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Metastatic heterogeneity of the consensus molecular subtypes
of colorectal cancer
Peter W. Eide1,2,5, Seyed H. Moosavi1,2,3,5, Ina A. Eilertsen1,2,3, Tuva H. Brunsell1,2,3,4, Jonas Langerud1,2,3, Kaja C. G. Berg1,2,3,
Bård I. Røsok2,4, Bjørn A. Bjørnbeth2,4, Arild Nesbakken2,3,4, Ragnhild A. Lothe 1,2,3 and Anita Sveen 1,2,3✉

Gene expression-based subtypes of colorectal cancer have clinical relevance, but the representativeness of primary tumors and
the consensus molecular subtypes (CMS) for metastatic cancers is not well known. We investigated the metastatic heterogeneity
of CMS. The best approach to subtype translation was delineated by comparisons of transcriptomic profiles from 317 primary
tumors and 295 liver metastases, including multi-metastatic samples from 45 patients and 14 primary-metastasis sets. Associations
were validated in an external data set (n= 618). Projection of metastases onto principal components of primary tumors showed
that metastases were depleted of CMS1-immune/CMS3-metabolic signals, enriched for CMS4-mesenchymal/stromal signals, and
heavily influenced by the microenvironment. The tailored CMS classifier (available in an updated version of the R package
CMScaller) therefore implemented an approach to regress out the liver tissue background. The majority of classified metastases
were either CMS2 or CMS4. Nonetheless, subtype switching and inter-metastatic CMS heterogeneity were frequent and increased
with sampling intensity. Poor-prognostic value of CMS1/3 metastases was consistent in the context of intra-patient tumor
heterogeneity.
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INTRODUCTION
Gene expression-based subtypes of colorectal cancer (CRC) have
important clinical associations, potentially also with response to
anticancer agents in the metastatic setting1. However, the most
widely adopted transcriptomic classification framework (the
consensus molecular subtypes, CMS)2 was initially developed for
primary tumors, and there are strong indications of contextual
variation. Metastatic CRCs likely represent a skewed distribution of
the CMS groups. This expectation is partly based on prognostic
associations, in particular, the poor prognosis associated with
primary CMS4-mesenchymal/stromal tumors; the different pre-
valence of CMS-associated genetic markers between primary and
metastatic CRCs, including microsatellite instability (MSI) and
BRAFV600E/KRAS mutations3,4; as well as the effect of systemic
therapy5. Despite strong signaling enrichments with targets of
standard-of-care treatments among CMS groups, two recent
retrospective analyses of randomized clinical trials evaluating
first-line combination chemotherapies with either anti-EGFR or
anti-angiogenic agents against metastatic CRCs, showed discor-
dant results for the predictive value of CMS6,7. Accordingly, CMS
classification is in its current form not ready for clinical translation,
and even the representativeness of the CMS framework for
heterogeneous metastatic cancers is unknown8. There is a need
for a thorough inquiry into the extent to which subtypes are
maintained over time, across tumor sites, and between metastatic
lesions from the same patient (longitudinal and spatial intra-
patient heterogeneity).
A complicating factor of such interrogations is the fact that

gene expression profiles of bulk tumor tissue samples represent
the sum of signals from the cancerous cells and tumor
microenvironment9,10. These signals are biologically interlinked,
but variation in their relative abundances is seen among samples

from different tumor regions11,12. Furthermore, variation in the
nature of microenvironment signals is expected between samples
from the primary and metastatic sites. We and others have
previously provided a solution to the analogous problem of
classifying pre-clinical models, which either lack a tumor micro-
environment entirely (cell lines and organoid cultures), or present
a completely different background (murine xenografts)13,14. This
indicates the feasibility of robust CMS classification in the context
of a changing tumor microenvironment.
We aimed to investigate the biological and prognostic

associations of CMS in the context of metastatic tumor hetero-
geneity. To delineate the optimal approach to the translation of
the classification to metastases, we initially explored the potential
skewedness of transcriptomic profiles between primary and
metastatic tumors.

