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Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence
the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes
with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into
FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF
receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This
review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the
pathogenesis of major neurological and psychiatric disorders.
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Introduction

The FGF and FGF Receptor Families

Fibroblast growth factors (FGFs) comprise a large family of
polypeptides. They are expressed in nearly all organisms,
ranging from nematodes to vertebrates. The 22 members of
the FGF family are highly conserved in gene structure and
amino acid sequence. Several of these factors are secreted
and implicated in differentiation and migration during organ
development. Ten of them are expressed in the brain [1].
FGF3, FGF8, FGF15, FGF17, and FGF18 play key roles in
early development by imparting positional information and
regulation of gene expression involved in brain patterning
[2]. At the adult stage, FGFs primarily act as homeostatic
factors in tissue repair and cellular proliferation. Several
FGFs and their receptors (listed in Table 1) have been dem-
onstrated to be involved in the pathogenesis of neurological
disorders including Parkinson’s and Alzheimer’s [3, 4] and

will be the focus of this review. The experimental data pre-
sented here were mainly obtained in rats and mice, the leading
model organisms used in biomedical research. Very few as-
pects were validated in humans, and those are included as
well.

FGF1 and FGF2 (acidic and basic FGF) are the most wide-
ly studied members of the FGF family expressed in neurons
and glial cells [5]. An unusual feature of those ligands is the
lack of a conventional signal sequence for export out of the
cell and their exit via non-canonical mechanisms. Other FGFs
like FGF11-14 remain intracellular and exert intracrine func-
tions [6]. Some translocate from early endosomes into the
cytosol and enter the nucleus [7]. This complexity is further
enhanced by the expression of isoforms. For example, human
FGF2 is expressed in five different isoforms derived from a
single mRNA species [8]. This is the result of N-terminal
sequence extensions in higher molecular weight isoforms as
compared with low molecular weight FGF2 in some species
[9, 10]. While the intranuclear functions of FGF1 and FGF2
are not fully understood [11], signalling through membrane-
bound tyrosine kinase receptors has been described in detail
[12]. Different FGF subfamilies exhibit preferences for one of
the FGF receptors (FGFRs). FGF1 is the only member that
can activate all four FGFR variants.

FGFRs share 46% amino acid identity and code for recep-
tors of 125-160 kDa molecular weight. A fifth FGFR,
FGFRL1, lacks the tyrosine kinase domain and is a putative
co-receptor for FGFR1 [13]. FGFR1-3 are characterised by
three extracellular immunoglobulin (Ig)-like domains, a
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heparin-binding region, and an acidic box domain. Ligand
binding to D2 and D3 domains results in a 2:2:2 ternary com-
plex of FGF, FGFR, and heparan sulphate [14]. The Ig-like
D1 domain and the acidic box, located between D1 and D2,
inhibit ligand binding by electrostatic interactions [15].
Alternative splicing in the D3 domain generates the IIIb and
IIIc isoforms of FGFR1-3 with different ligand-binding prop-
erties (FGFR1b, -1c, -2b, -2c, -3b, and -3c). The b and c
isoforms are restricted mainly to epithelial and mesenchymal
tissues, respectively [16]. The extracellular D2 domain inter-
acts with heparan sulphate proteoglycans (HSPGs) that facil-
itate the dimerisation and stabilisation of ligand interactions.
The intracellular region of FGFRs beneath the transmembrane
segment harbours a split tyrosine kinase domain. The binding
of FGFs at HSPGs allows the formation of defined ligand
gradients required for paracrine signalling, in particular during
development.

Nuclear FGFR Signalling

In addition to its canonical role as membrane-bound tyrosine
kinase receptor, FGFR1 has been described as a nuclear pro-
tein [17]. It translocates to the nucleus via an importin-β-

dependent mechanism [18]. On the functional level, the nu-
clear receptor is a major signalling hub (designated as nuclear
FGFR1 signalling, INFS) regulating neuronal growth and dif-
ferentiation, amongst others [11, 19, 20]. Nuclear FGFR1
colocalises with transcriptionally active chromatin, binds to
CREB-binding protein (CBP) or ribosomal S6 kinase isoform
1 (RSK1), and forms complexes with retinoid and Nurr recep-
tors. Developmental signals are thereby directly forwarded to
CBP and RSK1. RSK1 binding promotes FGFR1 release
from the pre-Golgi to the cytosol, increases the mobile popu-
lation of FGFR1, and facilitates nuclear accumulation. Novel
interactive features of FGFR1 allow the newly synthesised
90 kDa protein to be released from pre-Golgi membranes
and translocate into the cell nucleus along with the nuclear
localisation signal (NLS)-containing FGF2 ligand [21].
Granzyme B-dependent cleavage of the C-terminal part of
FGFR1 may also play a role [22]. The mRNAs for FGF2
and tyrosine hydroxylase are up-regulated in response to the
nuclear shuttling of the receptor [23]. Importantly, nerve
growth factor (NGF) utilises INFS for its neurodevelopmental
and gene-activating functions [24]. NGF induces process out-
growth and transcriptional programming in a neuronal cell
line (PC12) via nuclear translocation of FGFR1. FGFR1

Table 1 Summary of confirmed expression and functional significance of the most relevant FGFs and FGFRs in the nervous system (+ indicates
presence or positive effect, - indicates absence or negative effect; see text for references)

FGF −1 −2 −7 −8 −9 −20 −22 R1 R2 R3

Absolutely required for CNS development + + +

Abundance in the adult nervous system + + + + +

Lack of signal peptide + + + +

Nuclear localisation + + +

Expressed in neurons + + + + + + + + + +

Expressed in astrocytes + + + + + +

Expressed in oligodendrocytes + + + + + +

Expressed in microglia + + + +

Schwann cell proliferation + + +

Astrocyte proliferation + + + +

Glioma proliferation + + + (−) +

Enhanced ECM production +

Neurogenesis + + + + +

Excitatory synapse formation + + +

Inhibitory synapse formation + +

Stimulation of LTP + + +

Neuronal survival + + + + + + –

Up-regulation after peripheral nerve lesion + + + +

Promotion of axonal regeneration in the PNS + + +

Axonal elongation (in pre-lesioned neurons) + + +

Axonal branching (in naive neurons) + + +

Interaction with myelin inhibitory signalling + + +

Noci- and thermoception + + + +

Seizure induction – + – +
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interacts with the orphan nuclear receptor Nurr1, and this
complex regulates tyrosine hydroxylase (TH) expression by
binding to the TH gene promoter [25]. Furthermore, INFS
appears to be necessary for dendritic outgrowth of sympathet-
ic neurons in response to bone morphogenetic protein, BMP7
[26]. Recent evidence suggests a broader function of nuclear
FGFR1 on several genes relevant in nuclear development [21,
27].

