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ABSTRACT

Objective: We developed and evaluated Drug-Drug Interaction Wide Association Study (DDIWAS). This novel method

detects potential drug-drug interactions (DDIs) by leveraging data from the electronic health record (EHR) allergy list.

Materials and Methods: To identify potential DDIs, DDIWAS scans for drug pairs that are frequently docu-

mented together on the allergy list. Using deidentified medical records, we tested 616 drugs for potential DDIs

with simvastatin (a common lipid-lowering drug) and amlodipine (a common blood-pressure lowering drug).

We evaluated the performance to rediscover known DDIs using existing knowledge bases and domain expert

review. To validate potential novel DDIs, we manually reviewed patient charts and searched the literature.

Results: DDIWAS replicated 34 known DDIs. The positive predictive value to detect known DDIs was 0.85 and

0.86 for simvastatin and amlodipine, respectively. DDIWAS also discovered potential novel interactions be-

tween simvastatin-hydrochlorothiazide, amlodipine-omeprazole, and amlodipine-valacyclovir. A software pack-

age to conduct DDIWAS is publicly available.

Conclusions: In this proof-of-concept study, we demonstrate the value of incorporating information mined from

existing allergy lists to detect DDIs in a real-world clinical setting. Since allergy lists are routinely collected in

EHRs, DDIWAS has the potential to detect and validate DDI signals across institutions.
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INTRODUCTION

Patients are taking more prescription drugs than ever to treat their

chronic health conditions.1 This rise in drug use increases their risk

of developing drug-drug interactions (DDIs).2 Patients experience

DDIs when they concomitantly use an object drug (affected by the

interaction) and a precipitant drug (causes the interaction). DDIs are

responsible for > 20% of adverse drug reactions (ADRs)3 and for

half of withdrawn drugs from the US market.4

DDIs can be recognized during drug development and clinical

trials, but a lack of consensus for defining clinically actionable DDIs

remains.5–8 Before a new drug is approved, potentially harmful

DDIs are assessed using in vitro and in vivo methods. But it is not

feasible to test for all the possible interactions between the new drug

and those prescribed to patients.9 To identify DDIs missed during

drug development, healthcare providers can voluntarily report DDIs

to postmarket surveillance programs.10,11 Yet, underreporting of

DDI events can occur, as DDIs are hard to recognize and reporting

events may not be the highest priority for healthcare providers. To

complement postmarket surveillance programs, researchers have de-

veloped methods to mine electronic health record (EHR) data for

DDIs.12,13 Implementing these methods across EHRs, however,

remains challenging, because they are either purpose-built14 or de-

pend upon complex natural language processing (NLP).12

We developed Drug-Drug Interaction Wide Association Study

(DDIWAS), a novel framework to identify potentially harmful DDIs

by leveraging the EHR allergy list (Figure 1A). The allergy list is

used by healthcare providers to document immune-mediated allergic

drug reactions (eg, penicillin anaphylaxis15) and drug intolerances

(eg, statin myopathy16) (Figure 1B). Allergy list entries also routinely

contain only 2 data elements, the allergen (eg, culprit drug’s name)

and reaction (eg, “muscle cramp”).17 This standardized pattern

shared among EHRs enables high-throughput DDI detection with-

out sophisticated NLP. In this study, we assumed that a drug’s ap-

pearance on the allergy list indicated that a drug ADR occurred.

With that assumption, we hypothesized that adversely interacting

drugs would frequently be documented together on the allergy list.

We only used allergy list data because EHR fragmentation can make

it difficult to obtain accurate medication lists.18

To start the DDIWAS pipeline, we first identified a cohort of ob-

ject drug-exposed patients in a deidentified EHR database19

(Figure 1A; Supplementary Figure 1). We then divided the patients

into cases (þobject drug ADR, ie, object drug on allergy list) and

controls (�object drug ADR, ie, object drug not on allergy list). We

searched for potential precipitant drugs that were disproportionately

codocumented with the object drug on patients’ allergy lists. To

measure DDIWAS performance, we calculated a positive predictive

value (PPV) using a gold standard reference comprised of MEDica-

tion Indication resource (MEDI),20 DrugBank,21 and domain expert

review (Supplementary Figure 2). We validated DDIWAS by apply-

ing it on 2 common drugs, simvastatin and amlodipine.

MATERIALS AND METHODS

Defining a drug-drug interaction (DDI)
In this study, a patient has experienced a DDI when the pharmaco-

logic effects of 2 drugs overlap to produce an adverse outcome.

When the object and precipitant drug interact, the patient experien-

ces an ADR. The patient reports the ADR to their healthcare pro-

vider, who documents the adverse reaction in the patient’s EHR by

adding the object drug to the patient’s allergy list. The provider does

so because they believe that the ADR was most likely related to the

patient’s exposure to the object drug.22 If the provider believes that

the ADR was due to a DDI between the object and precipitant drug,

then they may add both drugs to the patient’s allergy list.