RESULTS
CMS framework captured by principal components
To systematically compare CRC gene expression profiles in the
primary and metastatic settings in relation to CMS, we performed
exploratory analyses of an in-house data set of 317 primary tumor
samples (315 patients) and 295 liver metastasis samples (176
patients; Table 1). The first five principal components (PC1-PC5)
defined by principal component analysis (PCA) of the primary
tumors had significantly different medians across the CMS groups
(p= 2 × 10−4, Kruskal–Wallis test; Supplementary Fig. 1a), illustrat-
ing the association between CMS and global differences in gene
expression of primary tumors (Fig. 1, left lower half of the matrix).
Single-sample gene set variation analysis (GSVA15) of 14 pre-
selected and CRC-informative gene sets showed that PC1 was
most strongly correlated with the TGF-β and EMT signatures, and
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inversely with MYC and cell cycle signatures (absolute Pearson
correlation coefficient |r| > 0.64). PC1-scores also separated
microenvironment-dominated CMS1/CMS4 primary tumors from
more epithelial-like CMS2/CMS3 tumors. Eighty-eight (77%) of 114
tumors with PC1 > 0 were either CMS1 or CMS4, while this was the
case for only 16 (12%) of the 138 tumors with PC1 < 0 (odds ratio
[OR]= 25 [95% confidence interval, CI: 12–54], p < 2 × 10−16). PC2
was most strongly correlated with the MSI and microsatellite
stable (MSS) transcriptomic signatures (|r| > 0.61), and separated
the predominantly MSS subtypes CMS2/CMS4 from MSI-enriched
CMS1/CMS3, consistent with strong enrichment for primary
tumors with positive MSI status among samples with a high
PC2-score (58 MSI of 128 with PC2 > 0; 1 MSI of 166 with PC2 < 0,
OR > 134, p < 2 × 10−16). PC3 was correlated with the intestinal
LGR5+ stem-cell signature (|r|= 0.63), and separated CMS2/CMS4
from CMS1/CMS3 (at PC3 > 0 threshold: OR= 7.4 [95% CI 4–14],
p= 1 × 10−12), similarly to PC2. PC4 and PC5 were both associated
with the gastro-intestinal differentiation signature (|r| > 0.42), and
distinguished CMS3 from the remaining subtypes. Largely
concordant results were found among primary CRCs from an
independent data set (n= 5455; Supplementary Fig. 2).

Transcriptomic selection of resected liver metastases
compared to primary CRCs
To indicate whether gene expression variation captured by CMS in
the primary setting would be sensitive to expression signals
enriched in liver metastases (due to a different tumor micro-
environment), we calculated a sample-wise “liver background”
score based on genes with hepatocyte-enriched expression
(Human Protein Atlas16). As expected, this score was not
correlated with the first five PCs among primary CRCs, and
explained only a negligible amount of cross-sample variance (r2 <
0.11; Supplementary Fig. 1b). The liver metastases were therefore
added onto the same five projections (PC1-PC5) defined by the
primary tumors. This illustrated that liver metastases largely
occupied the same high-variance transcriptomic subspace as
primary CRCs (Fig. 1, right upper half of the matrix). The biological
validity of the projection was confirmed by similar Pearson
correlations between PC scores and gene signatures in the
primary and metastatic tumors (Fig. 1, diagonal windows).
However, striking differences in sample distributions were also
seen, and PC1 among metastases was significantly shifted towards
the space populated by primary CMS4 tumors (p < 2 × 10−16,
Wilcoxon test; Supplementary Fig. 1), indicating a strong enrich-
ment with CMS4 in the metastatic setting. Furthermore, the
interquartile range of PC2 scores was much smaller among
metastases than primary tumors (21 versus 30), indicating a
relative depletion of samples with MSI-like gene expression
characteristics, predominantly CMS1/CMS3 tumors, in the meta-
static setting. There were no metastatic samples with very high
PC4 scores, again indicating depletion of CMS3. These results were
corroborated by DNA-level analyses, and the prevalence of MSI
was 20% among primary tumors and only 0.6% among metastases
(calculated patient-wise: 1 of 176 patients). Importantly, this
skewed transcriptomic distribution of metastases relative to
primary tumors was also found in the external validation data
set of 545 primary tumors and 73 metastases (Supplementary Fig.
2).
Notably, the first two components from in-house primary

tumors were highly similar to previously published PCA-derived
subtype scores of primary CRCs17 (|r| > 0.78; Supplementary Fig. 3),
supporting that PCA separates the primary, and by extension, the
metastatic tumors according to the CMS framework.

