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Quantitative standardization of resident mouse behavior for
studies of aggression and social defeat
Christine C. Kwiatkowski1,2, Hope Akaeze3,4, Isabella Ndlebe5, Nastacia Goodwin6,7, Andrew L. Eagle 5, Ken Moon5,
Andrew R. Bender1,8, Sam A. Golden 6,7 and Alfred Jay Robison 1,5

Territorial reactive aggression in mice is used to study the biology of aggression-related behavior and is also a critical component of
procedures used to study mood disorders, such as chronic social defeat stress. However, quantifying mouse aggression in a
systematic, representative, and easily adoptable way that allows direct comparison between cohorts within or between studies
remains a challenge. Here, we propose a structural equation modeling approach to quantify aggression observed during the
resident-intruder procedure. Using data for 658 sexually experienced CD-1 male mice generated by three research groups across
three institutions over a 10-year period, we developed a higher-order confirmatory factor model wherein the combined
contributions of latency to the first attack, number of attack bouts, and average attack duration on each trial day (easily observable
metrics that require no specialized equipment) are used to quantify individual differences in aggression. We call our final model the
Mouse Aggression Detector (MAD) model. Correlation analyses between MAD model factors estimated from multiple large datasets
demonstrate generalizability of this measurement approach, and we further establish the stability of aggression scores across time
within cohorts and demonstrate the utility of MAD for selecting aggressors which will generate a susceptible phenotype in social
defeat experiments. Thus, this novel aggression scoring technique offers a systematic, high-throughput approach for aggressor
selection in chronic social defeat stress studies and a more consistent and accurate study of mouse aggression itself.
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INTRODUCTION
Aggression is a common, adaptive animal behavior that broadly
defines social conflict related to competition for resources or self-
defense. However, aggression is an unobservable construct, or
latent factor, that cannot be directly measured. Instead, aggres-
sion is defined by a unifying constellation of observable indicators
that characterize an aggressive behavioral phenotype. One such
behavioral phenotype in rodents is territorial, or reactive,
aggression where a dominant male confronts and expels
pubescent males from its marked territory [1]. Territorial aggres-
sion is typically studied with variations of the resident-intruder
procedure, a multi-day (typically 3- day) behavioral assay during
which an intruder mouse is placed in the home cage of a resident,
and the subsequent social interaction (SI) behaviors are observed.
The severity of the resident’s aggressive behavior during resident-
intruder testing is characterized by attack features, including
latency to the first attack, the number of attack bouts, bout
duration, attack consistency, attack site, level of tissue damage,
bite number, and responsiveness to intruder submission behaviors
[2–4]. However, individual variation of these measurements
between and even within experimental cohorts of mice makes a
consistent overall determination of aggression behavior difficult.
Currently, no one indicator exists that accurately encapsulates
mouse aggressive behavior for use in behavioral studies, leading
to difficulty in comparing aggressive behavior between labs and

decreased replicability in experimental set-ups that utilize
aggressive behavior as a component.
Mouse aggression is a key component of the chronic social

defeat stress (CSDS) procedure [5–7], a gold-standard model for
the study of mood-related disorders in mice. Due to its
etiological, predictive, discriminative, and face validity, the CSDS
procedure has grown enormously in popularity over the last
decade (Fig. 1a). In CSDS, inbred C57BL/6J male intruder mice
are repeatedly subjected to bouts of social defeat by larger and
more aggressive male outbred CD-1 resident mice, inducing
enduring deficits in SI and other behavioral antecedents related
to mood disorders like anhedonia and anxiety. However, the
measurement of aggression exhibited by the resident CD-1
mouse is not standardized, introducing unnecessary variability
into CSDS studies.
To evaluate aggression, the observed attack features may be

used as dependent variables themselves, or to calculate a
composite aggression score. A drawback to operationalizing
aggression as any one of its observed indicators is that a single
indicator may provide a limited view of behavior. This is especially
true if the selected variable depends upon the escape behavior of
the intruder mouse (e.g., attack duration), which can vary between
intruders. Furthermore, unwanted variation due to measurement
error contaminates any true score of aggression when only one
indicator is used [8]. Alternatively, a composite aggression score
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can be generated by applying a rank or sum function to the
observed indicators. This too is not optimal since, due to natural
cohort-to-cohort variation, scores that depend on the group mean
(e.g., z-score) will change when mice are added to analyses over
time, or the same numerical score will reflect different behavior
between mice in separate experimental cohorts. Furthermore, the
validity of summed or aggregated indicators representing
repeated measurements should also account for any expected
change in behavior over the course of the behavioral assay [e.g.,

the “winner effect”, wherein aggressive mice become more
aggressive over time as they learn to rapidly and efficiently
dominate intruders; 9, 10], permitting appropriate weighting of
the contribution of variables to the overall aggression score. To
this end, we outline a data-driven method to model aggression
and systematically generate aggression scores that are compar-
able across experimental cohorts, at different repeated screenings,
and between labs. This is a critical tool for social defeat
experiments and direct studies of territorial reactive aggression,