As a concrete example of how DDIWAS determines whether a

potential DDI occurred using allergy list data, consider a DDI be-

tween simvastatin (the object drug) and gemfibrozil (the precipitant

drug) (Figure 1B). A provider prescribes gemfibrozil to a patient al-

ready on simvastatin. At the subsequent visit, the provider learns

that after starting gemfibrozil, the patient began experiencing mus-

cle aches. Since muscle ache is a common ADR associated with sim-

vastatin exposure,23 the provider believes that a DDI between

simvastatin and gemfibrozil occurred and adds both drugs to the

patient’s allergy list.

Study design
The study was reviewed and approved by the IRB at Vanderbilt Uni-

versity Medical Center (VUMC) (#180456). We used deidentified

EHR data from VUMC. The EHR database maintains longitudinal

clinical data for over 3.2 million unique patients from inpatient and

outpatient encounters.19 EHR data commonly includes diagnosis

and procedure codes, medications, laboratory test results, unstruc-

tured clinical text, and demographics. We used EHR data from out-

patient visits from 1996–2020 and limited our analyses to adult

patients between the ages of 18 and 90 years.

To demonstrate the feasibility of DDIWAS, we used it to identify

DDIs for simvastatin and amlodipine, drugs that are commonly used

with known precipitant drugs.24 Simvastatin is 1 of the first-line

therapies for hyperlipidemia and has a relatively increased frequency

of myopathy at high doses.25 Amlodipine is commonly used to treat

hypertension and is known to inhibit CYP3A4,23 a key enzyme in-

volved in drug metabolism.

To identify drugs in the EHR, we used a standard terminology

that formalizes all prescription drugs currently marketed in the US,

RxNorm.26 We used generic and brand names to first map drugs to

RxNorm Concept Unique Identifiers (RxCUIs) and then to their re-

spective drug ingredients, based on their relationships in RxNorm.

For example, “Simvastatin” (RxCUI 36567) and “Zocor” (RxCUI

196503) were both mapped to the drug ingredient “simvastatin”

(RxCUI 36567).

For each object drug, we started with a cohort of patients who

had �1 exposure(s) to the object drug (Figure 1A; Supplementary

Figure 1A). In this cohort, we defined cases as patients who had the

object drug documented on their allergy lists (þobject drug-ADR),

and defined controls as patients who did not have the object drug

listed on their allergy lists (�object drug-ADR).

For both cases and controls, we set the date on which object

drug exposure occurred as the start of the observation period (T0)

(Supplementary Figure 1B). For cases, we set the date on which the

object drug was first documented on their allergy list as the end of

the observation period (Te). We limited the duration of the observa-

tion period to 12 months, because we wanted to capture ADRs from

both short and long object drug exposures.27 If the observation pe-

riod (Te–T0) was longer than 12 months, then we limited our analy-

sis to the 12-month period prior to Te. For controls, we set Te as the

date on which object drug exposure was last documented in their

EHRs. If the observation period was longer than 12 months, we lim-

ited our analysis to the 12-month period after T0.

We obtained potential precipitant drug-ADRs by extracting all

drugs documented on the patient allergy lists during the observation
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period (Supplementary Figure 1C). We then mapped the potential

precipitant drugs to their RxCUI ingredients (Supplementary Figure

1D). To obtain only ADRs potentially due to DDIs between object

and potential precipitant drugs, we removed drugs that were present

on patient allergy lists prior to the start of the observation period.

To prevent false-positive associations due to the absence of allergy

list entries, we excluded controls who did not have any allergy list

entries during the observation period (Supplementary Figure 1E).

Data preprocessing and association analysis
We created a patient feature matrix with each row representing 1

patient and with columns representing features (Supplementary Fig-

ure 1F). Features included covariates and potential precipitant drug-

ADRs. The covariates were age, sex, race, duration of observation

period, and number of unique drug ingredient exposures during the

observation period. We encoded potential precipitant drug-ADRs as

dichotomous variables. We then only tested potential precipitant

drugs for which the 2x2 contingency table had �1 patient in each

cell (Supplementary Figure 1G) because our goal was to identify

drugs that increased the likelihood of object drug-ADRs.

To identify potential precipitant drugs that increased the risk of

object drug-ADRs, we used the patient feature matrix to perform a

systematic association study with logistic regression (Supplementary

Figure 1H). For each patient, the dependent variable indicated

whether the patient was a case (þobject drug-ADR; object drug on

allergy list) or control (�object drug-ADR; object drug not on allergy

list). For each potential precipitant drug tested, the dichotomous in-

dependent variable indicated whether the drug was listed on each

patient’s allergy list. The logistic regression analysis was adjusted for

the covariates described above. The outputs of the logistic regression

analysis were association odds ratios (ORs) and P values. Due to the

limitations of logistic regression with rare events,28 we used Firth re-

gression for potential precipitant drugs that had <5 patients in each

cell of the 2x2 contingency table. To account for multiple testing, we

applied a Bonferroni correction with type I error rate set to 0.05. We

considered a potential precipitant drug to have increased the risk of

object drug-ADRs if the following conditions were met: (1) regres-

sion OR > 1 and (2) regression Bonferroni-corrected P value < .05

(Supplementary Figure 2). Drugs that met these conditions indicated

that patients with the potential precipitant drug listed on their allergy

lists (þpotential precipitant drug-ADR) were more likely to have the

object drug listed as well (þobject drug-ADR).

