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A B S T R A C T

Background: Policy-makers have attempted to mitigate the spread of covid-19 with national and local non-
pharmaceutical interventions. Moreover, evidence suggests that some areas are more exposed than others to
contagion risk due to heterogeneous local characteristics. We study whether Italy’s regional policies, intro-
duced on 4th November 2020, have effectively tackled the local infection risk arising from such
heterogeneity.
Methods: Italy consists of 19 regions (and 2 autonomous provinces), further divided into 107 provinces. We
collect 35 province-specific pre-covid variables related to demographics, geography, economic activity, and
mobility. First, we test whether their within-region variation explains the covid-19 incidence during the Ital-
ian second wave. Using a LASSO algorithm, we isolate variables with high explanatory power. Then, we test
if their explanatory power disappears after the introduction of the regional-level policies.
Findings: The within-region variation of seven pre-covid characteristics is statistically significant (F-test p-
value <0 ¢001) and explains 19% of the province-level variation of covid-19 incidence, on top of region-spe-
cific factors, before regional policies were introduced. Its explanatory power declines to 7% after the introduc-
tion of regional policies, but is still significant (p-value <0 ¢001), even in regions placed under stricter
policies (p-value ¼ 0 ¢067).
Interpretation: Even within the same region, Italy’s provinces differ in exposure to covid-19 infection risk due
to local characteristics. Regional policies did not eliminate these differences, but may have dampened them.
Our evidence can be relevant for policy-makers who need to design non-pharmaceutical interventions. It
also provides a methodological suggestion for researchers who attempt to estimate their causal effects.
Funding: None.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Since fall 2020, several European countries have introduced local
non-pharmaceutical interventions (henceforth, NPIs) instead of the
national lockdowns that have characterised the first wave of restric-
tion policies in spring 2020. While some countries and local authori-
ties have targeted single municipalities (i.e., the U.K. with
Manchester or the U.S. with the Chicago mayor’s city-wide lock-
down), other countries, such as Italy, designed regional policies.1 Sev-
eral studies have exploited these differences in local restrictions to
try to calculate their efficacy [1�5].
However, regions can be large, and even neighboring areas can
have highly heterogeneous characteristics. For example, a large
region such as Lombardia, in Northern Italy, extends over 23863
squared kilometers and contains both rural areas and dense urban
centers with crowded public transports (with population density
ranging from 56 people per km2, in the Sondrio province, to 2072, in
the Milano province) or areas with different economic structures that
might imply different shares of jobs that can be carried out from
home. Some of these heterogeneous local characteristics may be
important determinants of covid-19 infection risk. If this is the case,
narrowly-defined neighboring geographies could have experienced
different infection incidence levels attributable - at least in part - to
those characteristics.

In this paper, we investigate two questions. First, can the covid-19
incidence heterogeneity across Italian provinces, during the second
wave in fall 2020, be explained by province-specific pre-determined
(i.e., pre-covid) characteristics, in addition to region-specific ones?
These characteristics vary between provinces because: (i) on average
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Research in context

Evidence before this study

To restrain the spread of covid-19, many countries have intro-
duced national and local non-pharmaceutical interventions. Evi-
dence suggests that only harsh and centralised policies seem
effective enough to keep the spread of covid-19 under control in
certain countries. However, several studies find that geographical,
demographic, and social local factors are correlated (or causally
connected) with the local spread of covid-19. Have Italy’s regional
policies, introduced on 4th November 2020, effectively tackled the
infection risk arising from such local factors? We look for studies
related to these facts by using keywords such as “covid-19”,
“covid-19 policies,“ and “covid-19 non-pharmaceutical interven-
tions”. We look for evidence circa possible covid-19 geographic,
environmental or socio-economic factors by adding to “covid-19”
keywords such as “risk factors”, “spread, and “infection risk”.

Added value of this study

Italy has 19 regions (and 2 autonomous provinces), further
divided into 107 provinces. In November 2020, Italy has
adopted non-pharmaceutical interventions (NPIs) at regional
level. We provide robust statistical evidence that province-spe-
cific pre-determined (i.e., pre-covid) socio-economic and geo-
graphical characteristics have a sizeable explanatory power for
local covid-19 incidence in Italy, even within the same region.
We also find that these characteristics’ importance persists after
the introduction of Italy’s regional policies on 4th November
2020. Hence, the introduction of regional-level policies did not
entirely cancel these differences in systematic local risk. How-
ever, we find suggestive evidence that they have been partially
effective at dampening their relevance. Due to Italy’s specific
institutional framework and policy design, we can back our
claims with a parsimonious but statistically valid model, focus-
ing on within-region variations of covid-19 incidence after 1st
September 2020 (the “second wave”). Our findings point out a
potential concern regarding conventional estimates of the effi-
cacy of NPIs obtained by exploiting their spatial variation, but
without taking into account local factors.

Implications of all the available evidence

Several risk factors seem to contribute to the spread of covid-19.
NPIs have tackled them with various degrees of efficacy, with
some policies being more effective than others. We provide evi-
dence that heterogeneous socio-economic characteristics can
help explaining the different levels of covid-19 incidence of
geographically close areas in Italy, and that the importance of
those local characteristics persisted, at least partially, after
regional policies were implemented. In this sense, our results
provide an additional argument supporting NPIs targeted to
local risk factors. The significant role of pre-determined charac-
teristics in explaining the covid-19 incidence, before and after
introducing regional measures in Italy, suggests that those poli-
cies have been, at best, imperfect at equally tackling covid-19
infection risk at the local level. Additionally, this works high-
light the importance of accounting for spatial heterogeneity
when identifying the causal effects of policies on infection risk.
For example, this can be achieved by employing statistical
methods that can explicitly control local characteristics (such as
epidemiological models, randomised control trials, or propen-
sity score matching) or partial them out (such as interrupted
time series or regression discontinuity).
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they are different from one region to another (henceforth, between-
region variation); and (ii) they differ between provinces within the
same region (henceforth, within-region variation). If the between-
region variation of these factors is the only systematic determinant of
the observed incidence, regional policies might be the right tool to
tackle local infections uniformly. Instead, if the within-region varia-
tion of those characteristics is important, a second question arises:
are regional policies, which impose uniform restrictions over hetero-
geneous local areas, sufficient to target local risk equally? Potentially,
regional policies could successfully address the province-level inci-
dence heterogeneity because their effectiveness is also a function of
province-specific characteristics. If the pre-determined province
characteristics contribute to explain the covid-19 incidence both
before and after the introduction of the regional policies, then we
argue that such policies were imperfectly-designed to target local
risk. We focus on the second wave (in fall 2020) because during the
first wave (in spring 2020) Italy adopted almost exclusively country-
wide policies.

We address these questions by looking at provincial (NUTS-3)
data for Italy. Italy represents the ideal candidate to study this phe-
nomenon for several reasons. First, as already mentioned, Italy imple-
mented consistent regional-level measures starting from 4th
November 2020 until late January 2021. Second, the regional restric-
tion measures were decided with an objective national algorithm,
with little to no discretionary political interventions after it was set
up. Third, these measures were almost entirely uniform within
regions. Finally, all healthcare policies, including test-and-trace pro-
grams and priorities, are managed within regional powers. These
characteristics create an ideal environment to study within-region
differences in covid-19 incidence without worrying about confound-
ers such as divergent testing policies across regions.