Distribution of FGF Receptors in the Nervous System

FGFR1-3 are widely distributed in the brain and bind to
FGF ligands with different affinities and specificities [28,
29]. FGFR4 plays a role in early brain development but is
absent from the adult brain (apart from one small nucleus).
FGFR1 is most abundant in the nervous system with a
predominant expression in neurons, astrocytes, and radial
glia [30]. FGFR2 and FGFR3 are preferentially expressed
in astrocytes and oligodendrocytes [1]. Studies of mice
carrying null mutations in each of the FGFR genes re-
vealed that FGFR1 and FGFR2 are essential for early em-
bryonic development, which reflects their key roles in
neuralisation and precursor proliferation. In contrast, ani-
mals lacking FGFR3 survive and exhibit no obvious tel-
encephalic defects. However, FGFR3 plays an important
role in cortex development [3]. Mutations in FGFR2 lead
to either Apert or Crouzon syndrome, resulting in promi-
nent changes of several brain structures [31].

The overlapping pattern of FGF ligand binding to similar
FGF receptors implies a certain level of redundancy. In fact,
different FGF family members activate FGFR subtypes to
different degrees, depending on their ability to bind with high
or low affinity to each receptor subtype [32]. Moreover, re-
ceptor specificity is modulated by the expression of other re-
ceptors and by the specific lipid composition of the plasma
membrane. For example, in oligodendrocytes, a fraction of
FGFR2 resides within the cholesterol/glycosphingolipid-
enriched membrane microdomains (lipid rafts) [33]. Lipid
rafts concentrate and segregate surface receptors together with
their signalling molecules, and this compartmentalises and
enhances intracellular signal transduction [34].

The complexity of FGFR activation is further increased by
membrane molecules that may directly bind to and activate
FGFRs in the absence of canonical ligands. Some of them
play a pivotal role in the nervous system. For example, neural
cell adhesion molecule (N-CAM), neuronal cadherin (N-
cadherin), Eph receptor A4 (EphA4), and Anosmin-1 use
FGFR as a signalling mediator and interfere with intracellular
FGFR transport [35–37]. Hence, FGFRs are not specific to
FGFs, and the phenotype of mice deficient in one or more
FGFRs may be due to the lack of FGFR activation by ligands
unrelated to FGFs or other receptors.

Signal Transduction of FGF Receptors

Ligand binding in cooperation with accessory HSPG triggers
dimerisation of receptor monomers. This results in their mu-
tual activation [38]. All possible FGFR combinations formed
amongst FGFR1-3 suggest that FGFR heterodimers are as
functionally important as homodimers [39]. FGFR dimers
may also form in the absence of ligands at their physiological
concentrations (Fig. 1). The ligand-independent dimers are
stabilised through contacts below the transmembrane do-
mains. These receptors are auto-phosphorylated, which ex-
plains why FGFR overexpression can lead to certain forms
of cancer. The primary effect of ligand binding lies in a struc-
tural change in the pre-formed dimers and thereby enhanced
receptor phosphorylation. Diverse ligands change receptor ki-
nase activities in different ways. For example, FGF2-bound
dimers show the smallest separation between the transmem-
brane domains but the highest possible phosphorylation [40].

Phosphorylated FGFRs activate canonical scr-homology 2
(SH2)-linked signalling proteins (PLCγ, CRKL) and recruit
adapter proteins for connecting the receptor to PI3K/MAPK
pathways. The analysis of chimeric receptors composed of
cytoplasmic FGFRs and extracellular PDGF receptors has re-
vealed that all FGFR subtypes stimulate the same pathways
but with different magnitudes [38]. Prominent differences are
found between FGFR1/FGFR2 and FGFR3/FGFR4 signal-
ling. This may be due to differences in ligand activation and/
or intracellular receptor transport following internalisation.
For example, FGFR1 activates ERK and PLCγmore strongly
than FGFR4, and higher ERK activation is caused by FGFR1
rather than by FGFR2 [16].

Key signalling hubs such as PI3K and Ras/ERK are recruit-
ed by the lipid-anchored 80 kDa docking protein FRS2 (also
referred to as SNT1). FRS2 constitutively binds the
juxtamembrane region of FGFR1 and is phosphorylated most
efficiently by FGFR1 as compared with other receptor iso-
forms [41]. Activated FRS2α associates with the Grb2/SOS
complex to relay activation of Ras and downstream MAPK
signalling [42]. Additionally, FRS2α recruits the tyrosine
phosphatase SHP2 [43]. FRS2α is also involved in
neurotrophin receptor (Trk) signalling and appears to act as
a ‘conning centre’ responsible for differential pathway activa-
tion. Furthermore, FRS2 is crucial for FGFR ubiquitination
and trafficking due to its ability to constitute local signalling
platforms and to recruit feedback inhibitors [44]. The latter
initiate a cascade of negative signalling events that decrease
the amplitude of positive signals and modulate the level of
stimulation.

Six tyrosine (Y) residues in the split kinase domain need to
be sequentially phosphorylated for the full activation of at
least four major signalling pathways (Y653 → Y583 →
Y463, Y766, and Y585 → Y654) [12]. Y653 increases tyro-
sine kinase activity by fifty- to one hundred-fold, and Y654 by
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a further ten-fold. Additional tyrosines are required for the
activation of phospholipase Cγ (Y766) and STAT3 (Y677).
The STAT pathway changes nuclear gene expression, where-
as activation of PLCγ at the plasma membrane produces ino-
sitol trisphosphate (IP3) and diacylglycerol (DAG), thereby
releasing calcium from endoplasmic reticulum stores and
causing the activation of protein kinase C (PKC), respectively.
DAG also produces ligands that can activate the endocanna-
binoid receptor CB1 in the brain [45]. Importantly, cannabi-
noid receptors transactivate FGFR1 in lipid rafts [46].

Inhibitory feedback mechanisms are induced by FGFR
stimulation, which is essential to limit excessive signalling.
Their de-regulation may result in brain tumours. They involve
the coordinated action of ubiquitin ligase (c-Cbl), adapters
(Grb2) and proteins such as Sef, phosphatases (DUSP), and
Sprouty proteins [47, 48]. The latter function as crucial FGFR
antagonists during brain development and in the adult, mainly

by interfering with processes upstream of ERK [49].
Interestingly, FGFRs themselves are the subject of negative
feedback mechanisms, because the prevention of ERK-
dependent phosphorylation at serine 777 of FGFR1 (or the
mutation of this serine to alanine) promotes receptor tyrosine
phosphorylation and, consequently, cellular proliferation, mi-
gration, and axon growth [50].