Labeling of DDIWAS output
We labeled the potential precipitant drugs meeting the 2 conditions

to help us interpret DDIWAS results and to measure the method’s

A

B

Figure 1. Overview of data analysis and example of DDIs modeled by DDIWAS. (A) From a cohort of object drug-exposed patients, cases were those who had the

object drug listed in their EHR allergy lists (þobject drug-ADR), and controls were those who did not have the object drug documented on their allergy lists

(�object drug-ADR). In this study, DDIWAS was applied on 2 object drugs, simvastatin and amlodipine. To search for potential precipitant drugs that increased

the risk of object drug-ADRs, a systematic association test was performed using logistic regression. Potential precipitant drugs of interest were those that were

positively associated with object-drug ADRs (logistic regression Bonferroni P value < .05 and OR > 1). Using MEDI and DrugBank, the relationship between the

object drug and potential precipitant drugs were determined. All object-potential precipitant drug relationships were manually reviewed by a domain expert (SN,

a pharmacist). PPV was then used to evaluate DDIWAS’ ability to replicate known DDIs. See also Supplementary Figure 1. (B) In this example of a DDI modeled

by DDIWAS, the object drug is simvastatin, and the potential precipitant drug is gemfibrozil. The patient develops an ADR after concurrently using simvastatin

and gemfibrozil. At the next visit, the patient reports their ADR to their provider who adds both drugs to the patient’s allergy list.

Abbreviations: ADR, adverse drug reaction; DDI, drug-drug interaction; DDIWAS, Drug-Drug Interaction Wide Association Study; EHR, electronic health record;

MEDI, MEDication Indication resource; OR, odds ratio; PPV, positive predictive value.
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ability to replicate known DDIs. We used 3 labels: “Exclude,”

“True-positive,” and “False-positive” (Supplementary Figure 2). To

automatically label these drugs, we leveraged MEDI20 and Drug-

Bank21 resources. First, using MEDI and manual engineering, we

tagged drugs as “Exclude” if they shared indications with the object

drug. Indications were represented by the International Classifica-

tion of Diseases Ninth Revision, Clinical Modification (ICD-9-CM)

code(s)29 most specific for the object drug. As an example, for the

simvastatin experiment, we used the hyperlipidemia diagnosis codes,

ICD-9-CM 272.4 “Other and unspecified hyperlipidemia” and ICD-

9-CM 272.2 “Mixed hyperlipidemia.”

Our gold standard reference for “True-positive” findings was

DrugBank21 followed by domain expert review. We used DrugBank

to identify potential precipitant drugs that were known to interact

adversely with the object drug of interest. We labeled potential pre-

cipitant drugs as “True-positive” if the DrugBank description indi-

cated that for either the object or potential precipitant drug, drug

metabolism decreased, serum concentration increased, drug absorp-

tion increased, drug elimination decreased, or concurrent use in-

creased the risk of ADRs (eg, rhabdomyolysis with simvastatin use).

We then tagged the remaining unlabeled potential precipitant drugs

as “False-positive.” For final classification of object and potential

precipitant drug pairs, all labels were manually reviewed by a do-

main expert (SN, a pharmacist).

Measuring DDIWAS performance to replicate known

DDIs
To quantify the performance of DDIWAS to replicate known DDIs,

we used PPV (Supplementary Figure 2). PPV was calculated by di-

viding the number of “True-positive” drugs by the sum of “True-

positive” and “False-positive” drugs. PPV represented the fraction

of remaining drugs with previously reported DDIs with the object

drug of interest.

Adjusting for potential confounders and sensitivity

analysis
To identify associations that may have been confounded by indica-

tion(s) for each significantly associated potential precipitant drug,

we independently adjusted the regression for indications represented

by phecodes.30 To select indications for each potential precipitant

drug, we used the 2 ICD-9-CM codes with the highest prevalence

from MEDI.20 We mapped these ICD-9-CM codes to their respec-

tive phecodes using the ICD-9-CM to phecode v1.2 map. We then

rolled up the mapped phecodes to their parent phecodes. Using the

indication for digoxin as an example, ICD-9-CM 427.31 “Atrial

fibrillation”! phecode 427.21 “Atrial fibrillation”! phecode 427

“Cardiac dysrhythmias.” To obtain phecode indications for ICD-

10-CM codes in our study cohort, we used the ICD-10-CM to phe-

code v1.2 (beta) map.31

We also conducted a sensitivity analysis by calculating PPVs and

true-positive counts using minimum patient count thresholds of 1, 5,

10, and 20 patients in each cell of the 2x2 contingency table (Supple-

mentary Figure 3).