Translation of CMS classification to the metastatic setting
Application of the original random forest CMSclassifier2 to the liver
metastases suggested that the transcriptomic selection was partly
reflected also in CMS classification. Compared to the primary CRCs,
there was a significant depletion of both CMS1 and CMS3 tumors
(95% CI of OR 0.20–0.77 and 0.11–0.82, respectively), and an
enrichment with CMS2 (95% CI of OR 1.1–2.9) among the
confidently classified metastases (n= 176 patient-wise unique
samples; Fig. 2a). However, there was a much larger proportion of
unclassified samples among the metastases (32% versus 20%),
and there was no enrichment with CMS4 tumors. This suboptimal
performance of the original classifier was likely attributed to
violation of the assumption that the query data should have a
similar distribution in gene expression values as the training data
(represented by liver metastases and primary tumors, respectively,
in Fig. 1). This violation might be caused by sample selection
inherent to the metastatic process, variation caused by different
expression signals from the tissue backgrounds (Fig. 2b), and
exposure to chemotherapy (Supplementary Fig. 4). We, therefore,
developed a tailored classifier for liver metastases, adopting our
approach previously used to classify pre-clinical models13. We first
performed a heuristic feature selection among protein-coding
genes (to maximize cross-platform portability) in CRC cell lines and
patient-derived organoids (to minimize sensitivity to microenvir-
onment signals), leaving 1104 genes as features for classification

Table 1. Clinicopathological characteristics.

Primary CRC
(n= 315
patientsa)

Metastatic CRC
(n= 176
patientsa)

No. of
patients

% No. of
patients

%

Age at surgery

Below 65 years 94 30 81 46

65–75 years 105 33 76 43

Above 75 years 116 37 19 11

Gender

Male 169 54 110 62

Female 146 46 66 38

Primary tumor location

Left/rectum 181 57 133 76

Right 126 40 35 20

Synchronous 7 2 1 1

Unknown 1 0.3 7 4

Cancer stage at first diagnosis

I 65 21 2 1

II 117 37 15 9

III 90 29 112 64

IV 41 13 31 18

Unknown 2 1 16 9

Diagnosis of liver metastasis

Synchronous (within 6 months
of initial diagnosis)

– – 138 78

Metachronous – – 38 22

Systemic oncological treatment prior to sampling of metastases

Neoadjuvant chemotherapy for
this metastatic situation

– – 134 76

Previous chemotherapy only – – 27 15

No previous systemic treatment
(naive)

– – 15 9

aFourteen patients with matched primary and metastatic tumor samples.
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(Methods). This template gene set was used to train a “nearest
shrunken centroids” classifier18 on gene expression data from
primary CRCs with a known CMS label (n= 252 confidently
classified tumors, t= 1.5, cross-validation accuracy= 0.93, Supple-
mentary Fig. 5). The resulting classifier was then applied to liver
metastases from the in-house series (n= 295 lesions from 176
patients), after adjusting for gene expression signals from the
“liver background” in each sample by regression analyses (Fig. 2b

and “Methods” section). This provided classifications in accor-
dance with expectations from exploratory analyses (Fig. 2a).
Specifically, we recorded strong depletion of CMS1 and CMS3
tumors relative to the primary setting (95% CI of OR 0.12–0.53 and
0.011–0.37, respectively), and an enrichment with CMS4 (95% CI of
OR 2.0–5.3), while the proportion of CMS2 tumors was similar to
the primary setting (95% CI of OR 0.75–1.8).
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Fig. 1 Liver metastases show reduced variation along the principal components that separate CMS1 and CMS3 primary tumors from
CMS2 and CMS4. The lower triangle of the scatterplot matrix depicts the first five principal components (PCs) for primary CRCs, with samples
colored according to CMS (dark gray= not confidently classified). The diagonal windows show the percentage of total variance explained by
each PC (bottom) and the Pearson correlations (r) between the indicated PC and single-sample gene set scores (GSVA) for the top-4 correlated
gene sets among primary tumors (hatched bars; blue and red represent negative and positive correlations, respectively). Correlations among
liver metastases are shown for comparison (non-hatched bars). The upper triangle represents the transpose of the lower triangle with the
metastatic samples (light gray) superimposed by projections onto the same PCs. The black contour lines represent the 50%, 75%, and 95%
two-dimensional density estimates. The presented data are from the in-house series, and results from the same analysis of the external
validation data set are included in Supplementary Fig. 2.
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The overall concordance of confidently classified liver metas-
tases between the original and tailored classifier was 0.93
(Supplementary Fig. 5d), but the tailored classifier resulted in
fewer unclassified samples (23% versus 32%), and the expected
enrichment with CMS4 was only significant with the new classifier
translated to the metastatic setting. Notably, 205/230 (89%) of the
confidently classified liver metastases were either CMS2 or CMS4.