The study of factors associated with covid-19 infections can be
relevant for both policy-makers and researchers. Investigating the
existence of local risk factors, potentially not addressed by regional
policies, can be viewed as a contributing argument for/against local
interventions in the context of the quite complex and not yet fully-
settled debate about the right NPIs policy design. Moreover, the rele-
vance of local factors might suggest that studies that try to identify
the effectiveness of non-pharmaceutical interventions based on spa-
tial variations could achieve biased estimates unless correct statistical
tools that control for local factor heterogeneity are employed. Our
results inform researchers of whether this can be an empirically rele-
vant concern.

2. Methods

In this section we describe the variable of interest, the set of
explanatory variables, and then the statistical strategy adopted.

2.1. Data

2.1.1. Covid-19 incidence
Our variable of interest is the incidence of covid-19 for each of the

107 Italian provinces during the second wave, computed as the aver-
age number of weekly positive covid-19 cases officially reported by
the Minister of Health[6], for the period 1st September 2020 - 23rd
December 2020, per 100 thousand people.2 We focus on the second
wave since the first wave did not develop uniformly across Italian
regions, hitting harder and earlier the Northern regions than the
Southern ones. Moreover, the first and second wave differ for the
geographical level of NPIs: they were mainly national during the for-
mer, and differentiated across regions during the latter. We consider
covid1-19 cases until 23rd December 2020 because, after that date,
2 The number of cases is the only official statistics reported at the province level.



Fig. 1. Weekly Cases per 100k people: Second Wave

G. Guaitoli and R. Pancrazi / The Lancet Regional Health - Europe 8 (2021) 100169 3
different nation-wide restrictions came temporarily into place. Nev-
ertheless, we will show that our results hold under several time-win-
dows that define the epidemic wave.

Figure 1 a displays our benchmark measure of incidence. The
highest incidence occurred in the province of Belluno, in the Veneto
region, with a weekly average of 351 ¢4 cases per 100 thousand peo-
ple. The lowest incidence occurred in Lecce, in the Puglia region, with
44 ¢4 cases. The average incidence is 158 ¢3 cases, with a standard
deviation of 64 ¢59. This sizeable standard deviation captures two
features. First, the majority of cases occurred in the North. Second,
the significant heterogeneity across provinces within the same
region.

The large differences across regions have led to the implementa-
tion of differentiated regional policies. Through an algorithm taking
into account estimates of the effective reproduction number, Rt , and
hospital loads, among many other parameters, each region was
placed under a different regime of restrictions [7]. Figure 2 shows the
region-specific restriction policy in place on 15th November 2020
and on 6th December: yellow regions had very mild restrictions,
while red regions were under a moderate stay-at-home order. The
color of each region was decided by the national government through
objective criteria and updated regularly according to the average
regional evolution of the epidemic [8�10].

However, the regional policies do not fully reflect the differences
in incidence across provinces. In Figure 1b we display the deviation
of covid-19 incidence, in each province, from their regional mean. By
construction, this measure eliminates all the differences across prov-
inces due to regional effects. Notice that a large part of the province
heterogeneity is still present after eliminating regional means (mean
¼ 0, SD ¼ 41 ¢1).

2.1.2. Explanatory variables
We construct a dataset of explanatory variables at the province

level. We select variables that, according to the literature, may affect
the spread of the covid-19 virus. These regard demographics [11],
socio-economic factors [12�16], commuting [17�20] and pollution/
health [21�23]. All the variables are pre-determined with respect to
the occurrence of the covid-19 pandemic. This is important because
pre-determined variables capture relationships that existed before
the pandemic and that could determine a higher (ceteris paribus) risk
of infection, but may have been addressed by non-pharmaceutical
interventions or by changes in the social behavior of the population.

In Appendix Appendix A we describe in more details the variables
and their sources. The dataset of explanatory variables is composed
of 35 variables.

2.2. Statistical methods

2.2.1. Objective 1: are province-specific variables important?
Can the covid-19 incidence heterogeneity across space be

explained by province-specific pre-determined characteristics, in
addition to region-specific ones? This question is important because
if region-specific characteristics are the only systematic determinants
of the observed incidence, with all the residual being due to random
noise, then regional policies might be the right tool to reduce expo-
sure to the infection uniformly.

Let us clarify further the goal of our analysis. We define the prov-
ince-specific component as important if we can find variables that 1)
provide a statistically significant explanatory power of the covid-19
incidence and such that 2) the size of this explanatory power is non-
negligible.

Test 1 To formally answer the question, we consider two models.
Model 1 is a restricted one and regresses the province level covid-19
incidence in the second wave on region-specific unmodelled charac-
teristics:

Model 1 : Cij ¼ aiDij þ eij: ð1Þ
Here Cij denotes per-capita covid-19 incidence in province j that
belongs to region i, Dij is a set of dummy variables for each region, ai

are the coefficients associated with each region, capturing any
region-specific effect, and eij are random disturbances. Intuitively,
Model 1 restricts all the systematic variation of covid incidence across
provinces to be attributable to the between-region variation, cap-
tured by the region-specific parameters ai. Notice that we do not



Fig. 2. Regional colour-coded restrictions. Note: Yellow: limited opening times of accommodation sector (bars, restaurants) but seated lunch allowed, restricted cross-region mobil-
ity. Orange: accommodation sector closed for in-person service, restricted cross-city mobility, night curfew, children aged 13-19 in remote learning. Red: all non-essential services
closed but for delivery, gatherings and all non-essential trips from home illegal, children aged 11-19 in remote learning. All tiers include restrictions to: sport facilities, museums,
nightclubs, theatres, cinemas closed and public transport at 50% capacity.

3 All these additional results are available upon request.
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need to be explicit about the source of these regional differences:
they could be driven by different regional policies, different territorial
or demographic characteristics, or any other different features. Our
goal is, in fact, to investigate whether there are province-level charac-
teristics that are important to explain the covid-19 incidence and
whose effects are not fully explained by differences in regional
means.

Model 2 is a richer one which includes, in addition to region-spe-
cific unmodelled characteristics, also other explanatory variables.
Specifically, Model 2 is:

Model 2 : Cij ¼ ~a iDij þ ~bXij þ hij: ð2Þ
Here, Xij represent a set of explanatory variables for each province j in
region i, ~b is the associated set of coefficients, and hij are random dis-
turbances. Notice that since region-specific effects are also present in
Model 2, all the additional information captured by the explanatory
variables Xij reflects only the within-region variation across provinces
of that variable. The information that Sicily’s average temperature is
higher than in Piemonte is not included in the explanatory variable
Xij because the regional dummies will soak up all regional differen-
ces.

Since Model 1 is nested in Model 2, we can formally test whether
the within-region variation contained in the explanatory variable Xij

is important in explaining Italy’s incidence by running an F-test. The
null hypothesis is: H0 : ~b ¼ 0. If the null hypothesis is not rejected,
Model 1 and Model 2 are statistically equivalent. In that case, we can-
not reject that the between-region differences are the sole determi-
nants of observed covid-19 incidence in Italy.

Remark (Correlation Vs Causality). We make no claims about the
causality of our model. In fact, we only need to address the
significance of the differences in explained-variance across models to
answer our research questions. For this reason, our OLS approach -
which captures correlations only - is sufficient to address the prob-
lem as we do not seek to achieve causal identification.