Data visualization
To present the results from our primary analysis, we used forest

plots of regression OR (95% confidence interval [95% CI]) for all

potential precipitant drugs that passed Bonferroni correction and

OR > 1. For each drug, we show the OR (95% CI) from the logistic

regression adjusted for baseline characteristics and a second regres-

sion with additional adjustment for each drug’s main indication(s)

(Figures 2A and 2B).

Validation studies for potentially novel DDIs
We defined “False-positive” drugs as potentially novel DDIs (Sup-

plementary Figure 2). To validate these potentially novel DDIs, we

reviewed the clinical notes for 10 randomly selected patients who

DDIWAS labeled as (þobject drug-ADR, þpotential precipitant

drug-ADR). If there were less than 10 (þobject drug-ADR,

þpotential precipitant drug-ADR) patients, we reviewed the clinical

notes for all available patients. For each DDIWAS-labeled þdrug-

ADR patient, we reviewed their clinical notes to verify that the drug

was intentionally added to their allergy lists. Each reviewed

DDIWAS-labeled þdrug-ADR patient was labeled “True-positive

þdrug-ADR” or “False-positive þdrug-ADR.” A “True-positive

þdrug-ADR” patient was not exposed to the drug after the end of

the observation period and/or for whom a provider mentioned the

drug-ADR in additional EHR sections like “History of Present Ill-

ness” and “Assessment & Plan.” A “False-positive þdrug-ADR” pa-

tient did not meet either criteria.

After reviewing patient charts, we were concerned about the

remaining drugs that met our criteria for potentially novel DDIs, but

whose associations with object drug-ADRs did not likely represent

novel DDIs. Instead, the associations were more likely to be due to

interactions between the object drug and other drugs; the other

drugs were either commonly coprescribed or combined with the

drugs of concern. To address this problem, we adjusted the regres-

sions for additional potential precipitant drug-ADRs. For example,

in the primary simvastatin DDIWAS analysis, the regression for tri-

amterene was:

pðþsimvastatin� ADRj þ triamterene�ADRÞ � logitðb0 þ b1triamterene� ADR

þ½baseline covariates�Þ
(1)

We then adjusted the regression for hydrochlorothiazide

(HCTZ)-ADRs because HCTZ is frequently combined with triam-

terene:

pðþsimvastatin� ADRj þ triamterene�ADRÞ � logitðb0 þ b1triamterene� ADR

þb2HCTZ� ADRþ ½baseline covariates�Þ
(2)

RESULTS

Simvastatin DDIWAS
The simvastatin experiment (Table 1) had 85 873 controls

(þsimvastatin-exposed, -simvastatin-ADR) and 2814 cases

(þsimvastatin-exposed, þsimvastatin-ADR). Of the 282 potential

precipitant drugs tested (Supplementary Figure 4A; Supplementary

Table 1), 13 increased the risk of simvastatin-ADRs (passing Bonfer-

roni correction [0.05/282¼1.77x10�4] with OR > 1; Figure 2A).

To control for potential confounding by drug indications, we ad-

justed the regressions for potential precipitant drug indications and

found that all 13 associations remained significant (Supplementary

Table 2). Eleven of the 13 drugs were known to interact with simva-

statin, including fenofibrate, gemfibrozil, niacin, and amlodipine. In

DrugBank, the remaining 2 drugs not known to interact with simva-

statin were HCTZ and triamterene.

To examine the potential novel DDIs between simvastatin-

HCTZ and simvastatin-triamterene, we manually reviewed clinical

1424 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 7



Figure 2. Forest plot of potential precipitant drugs associated with object drug ADRs and DDIWAS performance. (A, B) Forest plots summarizing the potential precipitant

drugs that were significantly associated (logistic regression Bonferroni P value < .05 and OR > 1) with (A) simvastatin- and (B) amlodipine-ADRs. On the horizontal axis,

potential precipitant drugs are sorted from smallest to largest ORs. On the vertical axis, association ORs (95% CI) are plotted on a logarithmic scale. Red triangles with

dashed lines represent values from logistic regressions adjusted for age, sex, race, length of observation period, and number of unique drug exposures for each patient.