Fig. 1 Aggression is a composite measure for studies of aggression behavior and chronic social defeat. a The number of studies using
CSDS listed on NIH Pub Med each year since 1985. b Data presented in this manuscript are drawn from aggressor screenings at three different
institutes located across the United States (c), performed over the course of 10 years by four separate laboratories. d The resident-intruder
procedure is a 3-day behavioral assay that evaluates aggression during a timed social interaction. After habituation of retired breeder male
CD-1 aggressors to the home cage, a different male C57BL/6J intruder is introduced for 3min per day on each of 3 days. Attack features
including bouts, latency, and duration are recorded for each resident mouse. e–g Among experimentally naïve aggressors (Set 3; n= 579),
there was main effect of trial day for bouts (p < 0.0001), latency (p < 0.0001), and duration (p < 0.0001). e The number of bouts increased on day
2 versus day 1 (p < 0.0001) and day 3 versus day 1 (p < 0.0001). f Latency decreased across all trial days (p < 0.001). g Duration increased only on
days 2 and 3 when compared to day 1 (p < 0.0001). Together, bout, latency, and duration measurements generate nine observed variables that
can be structured in an (h) first-order or (i) second-order measurement model to calculate an aggression score. ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05; error bars indicate SEM.
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as these methods become more prominent and reproducibility
more challenging.
Structural equation modeling (SEM; see Supplemental informa-

tion) provides an ideal confirmatory framework for testing
theoretical relations in data measured across multiple dimensions
(e.g., latency to attack, bout number, and bout duration) of a latent
factor (e.g., aggression). The assumption of these models is that
shared variance among observed indicators is caused by a
common relationship to the latent factor. Confirmatory factory
analysis (CFA) is a particularly useful measurement tool for
preclinical research because it utilizes foundational research, such
as extensive behavioral data, as a ground-truth to inform
modeling by allowing researchers to specify the number and
pattern of variable relationships [11]. Indeed, utilizing previous
research to make a priori modeling decisions within this SEM
framework is how CFA earns its “confirmatory” moniker.
The goal of the current study is to develop an empirically driven

measurement model that explains variation in species-normative
territorial reactive aggression among male CD-1 retired breeder
mice. To measure aggression, we selected latency to the first
attack, attack bouts, and average attack duration because these
observed indicators are the most common behavioral metrics
used to quantify aggression without performing in-depth
ethological analysis, making them suitable for high-throughput
screening. We show that CFA generates an effective and
consistent measurement model, the Mouse Aggression Detector
(MAD), across four different laboratories in different institutes
across the United States with CD-1 mice acquired from multiple
vendors over a decade of experiments (Fig. 1b, c). We then apply
the model to additional, smaller cohorts of mice to further
demonstrate the stability of aggression scores over repeated
screening experiments and how aggressor selection predicts CSDS
outcomes. Together, this approach facilitates statistically rigorous
multivariate analyses of aggression to evaluate aggressor perfor-
mance as well as consistent selection of aggressors for CSDS
research. Use of MAD allows direct comparison of mouse
aggression between labs and studies for the first time and will
facilitate high-throughput screening for consistent and stable
aggressors, improving the consistency and replicability of CSDS
and related social stress studies. Finally, we now make the model
(i.e., code) available for free use with GitHub (https://github.com/
RobisonLab/MAD).

METHODS
Animals
All experiments involving male CD-1 and C57BL/6J mice were
approved by the Institutional Animal Care and Use Committee at
the University of Washington, Icahn School of Medicine at Mount
Sinai, and Michigan State University and conducted in accordance
with guidelines from the Association for the Assessment and
Accreditation of Laboratory Animal Care and National Institute of
Health. Mice were housed in a 12:12 h light–dark cycle and
provided ad libitum access to water and a standard
laboratory diet.

Resident-intruder procedure
Aggression was evaluated using the resident-intruder procedure
as previously described [4, 5, 12, 13]. The procedure was repeated
over 3 consecutive trial days and measures of latency to the first
attack, the number of attack bouts, and attack duration were
collected each day.

Chronic social defeat stress
CSDS was conducted as previously described [5]. Experimental
C57BL/6J mice were subsequently evaluated for susceptibility to
defeat in SI, also as described [14]. See Supplementary Methods
for details.