CMS associations recapitulated among liver metastases
Projection of CMS-classified liver metastases onto PC1–PC4 from
primary tumors showed concordance between assigned subtypes
and global expression profiles (Fig. 2c). To further compare CMS
characteristics between the primary and metastatic settings
(classification with the original and tailored classifier, respectively),
we used single-sample gene set analyses as above (Fig. 2d and
Supplementary Fig. 6). Notably, the most pronounced discordance
was independent of CMS, and involved generally lower scores
among metastases for the cell cycle, DNA repair, and MYC
signatures (p < 1 × 10−8, Wilcoxon rank-sum test). CMS

associations were strongly correspondent between primary and
metastatic tumors. For example, EMT and TGF-β signals were
higher in CMS4 in both settings, and the gene expression-based
MSI score was highest in CMS1. The single patient with MSI-high
liver metastases was clearly CMS1. However, no metastases were
among the most prototypical CMS1 or CMS3 tumors, and the least
convincing pattern was the failure to capture enrichment with
metabolic signals in CMS3. The latter might be explained by the
small number of CMS3 metastases, but weak metabolic signaling
in CMS3 was common to the primary and metastatic settings.
Few (3%) of the metastases had a BRAFV600E mutation, but the

highest proportion was found in CMS1 (7%; Supplementary Fig.
7a). The distribution of TP53 mutations was significantly skewed
among CMS groups, with the highest proportion in CMS2 (86%, p
= 0.0005, Fisher’s test; Supplementary Fig. 7b), similarly to the
original publication of primary CRCs2. Co-occurrence of BRAF/
KRAS/NRAS and TP53mutations was significantly enriched in CMS1
and CMS3 (50% and 56%) compared to CMS2 and CMS4 (27% and
28%; p= 0.006, Fisher’s test; Supplementary Fig. 7c). Right-sided
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primary tumor location was most frequent in CMS1, although
“tumor sidedness” (right versus left+ rectum) was not significantly
different among the CMS groups, potentially related to the low
prevalence of CMS1 among liver metastases (Supplementary Fig.
7d).
The potential impact of chemotherapy exposure prior to tumor

sampling (Supplementary Fig. 4) was not adjusted for in the
tailored CMS classifier, based on the rationale that previous
treatment exposure will be relevant in most analysis settings.
There was a strong enrichment with CMS4, and a corresponding
depletion of CMS2, in samples exposed to neoadjuvant che-
motherapy compared to the few samples with no or only previous
treatment exposure (p= 0.0005, Fisher’s test; Supplementary Fig.
8a). Gene set analyses further showed that samples exposed to
neoadjuvant chemotherapy had lower cell cycle, MSS, and MYC
signature scores, both in the analysis of all and of only
CMS4 samples (Supplementary Fig. 8b, c). EMT and TGF-β
signatures were significantly higher in the neoadjuvant treat-
ment-group, consistent with CMS4-enrichment. However, the EMT
signature was also significantly higher when analyzing
CMS4 samples only, suggesting that CMS4 characteristics were
largely similar with and without neoadjuvant treatment exposure.
Furthermore, important CMS associations were found in separate
analyses of the subset of patients who did not receive
neoadjuvant chemotherapy (Supplementary Fig. 8d). This
included high MSI scores in CMS1, high DNA repair and HNF4A
signaling in CMS2 and CMS3, high glycolysis scores in CMS3, as
well as strong EMT and TGF-β signals in CMS4.

Pronounced intra-patient CMS heterogeneity in the
metastatic setting
Comparisons of matched primary and metastatic tumors from 14
patients (76 samples from 59 lesions) showed that only three
patients were assigned a single CMS (Fig. 3a; uncertain
concordance status in 5 patients due to unclassified samples).
There was no apparent difference in the pattern or rate of subtype
switching between patients who received neoadjuvant che-
motherapy for their liver metastases (subtype switching in 5 of
7) and patients who did not (1 of 2). Subtype switching was also
seen between the first and second liver resections in 4 of the 6
evaluable patients.
Multiple distinct metastatic lesions from the same liver resection