Remark (Interpretation of the models). Because the models incorpo-
rate region-specific fixed-effects, our estimation results are not
affected by factors that may cause differences in the average inci-
dence of positive cases across regions (i.e., number of tests per capita
or differences in average levels of factors of risk). However, one might
wonder whether our results are driven by few regions with larger
within-region variance across provinces. We can show that all the
findings are highly robust to a standardisation of the within-region
variance, i.e., by normalizing to 1 the variance of the number of posi-
tive cases across provinces within a region. Therefore, the results
reported below are not due to a disproportionate role of a subset of
few regions for the overall within-region variance.3

Model Selection Since we have a relatively large set of potential
explanatory variables compared to the number of observations, the
first step of the analysis involves a shrinking procedure, which helps
condense the relevant information present in the 35 covariates into a
smaller subset.

To reduce the number of explanatory variables to a subset impor-
tant to explain the heterogeneity in province covid-19 incidence, we
follow a three-step procedure:

1. We perform a LASSO regression analysis, a shrinkage and selec-
tion method that penalizes the regression coefficients’ absolute



Table 1
OLS estimates

All Second Wave 1st Sept. - 3rd Nov.

(1) (2) (3) (4)
Regional FE Baseline FE Baseline

Temperature -13.12*** -4.945**
(0.003) (0.012)

Income per Capita 3.468*** 2.608***
(0.000) (0.000)

Agriculture Share
Population

-0.555 -0.275

(0.107) (0.185)
Services Share Population 0.423** 0.262**

(0.021) (0.014)
Share families 5+

components
14.53*** 6.671***

(0.000) (0.004)
Cases First Wave -0.466** -0.222***

(0.011) (0.003)
Public Transport Trips

Concentration
16.15*** 10.41***

(0.000) (0.000)
Observations 104 104 104 104
R2 .58 .768 .51 .727
R2ðadjÞ .491 .693 .406 .639
Region FE Yes Yes Yes Yes
H_0 - =(1) - = (3)
F-Test - 9.1 *** - 9 ***
Critical value (1% sign.) - 2.9 2.9

Note: Significance levels: * = 0 ¢10; ** = 0 ¢ 05; *** = 0 ¢01. All specifications use Conley
Spatial Standard Errors with a cutoff of 150km. P-values of coefficients in parenthesis.
All regressions are controlled for region fixed effects. Therefore, the b coefficient on
each variable can be interpreted as contributing to increasing (decreasing) Covid-19
cases per capita beyond (below) the regional mean. Specification (1) shows how mean
regional differences explain 58% of the variance (49% adjusted for DOF). In specifica-
tions 2, we introduce other province-level characteristics and test whether all coeffi-
cients are jointly significant to explain more within-region variance in the dependent
variable than simple fixed effects (H0, the test statistic and critical value at 0 ¢01 signifi-
cance level reported at the end of the table). Specifications 3 and 4 perform the same
exercise but for the pre-regional policy period only (1/09/2020 - 3/11/2020).
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size. This method is well suited for our purpose because some of
our variables are highly correlated, and LASSO penalizes overfit-
ting due to correlated variables strongly;

2. We perform a k-fold validation procedure with k ¼ 10 to select
the optimal shrinkage parameter by randomly splitting the sam-
ple. We repeat this step 100 times and select the model which
achieves the highest adjusted R2;

3. To further minimize overfitting, we select the subset of the chosen
covariates that maximizes the adjusted R2 of the model.

In summary, our method has the following advantages: (i) it is
objective and rigorous; and (ii) it strongly penalizes overfitting and
selecting highly correlated covariates. Notice that our refinement
procedure makes it more difficult to reject the F-test mentioned
above, making a rejection result more robust.

2.2.2. Objective 2: Are regional-policy sufficient?
Next, we investigate whether the correlation found in the previ-

ous set of models disappears after the introduction of regional poli-
cies on November 4th, 2020. In principle, this is possible because
even regionally homogeneous policies could affect different provin-
ces at different intensities.

Test For this purpose, we construct the following models.

Model 3 : CpostPol
ij ¼ a0

iDij þ gCprePol
ij þ eij; ð3Þ

Model 4 : CpostPol
ij ¼ ~ai0Dij þ gCprePol

ij þ ~bXijþ hij: ð4Þ

Here, CpostPol
ij denotes the covid incidence in province j in the region i

after the regional policies were introduced,4 while X collects the
covariates selected by the shrinkage method explained above. See
Figure 3 and 4 for the map.

Since Model 3 is nested in Model 4, we can formally test through
an F-test whether the within-region variation contained in the
explanatory variable X is important to explain the distribution of
covid-19 cases even after regional policies were introduced. The null
hypothesis is: H0 : ~b ¼ 0. In both models, we could include a measure
of province-level covid incidence pre-policy, denoted CprePol

ij , to cap-
ture pre-policy trends.

Remark (Underlying assumption). As shown in the result section
below, for the relevance of our approach it is not needed to require
that the covariates X can be directly affected by policies. Those covari-
ates implicitly hint at possible contagion mechanisms. If policies are
effective, those mechanisms will be reduced to the point that the
province-specific, pre-pandemic distribution of the covariates does
not correlate anymore with province-level incidence. Here, there is
an important underlying assumption to mention. We assume that a
fully effective policy is capable of completely eliminating that correla-
tion. But only a valid counterfactual, in which a feasible fully-effective
policy has been implemented, could highlight if that is the case. How-
ever, such a control group does not exist. Nevertheless, some of our
results below, namely the sensitivity analysis controlling for different
policies tiers, suggest that our assumption that policy could affect the
link between covariates and covid is reasonable.

2.2.3. Sensitivity Analysis
We conduct a number of robustness checks.
Robust Inference for Models 2 and 4 Since we pre-select the covari-

ates through a LASSO algorithm, traditional inference and critical val-
ues of the F-tests may not be valid from a statistical point of view. In
Appendix Appendix D we show how our results are robust to an
inference procedure that takes into account the covariates’ selection
mechanism through LASSO before we perform the OLS. Simulating
4 See Appendix B.2 for the map.
data under the null hypothesis, we show that our results are at the
extremes of an empirical distribution of F-tests and R2-adjusted sta-
tistics built from random data.

In Appendix Appendix E we discuss the role of the post-LASSO
refinement in the selection of the covariates, and show that this is
not essential for our results, but can help to reduce overfitting and
the number of selected covariates.