Aggregate data
The Robison and Mazei-Robison Labs at Michigan State University
contributed aggression screening data from multiple cohorts for a
combined total of 210 sexually experienced CD-1 male mice, 131
of which were experimentally naïve aggressors (Set 1). The Russo
Lab contributed data for 448 experimentally naïve, sexually
experienced aggressors (Set 2) from screenings conducted at
the Icahn School of Medicine at Mount Sinai and subsequently
used for other experiments [4]. We combined Sets 1 (n= 131) and
2 (n= 448) to form a large, aggregate dataset of screening
information for 579 experimentally naïve mice (Set 3). Aggression
scores were generated for a completely inclusive dataset of 658
experimentally naïve and experienced mice (Set 4) from the
Robison, Mazei-Robison, and Russo Labs. The Golden Lab at the
University of Washington contributed an independent dataset of
182 sexually experienced, experimentally naïve CD-1 male mice
that underwent aggression screenings (Set 5) that were measured
using the SimBA computer classification toolkit with an “attack”
predictive classifier generated as previously described [15].

Data analysis
We utilized the SEM framework to model attack behaviors (i.e.,
latency, bouts, duration) as manifest indicators representing
theoretically related facets of an underlying aggression factor.
Confirmatory factor analysis was conducted using the lavaan
package [16] in RStudio version 3.6.2 [17]. Models were estimated
using maximum likelihood estimation with robust standard errors.
To evaluate the CFA models, we examined several different
indices reflecting goodness-of-fit between the hypothesized
covariance structure and the observed data covariance matrix
(Table S1). We explored fit indices, including the comparative fit
index (CFI), Tucker–Lewis index (TLI), root mean square error of
approximation (RMSEA), and standardized root mean square
residual (SRMR) [18]. We evaluated our proposed measurement
models using thresholds for good fit: RMSEA ≤ 0.06, CFI ≥ 0.95,
TLI ≥ 0.95, and SRMR ≤ 0.08 [19]. To compare models, we
performed Satorra–Bentler scaled chi-square difference tests
[20]. Once the final model was established, we calculated
aggression scores for smaller cohorts of mice using RStudio which
inputs model parameters in a multivariate equation with novel
data. To use MAD in this way, materials and instructions are
publicly available on GitHub (https://github.com/RobisonLab/
MAD). PRISM software 8.0 was utilized to compare aggression
scores via Pearson correlation tests and analyze our observed
indicators using repeated measures analysis of variance (ANOVA)
tests with Tukey’s multiple comparison tests for post hoc analysis.

RESULTS
Attack behavior varies across trial days during the resident-
intruder procedure
To determine potential changes in behavior during resident-
intruder screenings (Fig. 1d), we independently examined changes
in latency, bouts, and duration across trial days using experimen-
tally naïve aggressor data generated at Michigan State University in
2018–2020 (Set 1; n= 131) and the Mount Sinai School of Medicine
in 2010–2014 (Set 2; n= 448), as well as in a combined,
experimentally naïve aggressor dataset (Set 3; n= 579). In
accordance with previous research [4, 10, 12], we show with
repeated measures ANOVA that experimentally naïve, sexually
experienced CD-1 male mice (Set 3) exhibit significant increases in
aggression-related behavior across trial days (Fig. 1e–g): reduced
latency to the first attack and increased bout number and bout
duration. We established a significant main effect of trial day for
bouts (F(1.999, 1156)= 120.9, p < 0.0001), latency (F(1.940, 1121)=
248.5, p < 0.0001), and duration (F(1.958, 1132)= 36.12, p < 0.0001).
The number of bouts significantly increased only on day 2 versus
day 1 (ΔM= 1.772, SE= 0.1398, p < 0.0001) and day 3 versus day 1
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(ΔM= 2.005, SE= 0.1418, p < 0.0001). Latency significantly
decreased across all trial days (day 2 versus day 1 ΔM= 46.77,
SE= 2.772, p < 0.0001; day 3 versus day 1 ΔM= 56.64, SE= 2.881,
p < 0.0001; day 2 versus day 3 ΔM= 9.874, SE= 2.474, p= 0.0002).
Duration significantly increased only on days 2 and 3 compared to
day 1 (day 2 versus day 1 ΔM= 1.210, SE= 0.1783, p < 0.0001; day
3 versus day 1 ΔM= 1.525, SE= 0.2020, p < 0.0001). Taken
together, these data suggest that behavior changes over trial

days, underscoring the importance of developing an empirical
model of aggression.
Next, we developed two single-factor CFA models to determine

how to best calculate a composite measure of aggression. We
compared a first-order model with freely estimated factor loadings
(i.e., regression weights) for all nine indicators (Fig. 1h) and a
second-order model where indicators were grouped by trial day
(Fig. 1i). In the latter model, the estimated residual variance for
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latency on day 3 was negative, suggesting that all variability in this
indicator was explained by the model. Therefore, residual variance
for latency on day 3 was fixed to zero to improve estimation. For
both models, the loadings for all indicators on their hypothesized
factors were significant, suggesting that a unifying latent construct
(i.e., aggression) is driving variation in all the observed variables.
As shown in Table S1, model fit was poor for Model 1 for Set 1