Intracellular FGF Receptor Transport

FGFR activation is followed by rapid endocytosis and degra-
dation of the receptor and the ligand. Ligand binding induces
receptor mono-ubiquitination by the ubiquitin ligase c-Cbl,
which functions as a signal for the sorting of the receptor into
intraluminal vesicles of multivesicular endosomes and its sub-
sequent delivery to lysosomes [51]. Receptor tyrosine kinases,
such as FGFR, EGFR, and PDGFR, are mono-ubiquitinylated
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Fig. 1 The neuronal FGFR signalling network, from the binding of
ligands to downstream events. FGFR1-3 monomers (1) form
homodimers (2) and heterodimers (3) either in a ligand-dependent (2, 3)
or independent (4) mode. The latter may undergo autophosphorylation.
FGF ligand binding leads to enhanced receptor phosphorylation. The
ordered and cooperative post-translational modifications are depicted as
an activation code with sequentially phosphorylated tyrosine residues
(boxed inset, 4). Certain downstream pathways like PLCγ and STAT3
require specific phosphorylation of additional tyrosine residues.
Phosphorylation activates downstream pathways such as PLCγ, AKT,

ERK, and STAT3. These are regulated by a number of proteins that
provide an inhibitory feedback, thereby limiting activation (SPRY, Sef,
and DUSP6; depicted in red). The lipid-anchored fibroblast growth factor
receptor substrate 2 (FRS2) undergoes phosphorylation by FGFR kinase
activity and recruits downstream factors PI3K and Ras/ERK as signalling
hubs. However, this mechanism is FGFR-specific, with FGFR1 showing
higher activity than the other FGFRs (boxed inset). Moreover, FGFR
subtypes differentially activate downstream ERK and PLCγ with
FGFR1 showing stronger activation than FGFR2 or FGFR4,
respectively (boxed inset). For references, see text
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at multiple sites, while cytoplasmatic phosphorylated protein
tyrosine kinases are poly-ubiquitinylated and degraded in the
proteasome [52]. In the case of FGFR signalling, c-Cbl does
not directly bind to the receptor but catalyses the
ubiquitination of the receptor via interaction with FRS2 and
Grb2. Hence, the competition of c-Cbl with SOS for Grb2
abrogates MAPK signalling [53].

The transport of FGFRs from the cell surface to different
subcellular compartments influences the biological response
to receptor activation. This has recently been confirmed by
optogenetics [54]. Overexpressed FGFR1-eGFP fusion pro-
teins bind FGF2 and activate signalling hubs at various loca-
tions. FGFRs internalise and shuttle to the recycling and deg-
radation compartments in neurons and glial cells. This has
consequences for the strength and duration of signalling path-
way activation [55, 56].

Plasmamembrane levels of neuronal FGFRs at the adult stage
appear to be significantly lower than those of neurotrophin re-
ceptors, because the effects of neurotrophins on neuronal survival
and neurite outgrowth are significantly stronger when compared
with FGFs. However, overexpression of FGFR1 stimulates axon
growth [57]. This effect is further enhanced by protease inhibitors
such as leupeptin, which inhibits lysosomal protein degradation
and promotes receptor recycling [58].

RTK recycling depends on the number of intracellular lysine
residues that are required for receptor ubiquitination. For exam-
ple, FGFR1 comprises 29 lysine residues, while the intracellular
part of FGFR4 harbours 16 lysine residues only. Accordingly,
lysine mutants of FGFR1 that are deficient in ubiquitination will
be sorted to the recycling pathway rather than to degradation in
lysosomes [59]. Overexpression of FGFR1 mutants exhibiting
reduced numbers of lysines modifies axon outgrowth [60].
FGFR1-15R (with 14 instead of 29 lysine residues) preferentially
recycles back to the plasma membrane similarly to FGFR4 and
strongly promotes elongative axon growth without stimulating
axon branching. Interestingly, the ERK inhibitor PD98059 does
not reduce elongative axon growth induced by FGFR1-15R
overexpression. This raises the possibility that ERK has indepen-
dent effects on the axonal cytoskeleton through enhanced recep-
tor recycling of FGFR1 which probably shows increased inter-
action with other growth promoting membrane receptors (e.g.,
NCAM [61]). The functional significance of the Ras/RAF/ERK
pathway for adult axon regeneration remains a subject of contro-
versy because in some studies ERK inhibitors did not interfere
with axon outgrowth of adult primary neurons in culture [62].

FGFs in Neurological Disorders

Neuronal Degeneration and Repair

As master regulators of brain organogenesis and homeostasis,
FGFs play an important role in the regeneration and repair of

the nervous system. In fact, FGFR1 and FGFR2 stimulation
induces complete neural tissue regeneration in planarians and
vertebrate embryos [63]. Moreover, FGFs often synergise
with other growth factors and cytokines in the generation of
multipotent progenitors, for example, in the zebrafish retina
[64]. In adult mammalian species, however, FGFs cannot re-
place damaged tissue, although stimulation of FGFR signal-
ling assists in adult neurogenesis [65] and promotes neuronal
survival after injury [1]. Conversely, expression of dominant-
negative FGFR results in increased neuronal vulnerability
[66]. The neuroprotective functions of FGFs are at least par-
tially mediated by direct stimulation of neuronal FGFRs and
are related to the inhibition of autophagy/protein clearance in a
PI3K/AKT/mTOR-dependent manner [67].

In addition to preventing or delaying neuronal cell death,
FGFs are involved in the repair of synaptic connections. The
formation of new excitatory synaptic contacts is regulated by
FGF22, which is expressed in spinal interneurons and long
propriospinal neurons [68]. In fact, a lack of FGF22 or
targeted deletion of FGFR1 and FGFR2 in the motor cortex
reduces synapse formation between corticospinal collaterals
and relay neurons and attenuates functional recovery in re-
sponse to spinal cord injury [69]. FGFR1b and 2b are required
for excitatory and inhibitory presynaptic differentiation in re-
sponse to FGF22 and FGF7, respectively [70, 71]. Both re-
ceptors mediate the excitatory presynaptic response to FGF22,
whereas only FGFR2b elicits the inhibitory presynaptic re-
sponse to FGF7.

FGF7-deficient mice exhibit epileptogenic changes in the
hippocampus. This indicates that inhibitory synapse formation
may be impaired, resulting in mossy fibre sprouting and en-
hanced neurogenesis during development [72]. Blocking
FGF22 while activating FGF7 signalling may help to alleviate
epileptogenesis. In general, it is assumed that FGFs are impli-
cated in both seizure susceptibility and seizure-induced plas-
ticity. It has been suggested that FGF2 favours acute seizures
but reduces seizure-induced cell death [73, 74]. In the amyo-
trophic lateral sclerosis (ALS) model of mutant SOD1 mice,
FGF deficiency causes a significant delay in disease onset,
less impaired motor function, and prolonged survival when
compared with mice with normal FGF2 levels, probably due
to an up-regulation of neurotrophic factors such as CNTF and
GDNF [75].