Alternative specifications For further robustness checks where we
drop possibly problematic observations and check the role of the
covariates over longer time periods, see Table 5 and Table 6, in
Appendix C.2 e, ,Ta,
3. Results

Objective 1

Table 1illustrates the results. Column (1) displays estimates for
Model (1).5 Column (2) displays estimates for Model (2), in which the
covariates Xij are selected with the shrinkage method mentioned
above. Three remarks summarize the results. First, we run a formal F-
test to determine whether the within-region variation of these pre-
determined variables is important in explaining province-level
covid-19 incidence. The null hypothesis of the equivalence of Model
2 to Model 1 is rejected at a very low significance level (F-test p-value
5 We remove Aosta, Trento, and Bolzano as they map one-to-one with their autono-
mous region.
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< 0 ¢0001). Second, we find that the seven selected province-specific
variables explain a considerable share of the overall variance of
covid-19 incidence in Italy, as shown by the increase of the R2 from
0 ¢58 to 0 ¢77. Hence, the within-region explanatory power of the
selected covariates is also quantitatively important. Finally, while we
do not claim causality, the selected variables have coefficients with
intuitive signs: higher temperatures, a larger share of agricultural
employment, and covid-19 incidence during the first wave correlate
with lower covid incidence.6 On the other hand, a larger share of fam-
ilies with five components or more, employment in the services sec-
tor, the temporal concentration in the use of public transport, and
higher income, which we interpret as a proxy of high economic activ-
ity, predict an higher covid-19 incidence. In Column (3-4), we repeat
the same analysis when considering incidence data up to November
3rd, 2020, the day before regional restriction policies were intro-
duced. The results are all preserved.
Objective 2

Table 2 reports the results. Column (1) and Column (2) presents
the estimates for Model 3 and Model 4, respectively, without the
regressor CprePol

ij . As reported in Column (2), the covariates explain a
large share of the residual variation (� 15:3%), similarly to the results
provided in Table 1. Hence, we can conclude that local pre-deter-
mined characteristics help explain the diffusion of covid-19, both
before and after the introduction of regional policies. Column (3) and
Column (4) display the estimates for Model 3 and Model 4, respec-
tively, with the regressor CprePol

ij . We find that the incidence of cases
pre-policies explains a large share of the total variation of incidence
post-policy. Intuitively, we should not expect that introducing
regional policies alters the course of the epidemic immediately. Nev-
ertheless, Column (4) shows that the same pre-determined variables,
in the post-policy period, explain an additional 4.8% of the covid vari-
ation on top of their role pre-policy and are still statistically signifi-
cant (pvalue¼ 0 ¢033). In Columns (5)-(8), we repeat the same
exercise by defining the post-policy period from 25 November to 23
December 2020. We drop the first 21 days to allow for delays in virus
incubation when evaluating the post-policy scenario. We find that
our results are robust. Additionally, we find that after the regional
policies were introduced, the FE model explains a larger share of the
covid-19 incidence variance (73% against 51%).
3.1. Other results: different restriction tiers

In Table 2 we have shown that after the policy was introduced, the
province pre-determined characteristics were still able to explain the
observed covid-19 incidence. However, different regions were placed
under different tiers of restrictions. Were the higher tier policies able
to cancel the explanatory power of the pre-determined characteris-
tics? To answer this question, we modify our model as:

CpostPol
ij ¼ aiDij þ ~bXij þ gZSZi Xij þ eij; ð5Þ

where SZi is the share of days between November 4th and November
25th that region i has been in the color tier of type Z (yellow, orange,
or red). The role of the covariates Xij on incidence is then assumed to
depend on the restrictions’ intensity potentially. Then, we jointly test
for each covariate the following null hypothesis: H0 : ~b þ gZ ¼ 0. If
this null hypothesis is rejected, we can conclude that the covariates X
did not lose all their explanatory power in regions under tier Z, even
after November 25th (three weeks after the policies were intro-
duced).
6 The negative relationship between first and second wave incidence has already
been investigated in Carletti and Pancrazi [24], Perico et al. [25], and Perico et al. [26].
Table 3 reports the results. Columns (1)-(2) supports the result
already obtained in Table 1: considering the degree of intensity of
future policies, prevalently yellow or red, does not alter the result
that pre-determined characteristics predict local covid-19 incidence
in the pre-policy period. Columns (3)-(4) report the results for the
post-policy period, regarding the share of days in the yellow and red
regime, respectively. While we reject (F-test p-value¼ 0 ¢0011) the
null hypothesis that a whole month in the yellow tier cancels the role
of pre-determined characteristics at significance level less than 1%,
we can reject the null hypothesis for the red tier only at the 10% level
(F-test p-value¼ 0 ¢067). Overall, we find no evidence that low-tier
regional policies were sufficient to comprehensively tackle the covid-
19 infection risk connected to the province’s pre-determined charac-
teristics. However, our results show lower confidence regarding the
possibility that the most stringent restrictions were insufficient to
reduce to zero the role of local heterogeneity in pre-determined fac-
tors, as we find a p-value above 0 ¢05.

Importantly, these results point to how the assumption that fully
effective policies could reduce to (statistically) zero the correlation
between covariates and the covid-19 incidence seems reasonable. In
fact, for regions in the strongest restriction tier (but yet far from being
as restrictive as the Italian stay-at-home order of the first wave in
spring 2020), we cannot anymore reject the null at a 5% confidence
level.

4. Discussion

The reported evidence suggests that Italy’s regional policies were
not “local enough” to fully tackle local covid-19 risk differences. We
support this claim with robust and rigorous statistical analysis. We
identify seven province-specific covariates that are relevant to
explain the cross-section pre-policy covid-19 infections. They capture
19% of the total variance in the pre-policy period on top of regional-
specific effects. We test that their explanatory power and significance
also survive when considering the period in which regional policies
were in place. We support these findings with several sensitivity
checks. Overall, we have found that local factors can explain covid-19
incidence both before and after implementing regional-level (but
countrywide-coordinated) policies in Italy, meaning that those poli-
cies were not sufficient to eliminate the link between variation in cer-
tain pre-determined province-specific factors and the spread of
covid-19.

Before discussing the relevance of our findings, let us describe
some limitations of our approach. First, while our approach is built to
test whether regional policies were fully effective in eliminating
province-specific contagion factor, it is not suitable to test whether
those policies have been only partially effective and why. Second, our
tests rely on the assumptions that the policies, if fully effective, can
eliminate the correlation between incidence and province-specific
factors. Testing the validity of that assumption requires the existence
of a valid counterfactual, in which a feasible, fully effective policy has
been implemented; however, such a control group does not exist.
Nevertheless, the lower significance level found for the effect of prov-
ince-specific factors in regions that spent more time in the highest
tier of restrictions suggests that our assumption may be reasonable.
Finally, different approaches that take into account the time-series
properties of covid-19 incidence could be used. However, the limited
data available, the complex data generating process behind the spa-
tial and temporal evolution of the pandemic, and the staggered
implementation of different tiers of restrictions, make the modelling
a complex task. However, under the previously stated assumptions,
this does not make our approach any less valid.

Beside the limitations described above, our results are important
for policy-makers and have implications for public health. They pro-
vide a rationale for implementing more targeted policies that take
into account the heterogeneous nature of sources of risk across



Table 2
Effect of Regional Policies

4th Nov. - 23rd Dec. 25th Nov. - 23rd Dec.