Blue circles with solid lines indicate values from logistic regressions with additional adjustment for potential precipitant drug indications. These values were from analy-

ses with a minimum patient count threshold of 1. Minimum patient count threshold refers to the number of patients required in each cell of the 2x2 contingency table

(Supplementary Figure 3). The Bonferroni correction was 1.77x10�4 (0.05/282) for simvastatin and 1.49 x 10�4 (0.05/335) for amlodipine. See Supplementary Table 2 for

corresponding numbers. (C, D) PPV (left vertical axis) and true-positive count (right vertical axis) for (C) simvastatin and (D) amlodipine DDIWAS at minimum patient

count thresholds of 1, 5, 10, and 20. True-positive count refers to the number of potential precipitant drugs (logistic regression Bonferroni P value < .05 and OR > 1) that

were known to interact with the object drug. See Supplementary Table 3 for corresponding numbers.

Abbreviations: ADR, adverse drug reaction; DDIWAS, Drug-Drug Interaction Wide Association Study; HCTZ, hydrochlorothiazide; PPV, positive predictive value;

OR, odds ratio; 95% CI: 95% confidence interval.
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notes to verify that the drugs were intentionally listed on patient al-

lergy lists (Table 2). The reviewed notes were from 2 types of

patients: those who potentially experienced simvastatin-HCTZ

DDIs, ie, DDIWAS-labeled (þsimvastatin-ADR, þHCTZ-ADR)

and those who potentially experienced simvastatin-triamterene

DDIs, ie, DDIWAS-labeled (þsimvastatin-ADR, þtriamterene-

ADR). All reviewed patients had the respective drugs intentionally

listed on their allergy lists. We hypothesized that the triamterene as-

sociation was confounded by HCTZ-ADRs, because all reviewed

DDIWAS-labeled (þsimvastatin-ADR, þtriamterene-ADR) patients

were exposed via a HCTZ/triamterene combination drug. Further,

there were DDIWAS-labeled (þsimvastatin-ADR, þHCTZ-ADR)

patients who did not have triamterene on their allergy lists. To test

our hypothesis, we adjusted the triamterene-ADR regression with

HCTZ-ADRs and found that triamterene’s association was no lon-

ger significant, while HCTZ’s association remained significant (Sup-

plementary Table 4).

Amlodipine DDIWAS
The amlodipine experiment (Table 3) had 83 732 controls

(þamlodipine-exposed, -amlodipine-ADR) and 2512 cases

(þamlodipine-exposed, þamlodipine-ADR). Of the 335 potential

precipitant drugs tested (Supplementary Figure 4B; Supplementary

Table 1), 28 increased the risk of amlodipine-ADRs (passing Bonfer-

roni correction [0.05/335¼1.49x10�4] with OR > 1; Figure 2B).

All associations remained significant after adjusting the regressions

for potential precipitant drug indications (Supplementary Table 2).

Twenty-four of the 28 drugs were known to interact with amlodi-

pine, including prazosin, diltiazem, and verapamil. In DrugBank,

there were 4 drugs not known to interact with amlodipine: levothyr-

oxine, ezetimibe, omeprazole, and valacyclovir.

To examine the potential novel DDIs between amlodipine and the 4

drugs, we manually reviewed clinical notes (Table 2). First, for levothyr-

oxine, of the 5 available DDIWAS-labeled (þamlodipine-ADR,

þlevothyroxine-ADR) patients, 2 had both drugs listed on their allergy

lists, 1 had only amlodipine listed, and 2 had neither drug listed. Of note,

the 2 false-positive DDIWAS-labeled (þamlodipine-ADR,

þlevothyroxine-ADR) patients were taking both drugs during the obser-

vation period. Second, for ezetimibe, 90% (9/10) of DDIWAS-labeled

(þamlodipine-ADR, þezetimibe-ADR) patients had both drugs on their

allergy lists. The single false-positive DDIWAS-labeled (þamlodipine-

ADR, þezetimibe-ADR) patient did not have either drug listed on their

allergy list. Since ezetimibe is commonly used with statins to lower choles-

terol, we then adjusted the ezetimibe regression for ADRs to common sta-

tins, simvastatin and atorvastatin; in this statin-ADRs adjusted regression,

the association P value for ezetimibe was no longer significant (P value ¼
.29; Supplementary Table 4) However, in this same adjusted ezetimibe re-

gression, the association P values for both statin-ADRs remained signifi-

cant. Third, for omeprazole, all (10/10) DDIWAS-labeled (þamlodipine-

ADR, þomeprazole-ADR) patients had both drugs documented on their

allergy lists. Fourth, for valacyclovir, 4/5 DDIWAS-labeled

(þamlodipine-ADR, þvalacyclovir-ADR) patients had both drugs docu-

mented on their allergy lists.

Replication sensitivity analysis
To quantify the performance of DDIWAS to replicate known DDIs,

we calculated the PPV for both simvastatin and amlodipine experi-

ments at minimum patient count thresholds of 1, 5, 10, and 20 (Sup-

plementary Table 3). In the simvastatin experiment, as thresholds

increased, the PPV increased from 0.85 to 1.00, but the number of

true-positive findings decreased from 11 to 5 potential precipitant

drugs (Figure 2C). For amlodipine, as thresholds increased, the PPV

increased from 0.86 to 1.00, but the number of true-positive find-

ings decreased from 24 to 13 (Figure 2D).