were compared for 45 patients (2–7 lesions per patient). Among
patients with more than one confidently classified lesion (n= 34),
intra-patient inter-metastatic CMS heterogeneity was found in
44% (Fig. 3b). Heterogeneity was associated with a higher number
of lesions analyzed (p= 0.004, Wilcoxon rank-sum test). A
particularly striking example was patient 141 (Fig. 3c) with
15 samples from two separate metastatic resections (5 and 3
lesions, respectively), for whom 14/15 samples were classified as
CMS2, while the remaining lesion was CMS4 (the primary tumor
also resembled CMS4, but was not confidently classified). Some of
this intra-patient heterogeneity may be attributed to ambiguity
near the class boundaries, but analyses of general patient-wise
transcriptomic heterogeneity (Methods) supported the hetero-
geneous classifications. The largest maximum Euclidean distance
between any two samples was higher for patients with hetero-
geneous classifications (Fig. 3d). The degree of intra-patient inter-
metastatic transcriptomic heterogeneity was not different
between patients who did or did not receive neoadjuvant
chemotherapy (Supplementary Fig. 9).
Heterogeneous intra-patient inter-metastatic CMS classification

was not associated with patient survival (Fig. 3e). However, the
translated CMS framework did show prognostic potential, and
patient stratification based on a randomly selected metastasis per
patient showed shorter median overall survival for CMS1 and
CMS3 compared to CMS2 and CMS4 (p= 0.07, Wald-test; Fig. 3f).

Given the extent of intra-patient CMS heterogeneity, we subse-
quently performed “worst-subtype stratification” according to the
following rule: if any lesion CMS1/CMS3, then patient CMS1/3
(combining the two poor-prognostic subtypes); if no CMS1/3 and
any lesion CMS4, then patient CMS4; otherwise CMS2. With this
stratification, the median overall survival was 28, 37, and
48 months, respectively, showing a significantly worse survival
for patients with any tumor classified in the MSI-like CMS1/CMS3
groups (p= 0.007, Wald-test; Fig. 3g). This was independent of
neoadjuvant chemotherapy in a stratified analysis (p= 0.004,
Wald-test). For comparison with previously published studies, the
analyses were repeated with classifications based on the original
primary CRC classifier, showing similar results (Supplementary Fig.
10).

DISCUSSION
We have translated CMS classification to CRC liver metastases
based on the delineation of transcriptomic skewedness between
primary and metastatic tumors, and implementation of a
computational approach to regress out signals from the tissue
background in gene expression profiles of bulk tumor tissue
samples. The tumor microenvironment has a confounding effect
on classification concordance of patient-matched primary and
metastatic samples19, and this study provides a dedicated
adaptation of CMS classification to metastatic CRCs. The principal
benefit with the tailored classifier was indeed a more robust
classification of the microenvironment-rich CMS4-mesenchymal
metastases. This supports the strategy of using CMS-associated
expression signals intrinsic to cancer cells to classify tumors
originating from different sites, and is consistent with our previous
results showing the potential to classify also pure CRC cell
cultures13. The tailored subtyping algorithm is available in an
updated version of the R package CMScaller (v2.0.1), and includes
build-in functionalities such as gene set analyses to evaluate the
classification.
Known biological characteristics of the CMS framework were

recapitulated in the metastatic setting. However, almost 90% of
the liver metastases belonged to one of only two subtypes, either
CMS2-canonical or CMS4-mesenchymal, suggesting that the
classification framework has a weaker biological discriminatory
power in metastatic compared to primary CRCs. This is in
accordance with previous studies showing a strong relative
depletion of CMS1-MSI/immune and CMS3-epithelial/metabolic
subtypes among metastases, although based on analyses with the
original CMS classifier3,5. The difference in subtype distribution
between the two disease settings is likely attributed to a
combination of biological and extrinsic factors, including variation
in metastatic propensity and treatment exposure, respectively.
Metastatic propensity is higher with CMS4-mesenchymal primary
tumors and lower with MSI-related subtypes (CMS1 and, to a lesser
extent, CMS3)2. In addition, some CMS-associated characteristics
such as MSI status, BRAFV600E, and KRAS mutations, as well as
primary tumor location, are associated with different patterns of
metastatic spread. These characteristics, therefore, have a different
distribution among metastatic sites20,21, as well as between
resectable and non-resectable disease22. This has likely contrib-
uted to a particularly high CMS4 versus CMS1/CMS3 ratio in our
study, which included resected liver metastases, representing a
selected subset of metastatic CRCs. Furthermore, chemotherapy is
frequently given prior to resection and sampling of metastatic
tumors, and has been shown to associate with a shift towards a
more mesenchymal phenotype5,23. Most of the samples in our
study were exposed to systemic neoadjuvant treatment, and this
was associated with a strong enrichment with CMS4, in agreement
with published data24. Combination chemotherapy is part of the
first-line treatment of most patients with metastatic CRC, and
the choice not to adjust for systemic therapy was based on the
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rationale that prior treatment exposure will be relevant in most
studies in which the tailored CMS classifier is applicable, including
clinical studies of experimental therapies.
The strong interest in the investigation of CMS in metastatic