(RMSEA= 0.168; CFI= 0.721; TLI= 0.628; SRMR= 0.092), Set 2
(RMSEA= 0.161; CFI= 0.713; TLI= 0.617; SRMR= 0.078), and the
combined Set 3 (RMSEA= 0.167; CFI= 0.712; TLI= 0.616; SRMR=
0.079). All reported fit indices improved dramatically in Model 2A
versus Model 1. Specifically, model fit for Model 2A was good for
Set 1 (RMSEA= 0.058; CFI= 0.970; TLI= 0.957; SRMR= 0.050),
acceptable for Set 2 (RMSEA= 0.072; CFI= 0.947; TLI= 0.924;
SRMR= 0.046), and acceptable for the combined dataset, Set 3
(RMSEA= 0.076; CFI= 0.945; TLI= 0.921; SRMR= 0.040). These
data show Model 2A, in which the observable variables are
grouped by trial day, has the most appropriate structure for
aggression measurement. Taken together, this suggests that there
is a credible latent structure in measuring aggression with the
resident-intruder procedure and aggression is best represented as
a composite of measures from all three trial days.
To yield our final MAD model, we further refined Model 2A

based on model modification indices. This reveals additional
sources of shared variance between the variables in the model
that may improve model fit if consistent with theoretical
considerations. For example, mice that have a shorter attack
latency on the first trial day tend to also have a shorter attack
latency on the second and third day. Acknowledging that
behavior is correlated between trial days, we inspected the
modification indices for relationships between trial days and
mathematically accounted for those relationships in the model
without changing its overall structure (Fig. 1i). With this model,
residual variance estimates for latency on days 2 and 3 were
negative, suggesting not only that the model explains differences
in these variables but that there was no residual covariance
between them. Residual variance for latency on days 2 and 3 as
well as their residual covariance were therefore fixed to zero.
Model fit for MAD was excellent for Set 1 (RMSEA= 0; CFI= 1.000;
TLI= 1.006; SRMR= 0.034), Set 2 (RMSEA= 0.045; CFI= 0.985;
TLI= 0.971; SRMR= 0.035), and Set 3 (RMSEA= 0.042; CFI= 0.988;
TLI= 0.976; SRMR= 0.028). We subsequently conducted Satorra–
Bentler scaled chi-square difference tests to compare MAD to
Model 1 across all three datasets [20]. Results indicate that fit is
significantly better for MAD for each comparison. In sum, we
generated a model demonstrating excellent fit and significant
factor loadings for three datasets. This demonstrates that our
decision to include preselected variables for measurement
(confirmatory factor analysis does allow for the a priori specifica-
tion of variable relationship) are validated by the goodness-of-fit
indices, highlighting the suitability of the MAD Model for
measuring aggression behavior in the resident-intruder paradigm.

Consistencies in model structure produce similar aggression
scores when applied to novel data
Although the factor structure is the same, factor loadings differ
between datasets (Fig. 2a–c), thereby changing the regression
coefficients used in the multivariate regression formula used to
estimate aggression scores. In particular, the model estimates the
same patterns of factor loadings in their contribution to
generating an aggression score, where latency > bouts > duration.
The model diverges, however, in the estimated factor loadings for
trial days. For Set 1, factor loadings for day 3 > day 2 > day 1 in
their contribution to the overall aggression score, while the factor
loadings for Sets 2 and 3 followed the pattern of day 2 > day 3 >
day 1 in their contribution to the aggression score. However, the
95% confidence intervals for these estimates were overlapping. To
ensure that the model would be generalizable to novel datasets,
we investigated the extent to which these differences change
aggression scoring and if the scores remain comparable. Using the
different model parameters calculated from Sets 1–3, we applied
three iterations of MAD to Set 4, our combined dataset of 658
animals with and without (i.e., Set 3) experimental histories,
yielding three different aggression scores for each animal to be
used in subsequent analyses.
To this end, we used lavaan’s predict function to separately

apply each of the three patterns of estimated factors loadings (i.e.,
for Sets 1, 2, and 3) to the entire, aggregated sample (Set 4, n=
658) in order to generate three aggression scores for each animal
(Fig. 2d). Aggression scores range from negative to positive with
negative values denoting low aggression while positive values
reflect high aggression (Fig. 2e, f), and the level of aggression must
be interpreted with respect to the range. Unsurprisingly, summary
statistics for Set 4 represent moderately aggressive animals, or the
average CD-1 behavior, but the numerical values differ between
calculations made using parameters generated from MAD’s
application to Set 1 (M=−0.59, SD= 0.95, Mdn=−0.71, MIN=
−1.73, MAX= 1.25), Set 2 (M= 0.31, SD= 1.07, Mdn= 0.16, MIN=
−0.91, MAX= 2.52), and Set 3 (M= 0.06, SD= 0.94, Mdn=−0.05,
MIN=−1.05, MAX= 1.94).
To assess the viability of applying MAD to different datasets, we

fitted MAD to Set 4 (n= 658 aggressors from all conditions), and
conducted a series of Pearson correlation tests between the three
aggression scores generated for each animal. We found a
significant, positive relationship between aggression scores
calculated using Sets 1 and 3 (Fig. 2g; r= 0.9913, R2= 0.9826,
p < 0.0001); using Sets 2 and 3 (Fig. 2h; r= 0.9910, R2= 0.9821, p <
0.0001); and using Sets 1 and 2, representing resident-intruder
aggression screenings at two different institutions (Fig. 2i; r=
0.9650, R2= 0.9312, p < 0.0001). Therefore, despite these differ-
ences in absolute values, MAD aggression scores consistently
represent the spectrum of aggressive behavior. Taken together,
these findings strongly suggest consistent factor-variable relation-
ships and measurement model structure that accurately and
consistently quantifies aggressive behavior.