(1) (2) (3) (4) (5) (6) (7) (8)
FE post-4nov Post 4nov FE post-4nov Post 4nov FE post-25nov Post 25nov FE post-25nov Post 25nov

Temperature -23.48*** -14.19*** -20.23*** -16.33***
(0.003) (0.003) (0.003) (0.001)

Income per Capita 4.518*** -0.379 1.302 -0.754
(0.003) (0.850) (0.423) (0.660)

Agriculture Share Population -0.907 -0.390 -0.523 -0.306
(0.107) (0.322) (0.248) (0.474)

Services Share Population 0.623** 0.132 0.472* 0.266
(0.045) (0.595) (0.096) (0.354)

Share families 5+ components 24.46*** 11.94* 19.24*** 13.98**
(0.001) (0.053) (0.001) (0.036)

Cases First Wave -0.774** -0.358 -0.287 -0.112
(0.029) (0.194) (0.255) (0.668)

Public Transport Trips Concentration 23.29*** 3.738 8.124 -0.0847
(0.000) (0.623) (0.320) (0.994)

Covid Incidence 1/09/20 - 3/11/20 2.176*** 1.878*** 1.038*** 0.788**
(0.000) (0.000) (0.000) (0.037)

Observations 104 104 104 104 104 104 104 104
R2 .618 .771 .828 .858 .732 .804 .786 .821
R2ðadjÞ .537 .697 .789 .810 .676 .741 .737 .761
Region FE Yes Yes Yes Yes Yes Yes Yes Yes
H_0 - = (1) - = (3) - = (5) - = (7)
F-Test - 7.5 *** - 2.3 *** - 4.101 *** - 2.2 ***
Critical value (1% sign.) 2.9 2.9 2.9 2.9

Note: Significance levels: * = 0 ¢ 10; ** = 0 ¢ 05; *** = 0 ¢ 01. All specifications use Conley Spatial Standard Errors with cutoff 150km. P-values of coefficients in parenthesis. P-values of coefficients in parenthesis. All regressions are con-
trolled for region fixed effects. Due to this, the b coefficient on each variable can be interpreted as its contribution in increasing (reducing) Covid-19 cases per capita beyond (below) the regional mean. Column 1 reports the regional
fixed effect model for the post-regional policy period. Column 2 shows that adding pre-determined covariates helps explaining the within-province variation in covid-19 incidence (F test statistics are reported at the end of the table).
This means that regional policies do not seem to have completely cancelled the effect of these covariates on covid-19 infection risk. Column 3 reports a FE model plus a control for pre-policy covid-19 incidence, that was shown in
Table 1 to be highly dependent on the covariates we employ. Column 4 shows that after adding this control, the additional effect of the province-level characteristics is small, but we still reject the F-test of non-joint significance. Col-
umns 5-8 perform the same estimations using data starting 21 days after the introduction of provincial policies (25/11/2020 - 23/12/2020).
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Table 3
Effect of Regional Policies by tier

1st Sept. - 3rd Nov. 25th Nov. - 23rd Dec.

(1) (2) (3) (4)
Yellow Tier Red Tier Yellow Tier Red Tier

Observations 104 104 104 104
R2 0 ¢773 0 ¢755 0 ¢ 833 0 ¢ 833
R2ðadjÞ 0 ¢676 0 ¢650 0 ¢ 762 0 ¢ 761
Region FE Yes Yes Yes Yes

Model ~bXij þ gYSYeli Xij
~bXij þ gRSRedi Xij

~bXij þ gY SYeli Xij
~bXij þ gRSRedi Xij

H0
~b þ gY ¼ 0 ~b þ gR ¼ 0 ~b þ gY ¼ 0 ~b þ gR ¼ 0

F-Test 2 ¢5 ** 6 ¢7 *** 3 ¢ 9 *** 2 ¢ 0 *
Critical value (1% sign.) 2 ¢9 2 ¢9 2 ¢ 9 2 ¢ 9

Note: Significance levels: * = 0 ¢10; ** = 0 ¢05; *** = 0 ¢ 01. All models are based on Equation 5.
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geographies and their relevance. Nevertheless, our analysis does not
conclude that NPIs should necessarily follow administrative borders,
such as province or city ones, but it simply suggests that policy inter-
ventions should be designed to address - when feasible - local sour-
ces of risk. This is particularly relevant because stronger NPIs are
likely to be associated with local or neighbouring areas’ economic
activity disruption;[27,28] therefore, policy-makers may be inter-
ested in better targeting areas at high contagion risk due to local fac-
tors, while, at the same time, in relaxing restrictions in areas with
lower infection risk.

As a practical example of how our work could be relevant for pol-
icy-makers, consider the case of the Italian national algorithm, which
determines the minimum tier of NPIs applied in each region accord-
ing to a data-driven approach. The variables entering in the algorithm
are regional averages of indicators such as Rt , new outbreaks, ICU
occupancy rate. This means that sub-regional areas at lower risk -
due to local factors - with respect to the regional mean7 cannot be
subject to milder restrictions, which could instead benefit the eco-
nomic outlook or social activities. This degree of flexibility could be
quite desirable.

The choice of what is the appropriate administrative unit for NPI
policies is particularly challenging, and even more so in a country
like Italy where political responsibility and public health policies are
shared between national, regional, and municipality authorities. This
issue did not make it straightforward to plan, implement and evalu-
ate local-level control policies. For example, see Odone et al. [29] as
an example of how local policies have had different epidemiological
outcomes during the early phases of the outbreak in Lombardia and
Veneto. While NPIs adopted in Italy were mainly at the national level
during the first wave (after 8th March 2020), policies were more tar-
geted at the regional level in the second wave during Fall 2020. Only
very recently, starting mid-February 2021, Italian policy-makers have
adopted a more localized targeting approach. These developments
seem to show the policy-makers’ intention to adopt a more localised
approach. By showing the relevance of local risk factors that were not
addressed by regional policies, our study provides a further justifica-
tion and possible guidance for implementing highly localised NPIs.

Finally, our results have relevant and general methodological
implications for researchers. Our results suggest that local factors are
relevant with both mild and harsher policies in place. As a conse-
quence, it is paramount that when attempting to identify the causal
effects of policies on infection risk, researchers employ statistical
methods that can explicitly control for local characteristics (such as
epidemiological models, randomised control trials, or propensity
score matching) or that can partial them out (such as interrupted
time series or regression discontinuity). If not, the estimated effects
7 See Bergamo during the second wave, which had an extremely low incidence, both
in absolute terms and relative to the regional mean. This could be due to a lower epide-
miological risk derived from the high incidence during the first wave (as reported in
Perico et al. [25]), a variable which also enters our estimates.[26]
of policies on infection risk will be contaminated by the existence of
local risk factors.

While our finding regarding the inability of regional policies to
target localised risk might have national relevance, extrapolating
them to different countries is not straightforward due to differences
in the definitions of administrative boundaries and levels, their public
health role and the different COVID-19 containment policies adopted.
While Italy represents the ideal candidate to study this phenomenon
because of its institutional setting, our study does not generalise the
findings, nor the methodology, to other countries. Nevertheless, it
seems reasonable to expect that local factors can contribute to the
spread of covid-19 in a no-policy setting.
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Appendix A. Data Description and sources

In this appendix we describe in more detail the variables and their
sources. Table 4 provides summary statistics. The first subset of
explanatory variables relates to demographic characteristics. They
include population density in each province, average age, the average
size of families, the share of students, the share of secondary school
acquisition among 19+ years old residents, the share of postgraduate
degree acquisition, the share of families with only one component,
and the share of families with five or more components. The Italian
national statistical agency ISTAT provides these measures either in
2019 or in 2011, the last year of the full Census. We also create a vari-
able that weighs the number of students with the percent of remote-
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teaching conducted in each province on 15th November 2020 [8]. The
second subset of explanatory variables relates to economic character-
istics. They include average income per capita (source: Eurostat,
2017), the share of employed workers in the population, share of the
agricultural sector, the share of the industrial sector, the share of the
service sector, and share of retail and accommodation activities
(source: all ISTAT 2019). We also create a variable that weighs the
share of retail and accommodation with the percent of businesses
that remained open in each province (Ministry of Health) during fall
2020. The third subset of explanatory variables relates to commuting
activities. We build two measures based on on the total commuting
by public transport with trips longer than 15 minutes for i) work, and
ii) study reasons. Using the detail of the hour at which commuters
leave home and by what transportation mean, we build a measure of
iii) concentration of long (>15 minutes) trips on public transport,
weighted by the covid concentration in the province of destination.
Finally, we build four measures of exposure through outgoing (OUT)
or incoming (IN) commuters to covid. The variables are calculates as