FGF2 and FGF20 synergise to increase dopaminergic neu-
ron numbers in stem cell models [3]. FGF20 has been found to
be preferentially expressed in the substantia nigra, pars
compacta. It stimulates survival of dopaminergic neurons via
activation of FGFR1IIIc [76]. In addition, FGF2 facilitates the
formation of functional dopaminergic neurons from stem cells
[77, 78]. In the 6-hydroxydopamine lesion model, infusion of
FGF20 into the substantia nigra protects against cell death in
both the substantia nigra and striatum, and this is accompanied
by improved motor function [79]. Moreover, intrastriatal
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expression of FGF2 results in dopaminergic neuron recovery
following chemically induced lesions [80].

With regard to Alzheimer’s disease, overexpression of
FGF2 restores spatial learning, long-term potentiation, and
neurogenesis. These effects are probably mediated by
FGFR1-activated increases in CD200, the OX-2 membrane
glycoprotein that regulates microglial activity and promotes
neurite outgrowth and neuronal survival [81]. Furthermore,
exogenous FGF2 ameliorates tau pathology and spatial mem-
ory deficits by down-regulating the amyloid precursor
protein-cleaving enzyme (BACE1) that is involved in the pro-
duction of amyloid β [82]. In primary hippocampal neuron
culture, protection against amyloid β-induced neurotoxicity
has been demonstrated to be dependent on the AKT but not
the ERK signalling pathway. Interestingly, high molecular
weight isoforms of FGF2 are more efficient than those of
low molecular weight in this paradigm [83].

Endogenous FGF2 is secreted by neurons upon damage by
glutamate or oligomeric amyloid β. This is followed by en-
hanced microglial migration and neuroprotection because of
increased phagocytosis of neuronal debris via FGFR3 activa-
tion involving ERK andWnt signalling [84]. However, loss of
all three FGFRs in astrocytes results in microglia hypertrophy
and proliferation [85]. These findings indicate a key role for
FGF2 and FGFRs in orchestrating the crosstalk between
degenerating neurons, microglia, and astrocytes. They also
show that cellular activation and proliferation are distinct
and that FGF-dependent processes are induced at different
points after injury (Fig. 2).

Glutamate-mediated neuronal damage is observed in the
hippocampus following temporal lobe epilepsy. This brain
structure is highly dependent on FGFR1 signalling during
development via FGF-mediated stimulation of hippocampal
progenitor and stem cells [86]. Hippocampal deficits observed
in patients with neurodegeneration, trauma, Alzheimer’s dis-
ease, and in normal ageing may therefore be counteracted by
the incorporation of newly born neurons into existing net-
works. In fact, hippocampal neurogenesis has been observed
to facilitate learning and memory in rodents. Adult neurogen-
esis in the human hippocampus is, however, a heavily debated
issue. Recently, neurogenesis has been demonstrated to be
limited to early development and childhood [87]. Other
groups have observed ongoing neurogenesis in the hippocam-
pus and a modest decline with age by applying improved
strategies for the visualisation of neuronal precursor cells [88].

Stimulating neurogenesis through enhanced FGF signal-
ling in the adult hippocampus may therefore be beneficial,
particularly since neurogenesis decreases progressively in
the brains of Alzheimer’s disease-affected patients. It is not
yet clear, however, whether intrinsic precursor cell activity or
changes in their environment determines such decline.
Although FGFs promote the proliferation of cultured adult
hippocampal precursor cells, their requirement for in vivo

hippocampal neurogenesis in the adult and ageing brain still
needs to be demonstrated. Elegant studies including condi-
tional expression of mutated FGFRs have revealed that FGF
signalling is clearly required for stem cell maintenance and
increased neuron production [89–91]. Moreover, activated
FGFR restores age-related decline in neurogenesis to a level
found in young adult animals [92].

Neuronal degeneration is often associated with oedema
formation and vascular pathology. These are particularly com-
mon in ageing and regularly affect hippocampal formation
[73]. FGFs exert beneficial effects in some of these conditions,
for example, in retinal cell swelling [93] and ischemic-
reperfusion or hypoxic injury [94, 95]. FGF1mixed into fibrin
glue as a slow-release carrier reduces ischemia-induced focal
brain infarction and attenuates functional deficits.
Hippocampal and cortical neuron loss as well as microglial
infiltration are also reduced. In addition, FGFs induce up-
regulation of tight junction proteins via RhoA inhibition,
thereby mitigating blood-brain barrier (BBB) breakdown
and secondary brain injury [96].

Trauma in the CNS

Adult axon regeneration across spinal cord injuries and into
intact spinal cord tissue generally fails in all higher verte-
brates. Only a few growth factors, amongst them FGF1 and
FGF2, were shown to promote axonal growth and functional
recovery in spinal cord injury (SCI) models [97, 98]. The
observed beneficial effects have been attributed generally to
an attenuation of astrogliosis, increased numbers of neuronal
progenitors, and/or stimulation of bipolar astrocyte morphol-
ogy, which result in glial bridge formation guiding
regenerating axons across the lesion site [99]. In fact, astro-
cytes use FGF2 as an auto- and intracrine signal to promote
proliferation and structural changes in glial cells via FGFR1 or
FGFR2 signalling. This effect can be enhanced by exogenous
FGF2 [100]. FGF2 treatment shortly after spinal cord
hemisection results in a significant reduction of TNFα expres-
sion at the lesion site, gliosis, and monocyte/macrophage in-
filtration 2 weeks later. Levels of astrocyte-derived chondroi-
tin sulphate proteoglycans (CSPGs) are also markedly de-
creased, and functional recovery significantly improved
[101]. Interestingly, similar effects were observed in the spinal
cord of injured mice lacking Spry4, an endogenous feedback
inhibitor of FGF signalling [102].

Recent evidence suggests, however, that FGF signalling is
also required for the re-establishment of the non-reactive state
of astrocytes following the initial phase after CNS injury.
After applying conditional genetic approaches to manipulate
FGFRs specifically in adult astrocytes, strong activation was
observed in the lesioned neocortex of FGFR1-3 triple knock-
out mice [85]. Both FGF1 and FGF2 inhibit GFAP expression
via FGFR3 signalling [103, 104]. Since the formation of
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astrocytic scars clearly inhibits axon regeneration in the CNS,
the reversal of the active state in astrocytes (probably involv-
ing changes in heparin sulphatation [105]) is likely to contrib-
ute to the positive effects of FGF1 and FGF2 on functional
recovery after axotomy of intrinsic spinal cord or peripheral
axons projecting into the CNS [91, 106–108].