Fig. 2 Aggression scores are significantly correlated across datasets. The final model (MAD) is a second-order measurement model wherein
the observed variables are grouped by trial day before loading onto the higher-order factor, aggression. a–c In each path diagram, circles
represent latent (unobservable) factors, including an overall aggression score as well as a behavior score on days 1–3, while squares represent
the observed indicators, bouts, latency, and duration, on days 1–3, and small circles with double-headed arrows represent indicator residuals
and residual variance. Arrows containing factors loadings, or regression weights, are interpreted as regression coefficients, denoting the
change in the indicated variable, latent or observed, for every one unit change in the higher-order factor the arrow descends from. These
values along with other model estimates are used in a multivariate formula to calculate aggression scores. MAD was developed three times
using experimentally naïve aggressor data, thereby generating model estimates unique to (a) Set 1 (n= 131), b Set 2 (n= 448), and (c) Set 3 (n
= 579). d–i Application of MAD to Sets 1–3 generated three sets of model parameters from which three sets of aggression scores were
calculated for Set 4 (n= 658). d Schematic representing the four primary datasets used in this analysis. The distributions of aggression scores
calculated with Set 3 model estimates are depicted in separate histograms for (e) Set 1 and (f) Set 2 datasets. Correlation analyses showed
positive relationships between scores calculated using (g) Sets 1 and 3 parameters (p < 0.0001); h Sets 2 and 3 parameters (p < 0.0001); and (i)
Sets 1 and 2 parameters (p < 0.0001).
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Aggression scores are stable over time
To determine if aggression scoring is consistent over time, we
repeated resident-intruder screening at two different time points
in a novel cohort of n= 20 CD-1 mice, beginning 7 (T1) and
21 days (T2) after animal arrival (Fig. 3a). There was a significant
main effect of trial day (F(1.862, 35.39)= 10.79, p= 0.0003) as well
as an interaction effect between trial day and screening time point
(F(1.957, 37.19)= 5.065, p= 0.0118). At T1, there was an increase
in bouts (Fig. 3b) on days 2 and 3 compared to day 1 (day 2 versus
day 1 ΔM= 3.050, SE= 0.8223, p= 0.0045; day 3 versus day 1

ΔM= 3.350, SE= 0.7755, p= 0.0011). At T2, there were no
differences in bout number between trial days. Between T1 and
T2, we found an increase in the number of bouts on day 1 (ΔM=
2.200, SE= 0.5161, p= 0.0013), but not on days 2 or 3. For latency
(Fig. 3c), there were main effects of trial day (F(1.693, 32.16)=
8.901, p= 0.0014) and screening time (F(1.00, 19.00)= 9.169, p=
0.0069), as well as an interaction effect between trial day and
screening time (F(1.975, 37.52)= 7.497, p= 0.0019). At T1, latency
decreased on days 2 and 3 compared to day 1 (day 2 versus day 1
ΔM= 55.20, SE= 17.76, p= 0.0173; day 3 versus day 1 ΔM= 71.85,
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SE= 16.70, p= 0.0012), whereas only latency between days 1 and
2 at T2 decreased (ΔM= 26.00, SE= 9.586, p= 0.0409). Latency on
days 1 (ΔM= 68.80, SE= 15.22, p= 0.0007) and 2 (ΔM= 39.60, SE
= 14.25, p= 0.0355) decreased between T1 and T2. At T1, we
found an increase in duration (Fig. 3d) between days 1 and 3 (ΔM
= 2.586, SE= 0.7380, p= 0.0071), but there were no other
differences at T1 or T2. Between T1 and T2, there was an increase

in duration on days 1 (ΔM= 2.941, SE= 0.9765, p= 0.0213) and 2
(ΔM= 2.808, SE= 1.040, p= 0.0418).
Aggression scores were subsequently calculated by applying

MAD to this novel dataset of n= 20 aggressors using parameters
calculated with Set 3, our most inclusive dataset of experimentally
naïve aggressors. We found that, though there were differences in
the observed variables (Fig. 3b–d), there was no difference in