Xij ¼
P

ab 6¼ij Cabflow
D
ðijÞðabÞ

P
ab6¼ij flow

D
ðijÞðabÞ

ð6Þ

Where ab is any other province different from ij, Cab is the covid inci-
dence per capita in province ab and flowD

ðijÞðabÞ is the flow from either i
j to ab if D ¼ OUT or from ab to ij if D ¼ IN. In practice, these variables
Table 4
Data

Source Year

Demographic:
-Density ISTAT 2019
-Age ISTAT 2019
-Age index, percent ISTAT 2019
-Mortality rate ISTAT 2019
-Family size ISTAT 2011
-Students, percent pop ISTAT 2019
-Students in class, percent pop ISTAT 2019
-Share of secondary degree acquisition, percent 19+ ISTAT 2011
-Share of postgraduate degree acquisition, percent pop ISTAT 2011
-Share Families 1 component ISTAT 2011
-Share Families 5+ components ISTAT 2011
Economics:
-Income per capita, PPP, 10k euro EUROSTAT 2017
-Employment, percent pop ISTAT 2019
-Agriculture Share Population ISTAT 2019
-Industry Share Population ISTAT 2019
-Service Share Population ISTAT 2019
-Retail and Accommodation ISTAT 2019
-Retail and Accommodation, open ISTAT 2019
Commuting:
-Work with public transport ISTAT 2011
-Study with public transport ISTAT 2011
-Concentration ISTAT 2011
-Commuting covid IN ISTAT 2011
-Commuting covid OUT ISTAT 2011
-Commuting covid IN, public ISTAT 2011
-Commuting covid OUT, public ISTAT 2011
Health:
-Heart attack deaths per 1000 people ISTAT 2019
-Cancer deaths per 1000 people ISTAT 2018
-Increased life expectancy 2002-2017, years ISTAT 2019
-Asthma and COPD Il Sole 24 Ore 2019
-Diabetes ISTAT 2018
-Hypertension Il Sole 24 Ore 2019
-GPs per 1000 people ISTAT 2019
-Hospital beds per per 1000 people ISTAT 2017
Geograpichs:
-Temperature 2007-2016 ISTAT 2016
-First wave Covid incidence Min. Salute 2020

Note: The health data from il Sole 24 ore can be retrevied here: https://lab24.ilsole2
are the average of neighbours’ covid incidence, weighted by the com-
muting flows. These aim to capture whether commuting is a relevant
predictor of local covid incidence as a function of whether local com-
muters work in provinces with high incidence (OUT) or local workers
come from provinces with high incidence (IN). We build four varia-
bles of this kind: iv) commuting covid IN, v) commuting covid OUT,
vi) commuting covid IN (using public transport flows only), and vii)
commuting covid OUT (using public transport flows only). The origi-
nal commuting data are from ISTAT, 2011 Census; we use the official
cases in the whole second wave (1/09/2020-23/12/2020) to construct
covid exposure. The fourth subset of variables relates to the health
and public health system. They include mortality rate for cancer in the
period 2012-2016, the mortality rate for heart attack in the period
2012-2016, increased life expectancy in the period 2002-2017,
asthma incidence, measured as pro-capita consumption of medicine
for asthma and Chronic Obstructive Pulmonary Disease (COPD), dia-
betes incidence, measured as pro-capita consumption of medicine for
diabetes, hypertension incidence, measured as pro-capita consump-
tion of medicine for hypertension, the average number of general
practitioner doctor per capita, average number of hospital beds per
capita. These data are retrieved from the Health index survey from il
Sole 24 ore. The fifth subset of variables includes a geographical char-
acteristic: the temperature registered in the period 2007-2016.
(source: ISTAT). Finally, we include a measure of covid-19 incidence
pre-September 2020, which captures the first wave’s strength across
Average Std ¢Dev Min Max

266 ¢9 380 ¢0 36 (Nuoro) 2574 (Napoli)
45 ¢ 85 1 ¢62 41 ¢67 (Napoli) 49 ¢20 (Savona)
195 ¢4 ¢ 35 ¢ 2 121 ¢ 5 (Napoli) 275 ¢ 8 (Biella)
11 ¢ 3 1 ¢41 8 ¢ 4 (Bolzano) 14 ¢7 (Alessandria)
2 ¢29 0 ¢14 1 ¢ 28 (Trieste) 3 ¢45 (Napoli)
13 ¢ 5 1 ¢16 11 ¢2 (Oristano) 16 ¢5 (Napoli)
7 ¢6 3 ¢2 3 ¢ 8 (Napoli) 16 ¢5 (Ferrara)
39.6 3.9 32.5 (Oristano) 54.2 (Roma)
1 ¢71 0 ¢47 0 ¢ 59 (Trapani) 3 ¢32 (Roma)
31 ¢ 07 4 ¢19 20 ¢11 (Barletta) 43 ¢18 (Firenze)
5 ¢72 1 ¢95 2 ¢ 46 (Trieste) 12 ¢47 (Napoli)

39 ¢ 6 3 ¢93 32 ¢95 (Oristano) 54 ¢22 (Roma)
38 ¢ 9 6 ¢3 25 ¢7 (Crotone) 47 ¢7 (Bolzano)
1 ¢94 1 ¢47 0 ¢ 05 (Prato) 8 ¢75 (Ragusa)
10 ¢ 50 4 ¢50 3 ¢ 35 (Vibo V ¢ ) 19 ¢62 (Belluno)
26 ¢ 50 4 ¢41 17 ¢28 (Caltanissetta) 37 ¢84 (Roma)
8 ¢19 1 ¢49 5 ¢ 06 (Caserta) 13 ¢17 (Grosseto)
5 ¢30 4 ¢38 0 (Bergamo) 13 ¢17 (Grosseto)

1 ¢75 1 ¢46 0 ¢ 15 (Nuoro) 8 ¢69 (Milano)
3 ¢47 0 ¢78 1 ¢ 23 (Sud Sardegna) 5 ¢09 (Teramo)
0 ¢97 1 ¢22 0 ¢ 01 (Nuoro) 6 ¢06 (Monza)
0 ¢24 0 ¢20 0 ¢ 01 (Palermo) 1 ¢01 (Gorizia)
0 ¢24 0 ¢19 0 ¢ 01 (Trapani) 0 ¢85 (Vercelli)
0 ¢05 0 ¢06 0 ¢ 003 (Trapani) 0 ¢34 (Trieste)
0 ¢05 0 ¢04 0 ¢ 004 (Palermo) 0 ¢33 (Gorizia)