DISCUSSION

DDIWAS is a high-throughput method to identify potential DDIs by

mining the EHR allergy list. We used the method to identify poten-

tial DDIs for simvastatin and amlodipine. DDIWAS replicated

known DDIs with a PPV of 0.85 and 0.86 for simvastatin and amlo-

dipine, respectively. For both drugs, DDIWAS also detected poten-

tially novel DDIs that were validated with manual review of patient

clinical notes. Our validation studies support potentially novel inter-

actions between simvastatin-HCTZ, amlodipine-omeprazole, and

amlodipine-valacyclovir.

Table 1. Simvastatin patient-level characteristics

Characteristic Controls (n¼ 85 873) Cases (n¼ 2814) P Value

Female 0.52 (44 367) 0.56 (1564) <.001

White 0.80 (68 900) 0.85 (2384) <.001

Age, years 63 (54–71) 63 (54–70) .15

Observation period length, days 337 (15–365) 365 (111–365) <.001

Unique drug exposures, count 12 (7–19) 13 (8–25) <.001

Phecode 250.* (Diabetes mellitus) 0.19 (16 241) 0.25 (702) <.001

Phecode 272.* (Disorders of lipid

metabolism)

0.34 (28 776) 0.74 (2,084) <.001

Phecode 401.* (Hypertensive dis-

order)

0.35 (30 253) 0.59 (1654) <.001

Phecode 411.* (Myocardial infarc-

tion)

0.20 (17 384) 0.31 (859) <.001

Phecode 418.* (Chest pain) 0.13 (10 774) 0.18 (519) <.001

Phecode 743.* (Osteoporosis) 0.04 (3280) 0.06 (172) <.001

For continuous variables, numbers represent median (interquartile range).

For dichotomous variables, numbers after proportions are counts.

P values indicate differences between cases and controls. For continuous variables, P values were calculated using Mann-Whitney test. For dichotomous varia-

bles, P values were calculated using v2 test. P < .05 was considered statistically significant.

Note: For phecodes, * means �1 digits or a period (eg, phecode 401.* ¼ phecodes 401, 401.1, 401.2, 401.21, 401.22, or 401.3).
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Existing methods to mine EHR data have successfully replicated

known DDIs,12 but have limitations that prevent widespread adop-

tion. First, the tools used to detect DDIs in EHRs are rarely publicly

available. Second, even if they are available, these tools are often

purpose-built advanced NLP or text annotation applications,32 re-

quiring users to perform substantial customization for use with ex-

ternal datasets.33,34 In contrast, DDIWAS identifies DDI events

using drug name recognition, a relatively simpler task than NLP-

based detection of ADRs. Recognizing drug names is easier than

detecting ADRs across health systems due to local documentation

procedures that may lead to differences in how ADRs are repre-

sented in clinical narratives.35,36 DDIWAS may be easier to imple-

ment in external databases, as it only searches for drug names in

medication and allergy lists and EHR modules with smaller contex-

tual variability than in clinical narratives. We anticipate that users

will be able to apply DDIWAS to identify DDIs in their databases,

without spending substantial time and resources to modify text an-

notation tools.

To test our approach to identify DDIs, we wanted to see whether

we could replicate drugs known to interact with the object drugs,

simvastatin and amlodipine. We found that 85% (35/41) of the sig-

nificantly associated drugs (Bonferroni P value < .05 and OR > 1)

were known to interact with the object drugs. In the simvastatin

analysis, we tested 8 drugs that were recommended for inclusion in

all clinical decision support (CDS) DDI alert systems.37 These drugs

were amiodarone, clarithromycin, diltiazem, erythromycin, flucona-

zole, ketoconazole, nefazodone, and verapamil. Among these drugs,

none were found to be significantly associated with simvastatin-

ADRs. These “false-negative” findings could partially be attributed

to intervention by the CDS alerts designed to reduce cases of clini-

cally significant DDIs.38,39 Notably, drugs that were significantly as-

sociated with simvastatin-ADRs included niacin and warfarin.