Fig. 3 Aggression scores are stable over time and predict CSDS utility. a Schematic showing experimental timeline. Aggression was
measured via the resident-intruder procedure at two different time points beginning on days 7 and 21 in a novel cohort of 20 mice. b–d The
raw screening data for bouts, latency, and duration on trial days 1–3 are compared between Screening 1 (T1) and Screening 2 (T2). b Across
screenings, there was a main effect of trial day (p < 0.001) as well as an interaction effect between trial day and screening (p < 0.05). At T1,
there was a increase in bouts on day 2 versus day 1 (p < 0.01) and day 3 versus day 1 (p < 0.01). At T2, there were no differences in bout
number between trial days. Between T1 and T2, we found a increase in the number of bouts on day 1 (p < 0.01), but not on days 2 or 3. c For
latency, there were main effects of both trial day (p < 0.01) and screening (p < 0.01) as well as an interaction effect between trial day and
screening (p < 0.01). At T1, latency decreased compared to day 1 on days 2 (p < 0.05) and 3 (p < 0.01) whereas only latency between days 1 and
2 at T2 (p < 0.05) decreased. Latency on days 1 (p < 0.001) and 2 (p < 0.05) decreased between T1 and T2. d At T1, we found an increase in
duration between days 1 and 3 (p < 0.01), but there were no other differences at T1 or T2. Between T1 and T2, there was an increase in
duration on days 1 (p < 0.05) and 2 (p < 0.05). e A paired t-test of aggression scores at Time 1 and Time 2 demonstrates no differences in
aggression (p > 0.05). Among the top most aggressive animals, however, the majority maintained aggression during the two screenings.
f Aggression scores are correlated for individual animals between T1 and T2 (p < 0.01). A simple linear regression analysis demonstrates a
relationship between aggression scores at T1 and T2 (p < 0.01). g A cohort of 42 aggressors was screened and those with the top 10 MAD
scores (high aggressors) and bottom 10 scores (low aggressors) were chosen for subsequent CSDS. Adult male C57 mice exposed to CSDS
with high aggressors showed reduced social interaction (h) and increased time in the corners (i) compared to those exposed to low
aggressors. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05; error bars indicate SEM.

Fig. 4 MAD for modeling SimBA data. a Schematic showing the experimental timeline. Aggression behavior among experimentally naïve,
sexually experienced CD-1 male mice (Set 5; n= 182) was measured using the resident-intruder procedure for three consecutive days under
video observation, and behavior was evaluated using the SimBA classification toolkit. b Schematic showing the path diagram for MAD model
estimates generated using Set 5. Circles represent latent (unobservable) factors, including an overall aggression score as well as a behavior
score on days 1–3, while squares represent the observed indicators, bouts, latency, and duration, on days 1–3, and ovals represent error. c–e
We found a main effect of trial day for bouts (p < 0.0001) and latency (p < 0.0001) but not duration (p > 0.05). c Bouts increased day 2 versus
day 1 (p < 0.0001) and day 3 versus 1 (p < 0.0001). d Latency decreased on day 2 versus day 1 (p < 0.0001) and day 3 versus 1 (p < 0.0001).
e There were no differences in average bout duration across trial days. f Histogram showing the distribution of aggression scores for Set 5.
****p < 0.0001; error bars indicate SEM.
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overall aggression over time (Fig. 3e; t(19)= 1.693, p= 0.1069).
However, we found that aggression scores at days 7 and 21
correlated (Fig. 3f; r= 0.5699, p= 0.0044) with aggression scores
at T1 accounting for ~32% of variation in aggression scores at T2
(R2= 0.3248, m= 0.4787, p= 0.0087). Importantly, we showed
that the majority of the most aggressive animals maintain their
aggressive behavior between screenings (Fig. 3e), suggesting that
aggressive animals behave consistently during repeated resident-
intruder interactions, a typical circumstance for mice used as
aggressors in multiple social defeat experiments. Taken together,
these results indicate that our model provides a stable aggression
score over time, making it well suited for initially selecting
aggressors that will remain aggressive over multiple CSDS
experiments.

MAD score predicts CSDS outcome
We next sought to determine whether a stratified aggressor
exposure predicts susceptibility to CSDS-induced SI deficits. We
screened 42 naïve CD-1 aggressors and conducted CSDS using
aggressors with high (n= 10) and low (n= 10) aggression
scores determined from the MAD model (Fig. 3g). Experimental
juvenile C57BL/6J male mice were exposed to these two
separate groups (n= 19 high-expose, n= 20 low-exposed).
Experimental mice were subsequently evaluated for suscept-
ibility to social avoidance in the SI task. C57 mice exposed to
high aggressors showed reduced interaction ratio (Fig. 3h;
t(37)= 2.038, p= 0.048) and increased corner time (Fig. 3i; t(37)
= 2.539, p= 0.014) compared to mice exposed to low aggres-
sors. Moreover, F test for inequality of variance showed that
mice exposed to high aggressors had increased variance in SI
(Fig. 3h; F(18,19)= 5.216, p= 0.0008) compared to mice
exposed to low aggressors, indicating a separation of suscep-
tible from resilient animals.