2 ¢20 0 ¢42 1 ¢ 28 (Sassari) 3 ¢45 (Ferrara)
15 ¢ 0 2 ¢3 10 ¢3 (Sassari) 20 ¢18 (Alessandria)
2 ¢63 0 ¢59 1 ¢ 20 (Fermo) 4 ¢60 (Gorizia)
6 ¢42 1 ¢09 4 ¢ 31 (Sud Sardegna) 9 ¢65 (Benevento)
41 ¢ 36 7 ¢22 23 ¢30 (Bolzano) 63 ¢27 (Agrigento)
145 ¢01 14 ¢ 52 94 ¢53 (Sud Sardegna) 186 ¢ 40 (Ferrara)
0 ¢93 0 ¢16 0 ¢ 52 (Nuoro) 1 ¢38 (Rovigo)
3 ¢41 0 ¢88 1 ¢ 55 (Sud Sardegna) 6 ¢52 (Isernia)

15 ¢ 35 1 ¢76 11 ¢43 (Belluno) 19 ¢57 (Messina)
24 ¢ 46 23 ¢ 31 1 ¢ 80 (Sud Sardegna) 115 ¢ 4 (Cremona)

4ore.com/indice-della-salute/indexT.php

https://lab24.ilsole24ore.com/indice-della-salute/indexT.php
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provinces. Hence, the dataset of explanatory variables is composed of
35 variable.

In addition to these, we collect data on the covid-19 incidence
between 1/09/2020-3/11/2020, 4/11/2020-23/12/2020, 25/11/2020-
23/12/2020, 1/09/2020-26/01/2021, and 26/02/2020-26/01/2020.
We do not include these variables in the LASSO selection procedure,
as we use them as dependent variables.
Appendix B. Pre- and Post-Policy incidence

B1. Pre-Policy incidence
Fig. 3. Weekly Cases per 100k people: Pre-Policy, 1/09/2020 - 3/11/2020
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B2. Post-Policy incidence
e: Post-Policy, 25/11/2020 - 23/12/2020
Appendix C. Robustness tables

C1. OLS estimates - Red and Yellow Tiers

Fig. 4. Weekly Cases per 100k peopl
Table 5
Yellow and Red Tiers OLS Results

1st Sept. - 3rd Nov. 25th Nov. - 23rd Dec.

(1) (2) (3) (4)
Yellow Tier Red Tier Yellow Tier Red Tier

Temperature -2.122 (0.422) -5.438** (0.015) -5.021 (0.483) -24.31*** (0.000)
Income per Capita 2.675*** (0.004) 1.852* (0.066) -2.041 (0.407) 4.130 (0.115)
Agriculture Share Population 0.0956 (0.671) -0.423** (0.037) -0.00667 (0.991) -0.737 (0.161)
Services Share Population 0.433*** (0.008) 0.229** (0.038) 0.679 (0.120) 0.516* (0.073)
Share families 5+ components 5.983* (0.083) 7.699*** (0.004) 15.89* (0.089) 19.61*** (0.004)
Cases First Wave -0.406*** (0.002) -0.0683 (0.615) -0.804** (0.022) -0.0195 (0.956)
Public Transport Trips Concentration 9.804*** (0.002) 9.746* (0.069) 3.772 (0.652) 27.15* (0.053)
Share Yellow Tier � Temperature -2.690 (0.570) -36.58*** (0.006)
Share Yellow Tier � Income per Capita -2.058 (0.300) 9.936* (0.067)
Share Yellow Tier � Agriculture Share Population -0.903** (0.027) -0.334 (0.758)
Share Yellow Tier � Services Share Population -0.326 (0.185) -0.172 (0.795)
Share Yellow Tier � Share families 5+ components 1.784 (0.757) 8.391 (0.592)
Share Yellow Tier � Cases First Wave 0.521** (0.033) 0.862 (0.189)
Share Yellow Tier � Public Transport Trips Concentration -3.307 (0.702) 34.29 (0.147)
Share Red Tier � Temperature 9.394 (0.105) 33.05** (0.030)
Share Red Tier � Income per Capita 0.0316 (0.984) -8.684** (0.039)
Share Red Tier � Agriculture Share Population 0.847* (0.066) 2.153* (0.074)
Share Red Tier � Services Share Population 0.150 (0.608) 0.153 (0.841)
Share Red Tier � Share families 5+ components -5.801 (0.438) -11.24 (0.565)
Share Red Tier � Cases First Wave -0.413** (0.043) -1.170** (0.029)
Share Red Tier � Public Transport Trips Concentration 1.063 (0.871) -23.69 (0.168)
Observations 104 104 104 104
R2 .773 .755 .833 .833
R2ðadjÞ .676 .65 .762 .761
Region FE Yes Yes Yes Yes
H_0 =(FE model) See note =(FE model) See note
F-Test 2.5 ** 6.7 *** 3.9 *** 2.0 *
Critical value (1% sign.) 2.9 2.9 2.9 2.9

Note: Significance levels: * = 0.10; ** = 0.05; *** = 0.01.. In the interaction terms, ”Y” stand for ”Yellow Tier” and ”R” for ”Red Tier”. Number is parenthesis report the p-
value of the t-test. All models are based on Equation 5. Specifications (1) and (3) test the model ~bXij þ gYSYellowi Xij with null hypothesis H0 : ~b þ gY ¼ 0. Specifications
(2) and (4) test the model ~bXij þ gRSRedi Xij against the null hypothesis H0 : ~b þ gR ¼ 0.
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C2. Robustness Checks
Table 6
Robustness checks

25th Nov. - 23rd Dec. 4th Nov. - 26th Jan. 26th Feb. 2020 - 26th Jan. 2021

(1) (2) (3) (4)
No Sardegna No SAR, CAM, SIC Extended All waves

Temperature -17.88** -20.11** -10.34** -1.261**
(0.010) (0.050) (0.011) (0.010)

Income per Capita 1.129 1.017 2.077*** 0.680***
(0.510) (0.551) (0.000) (0.000)

Agriculture Share Population -0.566 -0.339 -0.473* -0.0638
(0.220) (0.592) (0.062) (0.244)

Services Share Population 0.506* 0.550* 0.372* 0.0715***
(0.073) (0.066) (0.053) (0.007)

Share families 5+ components 17.61*** 22.39*** 13.71*** 1.827***
(0.002) (0.001) (0.001) (0.002)

Cases First Wave -0.273 -0.288 -0.402*** 0.200***
(0.288) (0.309) (0.007) (0.000)

Public Transport Trips Concentration 9.004 7.785 11.19*** 2.719***
(0.302) (0.349) (0.001) (0.000)

Observations 99 85 104 104
R2 .807 .815 .784 .914
R2ðadjÞ .744 .75 .715 .886
Region FE Yes Yes Yes Yes
H_0 =(FE model) =(FE model) =(FE model) =(FE model)
F-Test 3.5 3.2 *** 7.1*** 18.3 ***
Critical value (1% sign.) 2.9 2.9 2.9 2.9

Note: Significance levels: * = 0.10; ** = 0.05; *** = 0.01. All specifications use Conley Spatial Standard Errors with a cutoff of 150km. P-val-
ues of coefficients in parenthesis. . All regressions are controlled for region fixed effects. Therefore, the b coefficient on each variable can
be interpreted as contributing to increasing (decreasing) Covid-19 cases per capita beyond (below) the regional mean. Specification (1)
removers Sardegna due to its isolated status. Specification (2) removes also Campania and Sicilia, as they introduced some limited city-
wide red tiers before the regional policies. Specification (3) extends the sample to 26th January 2021. Specification (4) considers the whole
pandemic period.