CRC has to some extent been driven by its potential treatment
prediction value, including the biological rationale for differential
sensitivity to standard anticancer agents targeting EGFR or VEGF.
A strong relative sensitivity to EGFR inhibition in CMS2-like
subtypes has been supported in preclinical studies, both with
in vitro and in vivo models25,26. However, the lack of reproducible
results for associations with clinical treatment responses6,7 is likely
partly attributed to tumor heterogeneity8. Intra-patient CMS
heterogeneity was frequently observed in our study, and although
the comparison of matched primary tumors and metastases was
based on a small set of patients, the frequent subtype switching

was in line with previous studies showing a discordance rate of
~40% in CRCs metastasizing to the liver19,24. Accordingly, the use
of primary tumor gene expression profiles as a basis for CMS
classification in the clinical trial cohorts likely impacted the
analyses of associations to anti-EGFR versus anti-VEGF therapy
response. Furthermore, phenotypic plasticity provides an alter-
native pathway to drug tolerance27, and we also observed
evidence of subtype switching between repeated hepatic resec-
tions. An evolutionary shift from CMS2 to CMS4 characteristics
after anti-EGFR therapy has been shown to associate with the
development of secondary treatment resistance in metastatic
CRC28. The collective evidence of CMS plasticity in relation to
selection pressures, such as metastasis and exposure to
chemotherapies or targeted agents, highlights a potentially
decisive role of the timing and site of tumor sampling for accurate
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analysis of CMS in relation to clinical endpoints. Finally, we provide
strong evidence of frequent subtype heterogeneity also among
distinct liver lesions from individual patients. In fact, the results
show that more heterogeneity should be expected with more
intense sampling, supporting that there is an upper limit to the
accuracy of CMS biomarker status attainable from a single sample.
Classification heterogeneity was also shown to be associated with
general transcriptomic heterogeneity, suggesting that this is an
inherently difficult feature to overcome. Few if any transcriptomic
features of CRC show an “on-off” pattern and it has been
suggested that subtype distinctions may be of a continuous
nature17,29. Notably, the CMS framework did capture the biology
represented by such “continuous subtypes” in liver metastases.
However, more refined gene expression profiling methods like
single-cell RNA sequencing30 and spatial analyses31, or alterna-
tively image-based methods32–34, might improve the foundation
to resolve this challenge.
Despite challenges with tumor heterogeneity and dependence

on the tumor microenvironment, the CMS framework has
repeatedly been shown to have prognostic value also in the
metastatic setting. Metastatic CMS1 and to a lesser extent CMS3
cancers are associated with a particularly poor patient survi-
val6,7,19. This is partly explained by the aggressiveness of the MSI
phenotype in the metastatic setting, but was also found in our
study, where 99% of patients had MSS liver metastases. The
majority of patients with resected liver metastases classify as
either CMS2 or CMS4, and for these patients, the prognostic
discriminatory power seems weaker, although it should be noted
that the small and not statistically significant survival difference
indicating a benefit with CMS2 tumors has been shown
consistently across studies6,7,19. Importantly, the poor-prognostic
value of CMS1/CMS3 was in our study maintained in the context of
tumor heterogeneity, and patients with at least one CMS1 or
CMS3 metastasis had the shortest median overall survival. The
CMS framework identified 18% of the patients to belong to this
poor-prognostic subgroup when multiple sampling was per-
formed, but the patient number was limited and larger studies
are needed to conclude on the requirements for sample numbers
per patient, as well as the prognostic value relative to
clinicopathological factors and other prognostic biomarkers.
In conclusion, we have developed a method to translate CMS

classification to the metastatic setting. Nearly 90% of resected and
frequently chemotherapy-exposed liver metastases belonged to
either the CMS2 or CMS4 groups. Intra-patient CMS heterogeneity
was pronounced and increased with sampling intensity, suggest-
ing that the underlying heterogeneity might be even larger than
estimated in this study. Metastatic heterogeneity, therefore,
represents a challenge to the usefulness of the CMS framework,
potentially associated with the continuous rather than discrete
nature of subtype distinctions. However, clear biological distinc-
tions of at least the most “subtype-typical” samples, as well as a
prognostic value even in the context of tumor heterogeneity
support its usefulness also in metastatic CRC.