A recent study [109] provided convincing evidence for a
reversal of the dogma that adult CNS axons do not regenerate
over long distances, by overcoming three obstacles simulta-
neously. The authors demonstrated that enhancing the intrin-
sic neuronal growth machinery and providing a supportive
extracellular matrix via stimulation of FGF signalling,

together with the application of chemoattractive cues, results
in robust and successful axon regrowth across at least one
spinal segment after complete spinal cord injury in rodents.
In this model, osteopontin, IGF1, and CNTF were applied
before injury. Growth-supportive substrates were induced by
a combination of EGF and FGF2, which increased astrocytic
proliferation as well as laminin, collagen, and fibronectin pro-
duction inside the lesions. Then, propriospinal axons were
attracted with GDNF delivered from biomaterial depots. All
of these steps must be performed in combination to stimulate
axon regeneration significantly, i.e. by a factor of around 100.
Treatment with FGFs alone did not support axonal growth
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Fig. 2 Key mechanisms of FGF/FGFRs in the nervous system. The
central nervous system comprises a large number of functionally and
structurally diverse neuronal and glial cell types. The figure depicts
model neurons forming synapt ic connect ions as wel l as
oligodendrocytes, astrocytes, and microglia. Modulation of synaptic
connections by FGFs (boxed inset): FGF22 regulates the formation of
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regulated by FGF7 via FGFR2b only. FGF2 and 20 synergise to
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increased removal of neuronal debris in case of neuronal damage.
Moreover, FGF2 restores spatial learning, long-term potentiation, and
neurogenesis in Alzheimer´s disease. Mechanistically, FGFR1 regulates
CD200, which in turn mediates microglia responses and neurite
outgrowth. This factor also feeds back by activation of FGFR1. Axonal
growth and regeneration is stimulated mainly by FGF1 and FGF2. FGF2
secreted by neurons stimulates astrocytes via FGFR1-3 activation.
Signalling from astrocytes to oligodendrocytes is accomplished by
FGF2 influencing the survival and proliferation of oligodendrocyte
precursor cells (OPCs). FGFR1 and R2 regulate myelin thickness and
gene expression. For references, see text
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through astrocyte scars and across the lesion core into spared
neural tissue. The combined approach resulted in the forma-
tion of terminal synapses and the re-establishment of electro-
physiological conduction capacity [109].

Other studies confirm that stimulation of FGFR1 signalling
alone is not sufficient to promote axon regeneration in the
CNS. Up-regulation of FGFR1 in neurons projecting into
the corticospinal tract (CST) does not enhance axon out-
growth. Injection of AAV serotype 1 overexpressing FGFR1
in a rat model of unilateral pyramidotomy did not increase
sprouting of intact contralateral CST axons with
overexpressed FGFR1, nor was it accompanied by functional
improvements over control AAV injected animals [100].
Overexpression of FGFR1 in cultured cerebellar granule neu-
rons even resulted in decreased neurite outgrowth. It is possi-
ble that key adaptor proteins, such as FRS2, are sequestered
away from neurotrophic receptors promoting strong axon out-
growth, such as TrkA [110]. It has been shown previously that
FGF2 exerts inhibitory effects on neurite outgrowth of cere-
bellar neurons plated on cortical astrocytes [111]. In addition,
FGF1 and FGF2 may even interact with inhibitory receptors,
such as the Nogo-66 receptor 1 (NgR1) [112].

NgR1 is a member of the Nogo receptor family implicated
in the binding of myelin inhibitors and chondroitin sulphate
proteoglycans [113]. It is part of a multi-component receptor
complex comprising Lingo-1, p75, or TROY, which induces
activation of the small GTPase RhoA, a well-known pathway
involved in growth cone collapse and neurite outgrowth inhi-
bition [114]. Interestingly, FGF2-dependent neurotrophic ef-
fects such as neuronal differentiation of PC12 cells and axonal
branching in cortical neuron cultures are fully blocked by the
ectopic overexpression of NgR1. Direct interaction between
the two receptors could not be demonstrated; however, high-
affinity binding of FGF2 to NgR1 was observed, suggesting
that FGF family members also act as ligands at completely
unrelated receptors [112].

Nerve Injury in the PNS

In the peripheral nervous system (PNS), axons do regenerate
in the absence of exogenous growth factor support, provided
that the proximal nerve stump containing the severed axons is
connected to its distal counterpart. FGF1, FGF2, FGF7, and
FGFR3 are all rapidly up-regulated in the lesioned nerve and
in corresponding ganglia after axotomy [115, 116]. FGF2 pre-
vents apoptosis of sensory neurons when applied directly to
the transected sciatic nerve [117]. FGF1 and FGF2 have both
been shown to improve nerve regeneration across a collagen-
filled nerve conduit [118, 119]. In fact, FGF2 is one of the
most promising growth factor with regard to clinically rele-
vant muscle re-innervation, because it induces neurite elonga-
tion of motor axons similarly to GDNF [120].

Channels filled with Schwann cells overexpressing the
high molecular weight (HMW) isoforms of FGF2 are partic-
ularly useful in promoting nerve regeneration [121, 122]. Low
molecular weight (18kD) FGF2 released from transduced
Schwann cells also accelerates regeneration and functional
recovery when it is used to repair the transected sciatic nerve
[123]. Because of their effect on the mitogenesis of
mesoderm- and neuroectoderm-derived cells, it is assumed
that FGFs support axonal regeneration mainly via increased
proliferation of Schwann cells and enhanced angiogenesis
[118]. Yet, direct trophic effects of FGF2 isoforms on primary
neurons are observed as well. Nevertheless, adult sensory neu-
rons must be sensitised before FGF treatment by prior
axotomy in vivo. In response to such a ‘pre-conditioning’ le-
sion, i.e. a sciatic nerve transection 1 week before extraction of
the lumbar ganglia, FGF2 isoforms stimulate axonal elonga-
tion preferably [124]. This effect can be completely blocked
by SU5402, a specific FGFR antagonist, and it is mediated by
ERK and PI3K activation. Naïve, untreated sensory neurons
exhibit only a little FGFR1 and FGFR2 at their surface, sug-
gesting that axotomy-induced receptor upregulation may be
involved in the regenerative response.

Hence, FGF2 does not exert prominent effects on periph-
eral axon outgrowth if neurons have not been pre-lesioned.
However, increasing FGFR1 levels by overexpression, inhi-
bition of degradation, or promotion of receptor recycling all
stimulate peripheral axon regeneration [55, 125]. Additional
treatment with the protease inhibitor leupeptin further in-
creases outgrowth [57, 58]. FGFR3 stimulation induces the
opposite response, since FGFR3-deficient mice reveal re-
duced neuronal apoptosis in response to nerve transection
[126]. Transgenic mice expressing high levels of FGF2 reveal
faster axon regeneration, probably as a result of combined
effects on Schwann cell proliferation, delayed myelination,
and on axons directly [127]. Moreover, intramuscular injec-
tions of FGF2 increase the amplitude of compound muscle
action potentials, wet muscle weight, and motor endplate den-
sity [128].