Although these drugs are known to interact adversely with simva-

statin, an expert committee recommended that alerts for these DDIs

be deleted because the therapeutic benefits of these drugs outweigh

the risk of patient harm.40 In this study’s amlodipine analysis, prazo-

sin’s association had the largest effect size (Figure 2B; Supplemen-

tary Table 1). This finding is supported in the literature, as patients

using both calcium-channel blockers (eg, amlodipine) and alpha-1

blockers (eg, prazosin) have been found to be at increased risk of de-

veloping hypotension.41,42

In addition to replicating known DDIs, DDIWAS also identified po-

tentially novel DDIs. Our results suggest a potential novel simvastatin-

HCTZ DDI. Out of the 13 drugs significantly associated with

simvastatin-ADRs, HCTZ and triamterene did not have previously

reported DDIs with simvastatin. When the triamterene regression was

Table 2. Validation analysis of potentially novel DDIs, manual chart review results

Object Drug Potential Precipitant Drug % TP Drug-ADR

(TP/number of patients reviewed)

Comments

simvastatin HCTZ 100 (10/10) NA

simvastatin triamterene 100 (10/10) All DDIWAS-derived (þsimvastatin-ADR,

þtriamterene-ADR) patients were exposed to

triamterene via a HCTZ/triamterene combina-

tion drug.

amlodipine ezetimibe 90 (9/10) • Majority (8/10) of DDIWAS-derived

(þamlodipine-ADR, þezetimibe-ADR)

patients also had a statin drug on their allergy

lists.
• The single false-positive DDIWAS-derived

(þamlodipine-ADR, þezetimibe-ADR) patient

had neither the object nor potential precipitant

drug on their allergy list.

amlodipine levothyroxine 40 (2/5) • Reviewed all 5 available DDIWAS-derived

(þamlodipine-ADR, þlevothyroxine-ADR)

patients.
• Two false-positive DDIWAS-derived

(þamlodipine-ADR, þlevothyroxine-ADR)

patients had neither the object nor potential

precipitant drug on their allergy lists.
• One false-positive DDIWAS-derived

(þamlodipine-ADR, þlevothyroxine-ADR) pa-

tient did not have the potential precipitant

drug on their allergy list.

amlodipine valacyclovir 80 (4/5) • Reviewed all 5 available DDIWAS-derived

(þamlodipine-ADR, þvalacyclovir-ADR)

patients.
• The single false-positive DDIWAS-derived

(þamlodipine-ADR, þvalacyclovir-ADR) pa-

tient had neither amlodipine nor valacyclovir

on their allergy list.

amlodipine omeprazole 100 (10/10) NA

True-positive patients were those for whom healthcare providers intentionally added both the object and potential precipitant drugs to their allergy lists.

Abbreviations: ADR, adverse drug reaction; DDIWAS, Drug-Drug-Interaction Wide Association Study; HCTZ, hydrochlorothiazide; TP, true-positive.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 7 1427



adjusted for HCTZ-ADRs, HCTZ’s association, but not triamterene’s,

was still significant at a Bonferroni P value < .05 (Supplementary Table

4). It has been shown that patients who concurrently used statins and

HCTZ were at increased risk of adverse events, including chest pain, hy-

perglycemia, and muscle spasms.43 Additional evidence to support a

simvastatin-HCTZ DDI can be found in DrugBank; rosuvastatin and

pravastatin are predicted to decrease HCTZ excretion, suggesting a pos-

sible interaction between HCTZ and the statin drug class. Nonetheless,

a biological mechanism to explain a simvastatin-HCTZ interaction

remains to be explored.

DDIWAS found potentially novel amlodipine-DDIs with valacy-

clovir and omeprazole. A previous study has shown that patients ex-

posed concurrently to amlodipine and valacyclovir were at increased

risk of developing adverse outcomes like acute kidney failure, dysar-

thria, and dizziness.43 The same study found that patients using

both amlodipine and omeprazole were more likely to experience

chest pain and dyspnea.43 A pharmacogenomic study found that

CYP2C19 intermediate metabolizers were more prone to developing

amlodipine-omeprazole DDIs.44 When exposed to both amlodipine

and omeprazole, these patients experienced higher than expected

drops in blood pressure. The authors proposed a mechanism in

which elevated levels of omeprazole inhibits CYP3A metabolism of

amlodipine, leading to lower blood pressure. Overall, results from

the amlodipine experiments corroborate DDIWAS as an effective

tool to detect potentially novel DDIs using real-world evidence in

EHR data.

There are several limitations in this study. First, to detect DDIs,

DDIWAS uses frequentist approaches assuming no prior informa-

tion. If there is prior knowledge of a DDI, such as those derived

from pharmacologic and/or pharmacokinetic studies, we can poten-

tially improve DDIWAS using Bayesian approaches with prior prob-

abilities determined from existing evidence.45,46 Second, we only

performed DDIWAS using a maximum observation window length

of 1 year and did not examine other period lengths. Third, we as-

sumed that a patient experienced an adverse outcome to a drug of

interest if the drug was listed on the patient’s allergy list. Even if a

healthcare provider intentionally added a drug to a patient’s allergy

list, the patient still may not have truly experienced an ADR to the

drug. Potential reasons for false-positive cases include unverified

patient-reported ADRs,47,48 disease exacerbation presenting like an

ADR, and variability among healthcare providers’ abilities to iden-

tify the causal drug.49 But multiple studies have successfully used the

allergy list to identify patients with ADRs.50,51 Likewise, we found

that the majority of the DDIWAS-labeled þdrug-ADR patients

reviewed truly had the drugs listed on their allergy lists (Table 2).