MAD generated aggression scores generalize to automated
aggression classification
To determine the extent to which the MAD model can be applied
to resident-intruder data acquired from supervised machine-
learning classification of encounter videos, we used MAD to
generate aggression scores for 182 experimentally naïve, sexually
experienced CD-1 male mice (Set 5; Fig. 4a) that were evaluated
during 10-min aggression trials using an attack classifier
generated by SimBA, a supervised machine-learning tool for
social behavior classification [15]. We observed the same
consistent pattern of factor loadings for model estimates as seen

in the primary analysis (Fig. 4b): latency > bouts > duration in their
contribution to aggression score. Unlike the findings from the 3-
min screening data, there were significant differences between
model estimates for all three variables on all 3 days. Moreover,
model estimates for trial day factor loadings showed a pattern of
day 2 > day 3 > day 1 in their contribution to the aggression score.
Model estimates for day 2 were different from days 1 and 3, but
there was no difference between days 1 and 3. Together, these
preliminary findings suggest that the behavioral characteristics
defining aggression become more clearly distinguished from each
other during a 10-min trial compared to a 3-min trial. However, 3-
and 10-min screenings both allow efficient definition of overall
aggression in each mouse.
As shown in Table S2, however, metrics indicating MAD’s

goodness-of-fit for Set 5 decreased compared to the primary
analyses, falling into the acceptable rather than good to excellent
range. Though fit may be acceptable (RMSEA= 0.088; CFI= 0.963;
TLI= 0.926; SRMR= 0.045), this finding suggests that there is
additional variation in this dataset that is unaccounted for in the
MAD model. Indeed, examination of the observed indicators
revealed a slightly different pattern of aggression behavior across
trial days. Using repeated measures ANOVA, we show that Set 5
mice demonstrate increases in only some aggression-related
behaviors over time (Fig. 4c–e). Specifically, we established a main
effect of trial day for bouts (F(1.930, 349.4)= 17.37, p < 0.0001) and
latency (F(1.831, 331.4)= 28.97, p < 0.0001) but not duration (F
(1.840, 333.1)= 0.8337, p= 0.4268). Again, the number of bouts
increased only on day 2 versus day 1 (ΔM= 8.313, SE= 1.607, p <
0.0001) and day 3 versus day 1 (ΔM= 6.758, SE= 1.521, p <
0.0001). Likewise, latency decreased only on days 2 and 3
compared to day 1 (day 2 versus day 1 ΔM= 85.29, SE= 14.61,
p < 0.0001; day 3 versus day 1 ΔM= 103.7, SE= 16.31, p < 0.0001).
Overall average attack duration among mice measured with
SimBA is 0.37 s (versus 2.96 s among animals scored by human
experimenters in Set 3) and the number of attack bouts is higher
in Set 5, certainly because screening was over three times longer,
but also likely a result of SimBA parsing attacks into many shorter,
independent attack bouts. Taken together, this suggests that the
attack classifier used for this analysis measures aggressive
behavior more granularly than human annotation, likely a function
of unbiased annotation of every frame across all experimental
videos. Importantly, these data show that MAD provides a useful
mechanism for calculating aggression scores for high-throughput
screening using automated supervised classification, as well as
manual classification (Fig. 4f).

Fig. 5 Three trial days are sufficient to characterize aggression. a–c The raw screening data for experimentally naïve, sexually experienced
CD-1 male mice (n= 25) during a 10-day resident-intruder screening. a Bout number for days 1–10. Day 1 is different than all other trial days
(p < 0.0001). Bout number on day 5 is also different from that of day 7 (p < 0.05). b Latency for days 1–10. Day 1 is different from all other trial
days (p < 0.0001). There are no other differences between trial days. c Duration for days 1–10. Day 1 is different (p < 0.001) from days 2–6, but
not 7–10. Duration on day 4 is also different from duration on day 10 (p < 0.05).
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Three trial days allow for sufficient data collection for aggression
scoring
To evaluate the number of trial days necessary for appropriately
assessing aggression, we conducted ten screening trials over 10
consecutive days. Results showed a significant main effect of trial
day for latency (Fig. 5a; F(9)= 16.46, p < 0.0001), bouts (Fig. 5b; F
(9)= 7.711, p < 0.0001), and duration (Fig. 5c; F(9)= 4.216, p <
0.001). We found some differences in measured behaviors across
individual days (Tables S7–S9), but overall, we show that extended
screenings do not provide substantively more information than 3-
day resident-intruder procedure. Moreover, we examined mea-
surement invariance (a test of construct measurement fidelity)
across trial days during model development. Overall, we could not
establish metric invariance across all 3 trial days, precluding use of
a three-factor model that grouped the observed indicators by
time. We further probed levels of measurement invariance
between trial days. We could not establish measurement
invariance between days 1 and 2, suggesting that the same
construct is not being measured between these days. However,
we established metric invariance between days 2 and 3, indicating
that aggression behavior begins to stabilize on days 2 and 3. As
such, the resident-intruder procedure is necessarily a multi-day
experiment.