Enhanced FGF signalling has also been shown to be ben-
eficial in response to facial nerve injury [129]. The already
poor recovery of regenerating facial axons is further compro-
mised in FGF2 knock-out mice. However, FGF2-deficient
animals exhibit no difference in the number of regenerating
axons in the sciatic nerve. In fact, faster recovery of
mechanosensory (but not of motor) function following sciatic
nerve crush was observed, suggesting compensatory mecha-
nisms in the lesioned peripheral nervous system of global
FGF2 knock-outs [130].

Our own investigations on FGFR signalling antagonists
like Sprouty proteins corroborate the positive effects of
FGFs on axon regeneration. Primary sensory or hippocampal
neurons dissociated from Sprouty2 knock-out mice or
transfected with shRNAs against Sprouty2 and Sprouty4
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reveal significantly enhanced axon outgrowth [131–133].
Following sciatic nerve crush, more myelinated axons regen-
erate in heterozygous Sprouty2 knock-out mice, and this is
accompanied by faster recovery of sensorimotor performance
and increased expression of the regeneration-associated GAP-
43 protein [133].

As stated above, FGFRs interact with other membrane
components that may affect neuronal survival and even axon
regeneration. For example, FGFR1 is required for neurite out-
growth stimulated by CAMs (PSA-NCAM, α7 integrin, and
N-cadherin) in neurons and in neuron-like cell lines [61,
134–136]. NCAM/FGFR1 receptor complexes could be par-
ticularly relevant for motor axon regeneration in trans:
FGFR1 is found at the plasma membrane of Schwann cells,
and polysialylated (PSA)-NCAM (but not FGFR1) is local-
ised at the membrane of elongating motor axons during the
early phase of regeneration. This hypothesis is further support-
ed by the demonstration of an increased interaction of FGFR1
and PSA-NCAM following FGF2 treatment [120]. Moreover,
FGFR and neurotrophin receptor (Trk) signalling is co-
dependent as well. Rat pheochromocytoma (PC12) cells ex-
pressing dominant negative FGFR exhibit reduced NGF-
induced process formation and autophosphorylation of
FGFRs. Selective FGFR inhibitors or oligonucleotides that
interfere with receptor binding completely block neurite out-
growth induced by NGF in this cell line [137].

With regard to the possible interaction with inhibitory sig-
nalling pathways, previous studies by the Schwab group have
suggested that the Nogo/NgR system is not only relevant for
the CNS but for the PNS as well. Axonal regeneration and
functional recovery are impaired following sciatic nerve crush
in transgenic mice overexpressing Nogo-A in Schwann cells
[138]. By contrast, sciatic nerve regeneration is enhanced in
NgR1 knock-out mice (authors’ observation). Importantly,
NgR1 is expressed in adult DRG sensory neurons and in mo-
toneurons [139, 140]. However, there is no evidence of a
potential cross-talk between NgR1/p75/RhoA and FGF sig-
nalling in the PNS yet, although FGF2 has been demonstrated
to act as potent inhibitor of RhoA in primary neuron cultures
[141].

With regard to lesion-induced neuropathic pain, FGF7may
play a role in injury-induced nociception. It is localised in the
large dense-core vesicles (LDCVs) of small-diameter primary
sensory neurons and may be transported to the dorsal spinal
cord [142]. FGF7 increases the amplitude of excitatory post-
synaptic current evoked by stimulating the sensory afferent
fibres in spinal cord slices. Intrathecally applied FGF7 poten-
tiates a formalin-induced acute nociceptive response, while it
is diminished in FGF7 knock-out mice. Mice deficient in
FGF2 or FGFR1/FGFR2 exhibit decreased thermal pain sen-
sitivity accompanied by neuropathy of unmyelinated axons in
the dorsal spinal cord [143, 144]. Furthermore, continuous
intrathecal infusion of FGFR1 inhibitors reduces neuropathic

pain-related behaviour in the partial sciatic nerve lesion model
via inhibition of p38 MAPK [145].

Demyelination in the CNS

In the CNS, oligodendrocytes are required for myelination
during development and in demyelinating disease. FGFR1
expression in these cells increases as the lineage progresses
from oligodendrocyte precursor cells (OPCs) to mature oligo-
dendrocytes. FGF2 and FGFR2 are also found in terminally
differentiated oligodendrocytes [146]. Astrocyte-derived
FGF2 positively influences the survival and proliferation of
OPCs [147]. Conditional ablation of FGFR1 and R2 leads to
the down-regulation of myelin gene expression, reduced my-
elin thickness, and axonal degeneration as knock-out mice age
[148, 149]. FGFR3 is expressed in OPCs as well; however,
FGFR3-deficient mice exhibit no changes in OPC prolifera-
tion rates [150].

Demyelination causes severe neurological deficits that are
partially reversed by the spontaneous remyelination of axons
by oligodendrocytes. Although the CNS is isolated from the
peripheral milieu by the blood-brain barrier, remyelination
can be triggered by peripheral factors that leak into the CNS
after injury, including FGFs. Various FGFs are elevated in
autoimmune diseases of the brain, such as multiple sclerosis:
FGF1 in remyelinated lesions, FGF2 in active lesions and in
the cerebrospinal fluid, FGF9 in active demyelinated lesions,
and FGF21 in activated microglia or macrophages [151–153].
Intraventricular delivery of FGF2 induces severe disruption of
mature oligodendrocytes, a marked loss of myelin, and aber-
rant accumulation of immature oligodendrocytes with a
premyelinating phenotype [154]. Interestingly, the relative
concentrations of the extracellular matrix protein Anosmin-1
and FGF2 in human MS lesions appears to be important for
OPC migration through their interactions with FGFR1. This
may have consequences for remyelination of lesioned axons
because Anosmin-1 inhibits the effects of FGF2 on cellular
migration [155–157].

FGF9 (also termed glia activating factor) is expressed by
neurons and glia [158]. Like FGF2, FGF9 suppresses myelin
protein synthesis by differentiating OPCs [159]. In multiple
sclerosis (MS) lesions, FGF9 has been demonstrated to act
indirectly, i.e. via the initiation of a complex astrocytic re-
sponse that compromises remyelination [151]. By contrast,
circulating FGF21, a member of the endocrine FGF family
(expressed in the pancreas), stimulates OPC proliferation
through interactions with β-klotho, an essential co-receptor
of endocrine FGFs, in lysophosphatidylcholine (LPC)-in-
duced lesions [160]. OPCs express β-klotho, the inhibition
of which prevents increased OPC proliferation and
remyelination.