The dependence on healthcare providers’ abilities to correctly iden-

tify causal drugs also increases the probability of false-negative

DDIs. For example, DDIWAS did not detect a well-known interac-

tion between simvastatin and amiodarone.16 It would be interesting

to see whether using drug exposures from the medication list

increases the sensitivity of DDIWAS to identify potential DDIs with-

out sacrificing PPV. Fourth, in its current form, DDIWAS does not

systematically adjust for combination drugs, which can confound

the interpretation of associations. In the simvastatin experiment, our

stratified analysis found that the simvastatin-triamterene association

was confounded by patients taking HCTZ/triamterene combination

drugs (Table 2; Supplementary Table 4). Drugs frequently copre-

scribed can also contribute to false-positive findings. We found that

the amlodipine-ezetimibe association was most likely confounded

by interactions between amlodipine and statin drugs. A module to

automatically adjust associations for combination drugs and drugs

often used together is an opportunity for future development. Fifth,

to maximize the transportability of DDIWAS, we did not use ADR

information that was present in some allergy list entries. Using ADR

information represented as unstructured text would likely require

NLP expertise, as providers may describe the same ADRs differently

Table 3. Amlodipine patient-level characteristics

Characteristic Controls (n¼ 83 732) Cases (n¼ 2512) P

Female 0.54 (45 315) 0.65 (1637) <.001

White 0.75 (63 144) 0.83 (2083) <.001

Age, years 63 (53–72) 65 (55–73) <.001

Observation period length, days 287 (14–365) 206 (38–365) .91

Unique drug exposures, count 12 (8–20) 13 (8–22) <.001

Phecodes 053.* (Herpes zoster) 2.93E-03 (245) 3.18E-03 (8) .81

Phecodes 054.* (Herpes simplex) 1.97E-03 (165) 2.39E-03 (6) .64

Phecodes 244.* (Hypothyroidism) 0.05 (4558) 0.08 (201) <.001

Phecodes 250.* (Diabetes mellitus) 0.16 (13 144) 0.15 (365) .11

Phecodes 272.* (Disorders of lipid metabolism) 0.21 (17 898) 0.37 (927) <.001

Phecodes 300.* (Anxiety, phobic and dissociative disorders) 0.04 (3325) 0.05 (114) .15

Phecodes 401.* (Hypertensive disorder) 0.43 (36 059) 0.68 (1702) <.001

Phecodes 411.* (Myocardial infarction) 0.14 (11 898) 0.15 (371) .43

Phecodes 414.* (Other forms of chronic heart disease) 0.02 (1968) 0.02 (46) .09

Phecodes 418.* (Chest pain) 0.11 (9170) 0.14 (348) <.001

Phecodes 427.* (Cardiac dysrhythmias) 0.12 (10 096) 0.14 (355) .002

Phecodes 428.* (Congestive heart failure) 0.06 (4609) 0.05 (138) .98

Phecodes 530.* (Esophageal disorders) 0.08 (6706) 0.09 (228) .053

Phecodes 536.* (Disorders of function of stomach) 0.01 (858) 0.01 (18) .13

For continuous variables, numbers represent median (interquartile range).

For dichotomous variables, numbers after proportions are counts.

P values indicate differences between cases and controls. For continuous variables, P values were calculated using Mann-Whitney test. For dichotomous varia-

bles, P values were calculated using v2 test. P < .05 was considered statistically significant.

For phecodes, * means �1 digit or a period (eg, phecode 401.* ¼ phecodes 401, 401.1, 401.2, 401.21, 401.22, or 401.3).

1428 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 7



(eg, myopathy could be described as “muscle cramp,”

“myotoxicity,” “muscle weakness”). Recently, Wang et al devel-

oped a data-driven approach to help providers pick specific ADRs

conditional on the drug selected in the allergy list.17 Incorporating

such approaches may increase the use of structured ADR entries,

which could augment DDIWAS’ ability to detect potential DDIs.

Sixth, like other retrospective observational studies, we do not claim

that these associations were caused by DDIs. Like previous stud-

ies,12 our goal was to show that DDIWAS can generate DDI hypoth-

eses that will require validation by follow-up studies. Last, while we

applied DDIWAS to data from only 1 institution, users at external

institutions that also organize their EHR data with the Observa-

tional Health Data Sciences and Informatics (OHDSI)/Observa-

tional Medical Outcomes Partnership (OMOP) Common Data

Model52 can apply DDIWAS to their dataset after making minor

changes to the code that we have shared publicly.53

CONCLUSIONS

In summary, we developed and evaluated DDIWAS, a novel method

that uses EHR allergy list entries to detect DDIs. DDIWAS repli-

cated known DDIs and identified potentially novel DDIs. EHR-

based methods like DDIWAS could complement existing tools to

improve postmarket surveillance of DDIs.
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