Table 7
Random Generated Samples and Statistical significance, with and with-
out refinement. Share of simulations

p-value(Fstatz) <p-value(Fstat Data)

Without refinement With refinement
Random iid data 0.1% 0.1%
Random correlated data 0.0% 0.0%

Note: this table displays the share of simulations (out of 1000), in per-
cent, for which the p-value of the F-statistics (null hypothesis: H0 : ~b ¼ 0,
in model 2) is less than the one found in the data. The first row displays
the results when the regressors are assumed to be iid. The second row
displays the results when the regressors are assumed to have the same
covariance matrix as the regressors in the data. The first column presents
the results without the refinement, while the second column presents
the results with the refinement.
Appendix D. Robust Inference and Model Selection

The reader may be worried that the model selection through
LASSO may change the inference approach that one should take in
assessing the significance of the results. That is: can we really reject
the null hypothesis that there are local-level effects in the pre-policy
period, since we have selected the regressors in order to maximize
R2 adjusted?

The worry here is that under small sample, the pre-selection over
a large number of regressors may lead to overfitting and the selection
of covariates uncorrelated to the dependent variable in the true data
generating process, but correlated in the data due to small sample
bias.

In this section, we show that simulating synthetic data allows us
to produce an empirical distribution of post-selection OLS F-statistics
under the null hypothesis. Using this distribution, we can build confi-
dence intervals and rejection regions that account for the model
selection algorithm. In particular, we generate 1000 draws of sets of
38 normally iid distributed regressors (random iid data, henceforth).
We subtract regionals means in order to be centered within region.
Then, we apply to each of them our model selection procedure and
store the F-test p-value of the subsequent OLS regression (we take as
reference specification 4, Table 1), assigning a value of one when no
variable is selected (� 15% of the cases). Then, we check the 5th per-
centile of the distribution of p-values so obtained, which represents
the critical value representing the OLS F-test p-value such that less
than 5% of draws under the null hypothesis of no correlation between
covariates and dependent variable sit at lower p-values. Finally, we
compare this critical value with the p-value obtained in the real data.
We repeat this exercise by drawing 1000 sets of 38 jointly normally
distributed regressors, with covariance matrix replicating the one of
our true dataset (random correlated data, henceforth). This allows to
account for the preference of LASSO of selecting predictors with low
correlation, selecting less variables than in the case of uncorrelated
sets of regressors.
Our results are confirmed by this empirical, stricter rejection cri-

teria, built to account jointly for the selection and post-selection
steps. Table 7 shows how only 0.1% of the simulations in the iid data
and 0% of the simulations in the correlated data have an F-test pvalue
smaller than the one built using the real data. This is true whether
we apply (right column) or do not apply (left column) the refinement
process to maximize R2-adjusted after the LASSO. This means that
the post-selection OLS p-value of the true data is much smaller than
the one of most random data, with 99.9% of all simulations achieving
a larger p-value. This means that our results are indeed significant at
the 5% level and thus unlikely to be produced by covariates uncorre-
lated to the dependent variable.

In Table 8 we show similar results for the R2 adjusted: it is highly
unlikely for randomly generated covariates to generate an amount of
R2-adjusted similar to the one of the true data.



Table 8
Random Generated Samples and Explanatory power, with and without refinement: Additional R2 Adjusted

Without Refinement With Refinement
All Samples Significant Samples All Samples Significant Samples

Random iid data
Average R2;z 0.09 0.20 0.10 0.22
95% conf Interval [ 0.0 - 0.21] [0.16-0.25] [0.0-0.22] [0.18-0.26]
Frequency: R2;z >R2;data 0.3 % 6.0% 0.9% 14%

Random correlated data
Average R2;z 0.07 0.18 0.08 0.21
95% conf Interval [ 0.0 - 0.18] [0.13-0.22] [0.0-0.21] [0.17-0.26]
Frequency: R2;z >R2;data 0.0% 0.0% 0.5% 6.0%

Note: this table displays the additional Adjusted R2 of model 2 with respect to model 1 in the 1000 simulations. This statistic cap-
tures the additional explanatory power of the selected regressors in addition to the regional fixed effects. The top-panel displays
the results when the regressors are assumed to be iid. The second panel displays the results when the regressors are assumed to
have the same covariance matrix as the regressors in the data. The left panel presents the results without the refinement, while the
right panel presents the results with the refinement. The first column presents the statistics for all the simulations (1000), while
the second column presents the statistics for the 5% simulations with the lowest p-value of the F-statistics. The first line displays
the average additional Adjusted R2, across the simulations. The second line displays its 95 percent confidence interval. The third
line displays the share of simulations, in percent, for which the Adjusted R2 with the synthetic data is larger than the one found in
the data (equal to 0.2449 without the refinement and equal to 0.2524 with the refinement).
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Appendix E. Post-LASSO Refinement Procedure

In this section, we discuss the role of the refinement to the LASSO
selection discussed in the main text. The refinement works as fol-
lows: take all covariates selected by the LASSO procedure. Then, start
iterating over the variables with the lowest p-value, perform an OLS
regression and: (1) keep the variable if R2-adjusted does not increase,
or (2) discard the variables if R2-adjusted increases. Under option (2),
repeat the procedure until you find that R2-adjusted does not
increase any further.

We have discussed in Appendix Appendix D how this has little
impact on the inference procedure and on the explained R2 adjusted
of the selected model. In Table 9 we present further evidence of how
the variable selection in random data and in a bootstrap exercise is
affected by this refinement.8 The refinement reduces the number of
selected variables by 1.3 out of an average of 9.7 (when we use 38
random, uncorrelated regressors to simulate our procedure under
the null hypothesis), and shrinks by 6 the upper bound of the 95%
confidence interval of the distribution. When we simulate the proce-
dure using correlated regressors with the same covariance matrix as
the true data, the refinement shrinks the number of selected varia-
bles by 2 out of 8.2, and shrinks the upper bound of the confidence
interval by 7 out of 29. Finally, when we bootstrap the error terms of
Table 9
Regressor Selection: with and without refinement

Without Refinement With Refinement

Random iid data
Frequency 0 variables selected 13.9% 13.9%
Average Selected 9.7 8.4
95% conf Interval [ 0 - 27] [0-21]

Random correlated data
Frequency 0 variables selected 15.2% 15.2%
Average Selected 8.2 6.2
95% conf Interval [ 0 - 29] [0-22]

Bootstrap
Frequency 0 variables selected 0.0% 0.0%
Average Selected 21.4 16.3
95% conf Interval [ 11 - 33] [9-25]

Note: this table displays the share of simulations in which the selection procedure
select zero regressors in percent, (first line); the average number of regressors
selected (second line), and its 95% confidence interval (third line) obtained by using
the Lasso procedure without (first column) and with (second column) our proposed
refinement. The top and central panels display the results for the randomly generated
data (iid and correlated, respectively). The bottom panel displays the results for the
bootstrapping exercise.
the dependent variable, we find that the refinement shrinks the aver-
age selected covariates (from the true data) by 5.1 variables.

Supplementary material

Supplementary material associated with this article can be found,
in the online version, at 10.1016/j.lanepe.2021.100169
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