Another level of complexity is introduced by the action of
FGF1 and FGF2 in acute versus chronic MS lesions. FGF2
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and FGFR1 levels are higher in MS patients than in controls,
and a difference between relapse patients with higher FGF2
levels and those in remission is observed as well [161].
FGFR1 and FGFR2 double mutant mice exhibi t
hypomyelination in the chronic cuprizone model, indicating
that FGF signalling (presumably via PI3K/AKT) is necessary
for remyelination [162]. However, other studies have found
the opposite, i.e., increased numbers of oligodendrocytes and
improved remyelination of cuprizone-induced lesions or less
myelin and axonal loss in MOG35-55-induced EAE in mice
lacking FGF2 or FGFR1 [163–167]. This discrepancy may
be due to the complexity of FGF signalling in multiple re-
sponses to injury and stress.

In experimental autoimmune encephalomyelitis (EAE), a
model for MS, overexpression of FGF2 leads to enhanced
remyelination and reduced axonal damage [168, 169].
Conversely, in the MOG35–55-induced EAE model of MS,
FGF2 deficiency results in a more severe disease course, in-
creased infiltration of lymphocytes and macrophages, and re-
duced remyelination [170]. By contrast, viral-mediated FGF2
overexpression results in less disease severity via inhibition of
lymphocyte/macrophage infiltration [168]. FGF2 treatment
clearly interferes with inflammation by reducing macro-
phages, microglia, and CD8 T-cells and limiting CD44-
mediated leukocyte migration [168, 171, 172].

Brain Tumour Formation

FGFRs are commonly overexpressed in many types of cancer.
High levels of FGFR1 are associated with better overall sur-
vival in peripheral nerve sheath sarcomas [173], while activat-
ing mutations in the FGFR1 kinase domain have been found
in a subset of glioblastoma patients with poor prognosis [174].
FGFR2 is expressed at lower levels in high-grade gliomas,
which correlates with higher proliferation and lower survival
rates [175]. These grade IV malignant gliomas are amongst
the most lethal human cancers, because they are resistant to
neurosurgery, cytotoxic chemotherapy, and radiation [176].
Most patients present with primary glioblastoma multiforme
associated with irregular signalling of epidermal growth factor
(EGF) receptors or mutated PTEN (phosphatase and tensin
homolog). Combined RAS/AKT signalling and PTEN defi-
ciency have been shown to act as the main drivers of these
tumours [177]. Regulators of ERK signalling, such as the
Sprouty proteins, also play an important role in glioma prolif-
eration [178].

High levels of FGF1 and FGF2 have been detected in gli-
oma tissue relative to the normal brain [179]. Whereas expres-
sion of FGFR1 is low in normal white matter, its synthesis is
dramatically increased in malignant astrocytic tumours [180].
Nuclear FGFR1 contributes to increased proliferation of glio-
ma cells [19]. The blockade of FGF signalling by various
means, amongst them FGF2 antibodies, siRNAs against

FGFR1, or treatment with the FGFR/VEGFR inhibitor
PD173074, reveals small but significant growth inhibitory
effects in glioma cell lines [181, 182]. FGF inhibitors stimu-
late apoptosis, inhibit glioblastoma invasion, and suppress an-
giogenesis [183]. Down-regulation of FGF2 potentiates the
effect of temozolomide (TMZ), an oral alkylating agent, by
inhibiting proliferation and migration, blocking the cell cycle
in G0/G1, and promoting apoptosis [184]. However, the effi-
cient treatment of brain tumours with antibodies, siRNAs, or
pharmacological inhibitors remains a challenge (see
Therapeutic Approaches below).

Glioblastoma is also one of the most highly vascularised
cancers. Therefore, inhibition of FGF activity, for example, by
overexpressing dominant-negative FGFR1, may constitute a
therapeutic strategy for disrupting angiogenesis-dependent
signals required for glioma growth and invasion [185].
FGF2 promotes angiogenesis directly by activating the prolif-
eration and migration of endothelial cells and indirectly by
upregulating urokinase-type plasminogen activator, which al-
so leads to cell migration [186]. Furthermore, secretion of
FGF2 by glioma cells enhances the blood-brain barrier func-
tion of endothelial cells, which may contribute to drug resis-
tance [187]. Interestingly, recent data suggest that FGFR1
inhibitors also decrease resistance to radiotherapy, a wide-
spread problem in glioblastoma [188].

FGFs in Psychiatric Disorders

Over the years, it has become clear that FGF2 may act as key
factor in neuropsychiatric syndromes via activation of FGFR1
[3, 189–191]. The proposed functions range from memory
enhancing to anti-depressant and anxiolytic functions. In fact,
FGF2 is down-regulated in rats showing high spontaneous
anxiety. Knockdown of hippocampal FGF2 activity increases
anxiety in naïve rats, and FGF2 treatment reduces anxiety in
highly anxious rats [192]. However, mice with genetic abla-
tion of FGF2 isoforms do not show alterations of anxiety-like
stress susceptibility [193]. It should be noted, however, that
other growth factors (BDNF and IGF-1) exert similar
neuromodulatory effects as FGF2 on anxiety-related behav-
iour, as do genetic and environmental factors.

Traditional anxiolytics interfere with long-term extinction
of fear memories. By contrast, chronic extinction is augment-
ed by FGF2 that reduces the likelihood of exhibiting a relapse
of extinguished fear in a new environment or following stress.
Interestingly, early life treatment with FGF2 may decrease
anxiety-like behaviour in adulthood, which probably involves
an interaction between FGF receptors and adenosine A2 re-
ceptors or dopamine D2 receptors [194]. Furthermore, epige-
netic mechanisms may be involved, such as regulation of non-
coding RNAs, histone modifications, or DNA methylation
[3]. FGF2 promotes the association of trimethylated histone
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protein H3 at lysine 9 (H3K9me3) at its own promoter [195].
Commonly used bipolar disorder drugs, such as valproate and
lithium chloride, have been shown to inhibit histone
deacetylases (HDACs) and to increase FGF1 expression
[196].

Changes in FGFR levels and genetic variations of FGFR2
have been implicated in the pathomechanisms of schizophre-
nia [197]. Serum levels of FGF2 are increased in medicated
schizophrenia patients and in non-medicated patients
exhibiting negative symptoms [198]. FGF signalling distur-
bances in mood disorders might be indirect, since the disrup-
tion of schizophrenia-associated proteins, such as the neuronal
PAS domain protein 3 (NPAS3), correlates with a dramatic
reduction in FGFR1 mRNA, and NPAS3 deficiency
behaviourally resembles FGFR1 knock-out mice [199].
Moreover, the phenotype of FGFR-deficient mice is reminis-
cent of other animal models for schizophrenia and mood dis-
orders, for example, of knock-outs for disruption in schizo-
phrenia 1 (DISC1), BDNF, and NRG1 [191]. Interestingly,
nuclear FGFR1 has been implicated in the disease pathogen-
esis of schizophrenia. Neuron-committed cells from patients
overexpressing FGFR1 reveal an association of nuclear
FGFR1 with a large number of genes dysregulated in schizo-
phrenia [27].