DISCUSSION
We present a data-driven method to generate a composite
measure of aggression behavior for sexually experienced CD-1
male mice using confirmatory factor analysis. We showed the
generalizability of MAD across labs and experimenters, and the
stability of MAD in quantifying aggressor performance over time,
thereby demonstrating the utility of our model as a critical tool for
both CSDS and aggression research.
We also showed how MAD provides a useful measurement

model for data collected using automated machine-learning-
based supervised classification. In short, any laboratory using the
social defeat procedure can input aggressor screening data into
MAD and use the resulting scores to select CD-1 residents that are
most aggressive and that will remain aggressive over multiple
defeat experiments. These data can be collected manually or
using automated approaches. Further, these scores can be
reported and incorporated into the description of CSDS experi-
ments, standardizing (or at least accounting for) CD-1 aggression
levels across experiments and laboratories.
This approach allowed us to generate an internally consistent

and generalizable model that can be used to study latent mouse
aggression without the need for high-speed video monitoring,
specialized hardware, or behavioral analysis software, and that is
readily accessible to experimenters. However, our approach can
be easily extended to computational neuroethological methods
[21] for the study of aggression-related behavior [22], which
generate datasets that contain many more observable measures
and therefore require greater dimensionality reduction. As
computational neuroethology becomes more common, our
approach can further be used to standardize aggression scores
between labs using manual and labs using automated
approaches.
Currently, there is little standardization in the measurement of

aggression within the resident-intruder procedure. Many studies
rely on single variable measures to quantify offensive aggressive
behavior. For example, average attack latency is widely used to
evaluate aggressive behavior in both aggression [e.g., 23] and
CSDS research [5]. Koolhaas et al. [12] recommend summing
offense behavior over three to four resident-intruder trials as a
data reduction technique to score aggression across trial days. In
CSDS research, Golden et al. [5] recommend selecting aggressors
that attack on two consecutive days and have an attack latency of
<60 s. In both cases, evaluating aggression requires the analysis of

more than one aspect of aggressor behavior. The current study
therefore builds on these approaches by offering a data-driven
model to efficiently and systematically generate an aggression
score that can be directly compared to those generated in other
cohorts at different times, by different experimenters, and/or in
different environments.
Confirmatory factor analysis utilizes variance and covariance to

determine the structure of a measurement model, and mice are
both sensitive to experimental conditions and do not often rigidly
adhere to a pattern of behavior. Though there were no significant
differences between the factor loadings for days 1–3, the model
estimated a stronger factor loading for day 2. Looking at the raw
data, we observed a small subset of animals that attacked only on
day 2 and for an extended duration, likely driving this finding. As
such, including cohorts of animals in aggregate data that may
have been evaluated by different researchers or different screen-
ing methods (i.e., real-time versus video) certainly affects model
structure, but building the model with data from multiple
experimenters and institutes ensures its generalizability and thus
its potential utility in all labs. We demonstrated here that
aggression scores were highly correlated despite differential (but
non-significant) numerical weighting of days 2 and 3 parameter
estimates (Fig. 2i). Thus, though variation in screening procedures
likely produced differential parameter estimates that affect
scoring, this only makes the model more amenable to different
datasets and applications.
Another limitation of the current study is that the experimental

animals were all male. In light of an ongoing effort to broaden our
understanding of affective disorders, recent adaptations of the
CSDS model have been successfully applied to female mice
[24, 25]. Critically, this work has revealed differences in attack
behavior between intermale and rival female aggression [24].
MAD does not account for any sex differences in aggression
behavior and therefore cannot necessarily be applied to female
aggressors. Though there may be some overlap in model
structure, additional work is required to accurately characterize
rival female aggression. It is likely that female aggression may be
qualitatively different, both in measurement of behavior and the
underlying circumstances that produce the aggression. While
given similar conditions and behavioral measurements it can be
presumed that the model may accurately predict aggression
scores in both males and females, additional work would be
necessary to test this hypothesis. Future work should apply SEM
approaches to female aggressor data to develop an appropriate
measurement model to aid the study of sex as a biological
variable in aggression.

CONCLUSION
In the current study, we sought to develop a systematic, data-
driven method of measuring aggression behavior in a preclinical
model of territorial aggression. SEM provides an ideal confirmatory
approach that leverages foundational research to quantify
aggression behavior. With this approach, we show that a
multidimensional, multi-day aggression screening provides a
better characterization of aggression behavior. As such, utilizing
this standard measurement approach, especially in tandem with
other quantitative measurement tools (e.g., SimBA), facilitates
reproducibility of research and collaboration across labs. Impor-
tantly, our model, MAD, can be used for high-throughput
screening to streamline aggressor selection and reduce an
element of variability in CSDS research.
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