensive than the
ICE(4,τ) calculation itself. Again, for larger number of
correlated electrons, some compromises have to be made.

f) For larger systems, we have observed significant errors in
the ICE final energies that we mainly attribute to the size-
inconsistency inherent in the CI procedure. We have
quantified these errors using the neon dimer and the
ethene/neon molecule.

In the third part of the present series of papers, we shall
perform case studies on different types of molecules in order to
shed light on the strengths and weaknesses of the three types of
many-particle basis representations.
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