FGF signalling is clearly disturbed in individuals with ma-
jor depressive disorder (MDD). Levels of FGF1, FGF2,
FGFR2, and FGFR3 decrease in cortical areas, while FGF9
and FGF12 are elevated in the anterior cingulate and dorsolat-
eral prefrontal cortex of depressive patients [200].
Ubiquitously found NG2 glial cells (precursors for
myelinating oligodendrocytes) have been shown to secrete
FGF2 during chronic stress, which may prevent glutamate
abnormalities and maladaptive depressive behaviour [201].
Direct relationships were suggested when the intracerebroven-
tricular injection of FGF2 resulted in antidepressant effects,
which were also observed after FGF2 infusion into the pre-
frontal cortex in chronic unpredictable stress models of de-
pression [202]. Notably, FGF2 may have indirectly enhanced
neuronal activity by the stimulation of astrocyte proliferation,
which is reduced in rodent depression models.

Elevated FGF2 levels may also play a role in the therapeu-
tic effects of tricyclic antidepressants and selective serotonin
re-uptake inhibitors [203]. The low and highmolecular weight
isoforms of FGF2 increase in response to monoamine oxidase
inhibitor treatment in cortical astrocytes [204], and anti-
depressive treatments in rodents elevated FGF2 expression
in the hippocampus and cerebral cortex [203, 205].
Inflammatory reactions such as microglia activation and pro-
liferation, which accompany depressive-like behaviours in
LPS models, are ameliorated by neuron-derived endogenous
FGF2 [171] or by FGF2 infusions [206]. FGF22 is putatively
also involved in regulating affective behaviour. FGF22
knock-out mice exhibit depressive symptoms such as longer

duration of floating, increased immobility in the tail suspen-
sion test, and a decreased preference for sucrose [207].

In animal models of drug use and addiction, FGF2 expres-
sion is increased in reward-related infralimbic/medial prefron-
tal cortex areas, and its neutralisation facilitates extinction of
cocaine seeking [208]. Cocaine blocks the re-uptake of dopa-
mine, and the auto-oxidation of dopamine results in free-
radicals as by-products [209], which in turn increase FGF2
expression in astrocytes [30]. FGF2 is required for
amphetamine-induced sensitisation [210], dendritic growth
in dopaminergic neurons, and reductions in intrinsic excitabil-
ity [211]. These effects are probably mediated not only by
FGF2 but also by a cocktail of growth factors that arbitrate
maladaptive stimulant induced alterations in neuronal func-
tion and structure.

Therapeutic Approaches

FGFs display a poor blood-brain barrier penetration and have
a short half-life. They are vulnerable to proteolytic cleavage
events resulting in their inactivation in various body fluids. A
recent study demonstrated that a protein delivery coacervate
can be prepared that controls FGF2 release and maintains its
bioactivity by binding FGF2 via charge interaction consisting
of polycation-polyethylene argininylaspartatediglyceride
(PEAD) and heparin [212]. Furthermore, biodegradable
micro-osmotic pumps based on microelectromechanical sys-
tem (MEMS) technology have been developed for long-term
controlled release of FGF2 [213]. Clearly, novel approaches
including small non-peptidergic FGF mimetics will be re-
quired for the treatment of central and peripheral nervous sys-
tem disorders.

Stimulants of FGFR and NCAM, such as the FGF-derived
dekafin peptides, will be particularly useful in promoting tis-
sue repair [214, 215]. It will be interesting to determine if
these dendrimers might also be beneficial in normalising cog-
nitive and social behaviour by their influence on the
excitation/inhibition balance in the brain. Furthermore, FGF-
dendrimer-based targeted delivery of drugs through FGFR
may be a useful technology to target tumour cells or other
FGFR expressing cells [216]. Novel biomaterials such as non-
toxic and chemically inert hydrogels provide ideal scaffolds
for the ingrowth of regenerating axons. Recently, FGF2 con-
taining HEMA-MOETACL hydrogels were demonstrated to
deliver FGF to the injured spinal cord in a localised and
sustained manner [217]. Two months after implantation, the
hydrogel was surrounded by an acellular vascular matrix
consisting of glycosaminoglycan (GAG) and elastic/collagen
fibres that promoted FGF-enhanced adhesion and migration
of various cells types, resulting in nervous tissue regeneration
and functional recovery in the paralysed hindlimbs of rats with
complete spinal cord injury.
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More recent developments include genetic approaches, for
example, neuronal or glial FGF/FGFR transfer via lentiviral
vectors (LVs). Gene therapy provides a useful tool for the
specific down-regulation or knock-out of neuronal targets,
since efficient siRNA treatments and viral gene transfer of
shRNAs are now available for humans. Gene replacement
therapy has been demonstrated to promote survival of patients
with spinal muscular atrophy (SMA) following a single intra-
venous infusion of adeno-associated virus 9 (AAV9) contain-
ing cDNA coding for SMN [218]. LVs are even more useful
for in vivo applications than AAVs because of their efficiency
in gene delivery and their excellent safety profile. Moreover,
in contrast with retroviral vectors, LVs do not depend on ac-
tive division of the cell to be transduced and produce only
minimal al terat ion in cel lular physiology [219].
Alternatively, organically modified silica (ORMOSIL) nano-
particles may be used as nonviral vectors for efficient in vivo
gene delivery. Nucleus-targeting FGFR1 was successfully
transfected with this method [220].

Conclusions

The intricate relationship between oligodendrocytes and
Schwann cells and central and peripheral axons, respectively,
as well as the close association of ramified astrocytic or
microglial processes with neuronal perikarya, neurites, and
synapses represent the morphological basis for all FGFR-
dependent signalling processes in neuronal and glial cells.
More than 10 members of the FGF family function in these
spatio-temporal domains, including membrane and nuclear
compartments, to regulate transcriptional, post-transcriptional,
and post-translational molecular events underlying instant
changes in behaviour, long-lasting tissue repair, and axon re-
generation. The effects of FGFs are clearly different from
other neuronal growth factor families that act in the develop-
ing and adult brain. First, they strongly involve glial elements,
and, second, they interact with several unrelated receptors via
direct physical interaction or formation of heteromeric recep-
tor complexes.

Currently, it is not possible to conclude with certainty
whether the neurochemical and morphological alterations in-
duced by FGFR signalling represent causes, consequences,
epiphenomena, or a combination of those in the various path-
ological processes discussed here. Therefore, it is often not
clear whether modulators of FGFRs would result in successful
treatment that interferes with disease defining pathomecha-
nisms. They could also alleviate symptoms or modify second-
ary, perhaps even beneficial aspects of brain disorders as ex-
emplified by the negative effects of endogenous FGF2 in ex-
perimental models of amyotrophic lateral sclerosis [75].
Hence, the specific cellular context of a given pathology in-
volving primarily glial and/or neuronal mechanisms will

decide whether therapeutic interference with FGFRs is indi-
cated or not.
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