METHODS
Gene expression data
Gene expression profiles from 477 patients treated surgically for their
primary CRC and/or liver metastases at Oslo University Hospital, Norway,
between 2009 and 2019 were analyzed (Table 1). The original sample set
consisted of 298 metastatic samples, 24 patient-matched non-malignant
liver samples, and 317 primary tumor samples (from 315 patients25,35,36).
Three metastasis samples with a low tumor cell content were discarded,
based on an upper threshold for the “liver background” (described below)
estimated in normal liver samples as reference (≤10th percentile). This
retained 295 samples from 278 distinct liver metastatic lesions from 176
patients for further analysis. For intra-patient comparisons, matched
primary-metastasis samples were available from 14 patients (76 samples
and 59 lesions), and multiple metastatic deposits from each of 45 patients

(169 samples), including from the 2nd and 3rd liver resections of 10 and 1
patients, respectively. All patients provided signed informed consent, and
the study was conducted in accordance with the Declaration of Helsinki
and approved by the Norwegian Data Protection Authority and Regional
Committee for Medical and Health Research Ethics, South-Eastern Norway
(REC numbers 1.2005.1629;2010/1805).
Previously published in-house gene expression data from 35 CRC cell

lines and 24 patient-derived organoid cultures from resected liver
metastases were used to identify genes with cancer cell-intrinsic
expression37,38. Critically, all these different sample sets have been profiled
for gene expression using the same technology (GeneChip Human
Transcriptome Array 2.0; ThermoFisher Scientific, Waltham, MA, USA;
according to the manufacturer’s instructions), to facilitate cross-sample
type comparisons. Microarray data were processed using the R package
affy (v1.66.0)39 with brainarray Entrez v24 CDFs40. ComBat method
implemented in the R package sva (3.36.0) was used to account for batch
effects from preprocessing.
A publically available gene expression data set including 545 primary

CRCs and 73 metastatic lesions (GSE131418, “Consortium cohort”)5 was
preprocessed with affy and used for validation analyses.

MSI status and mutation analyses
Determination of MSI status (PCR‐based analyses of the BAT25/BAT26
markers or the five markers incorporated in the MSI Analysis System
version 1.2 [Promega, Fitchburg, WI, USA]) and sequencing of KRAS and
NRAS in exons 2–4, BRAF in exon 15 (including codon 600), and the full
coding sequence of TP53 (exons 2–11) has previously been performed on
an Applied Biosystems 3730 DNA Analyzer (ThermoFisher Scientific)41,42.

Development of CMS classifier adapted to CRC liver
metastases
Three distinct steps were combined to develop a classifier tailored to liver
metastases, including feature selection of the template gene set (similarly
to our approach previously used to develop a classifier enriched with
cancer cell-intrinsic features and suitable for pre-clinical models13),
background adjustment to account for signals from the liver tumor
microenvironment in bulk tissue samples, and training of a classifier based
on the resulting template gene set in primary tumors with known CMS
class. The workflow is outlined in Supplementary Fig. 5 and
specified below.

Feature selection. Only protein-coding genes with unique 1:1:1 NCBI
Entrez:GENCODE ensemble:HUGO Gene Nomenclature Committee map-
pings (n= 16,489) were considered, to facilitate portability. The following
heuristics were used for feature selection in a combined gene expression
matrix of CRC cell lines and patient-derived organoids (n= 59): (i)
maximum expression value of the gene higher than the first tertile of
the data set; and (ii) 10th–90th inter-percentile range of gene expression
values among samples within the top 10%. These filters were used to
enrich for robustly expressed and cancer cell-intrinsic genes, and retained
1104 genes as features for classification.

“Liver background” adjustment. To estimate the proportion of “liver
background” in transcriptomic data from bulk tumor tissue samples, P, we
leveraged the fact that hepatocytes have a high relative expression of
specific gene markers (e.g., F9, ALB16,43). For sample i (i ∈ 1,2, ..., N), the
proportion of “liver background,” Pi, was estimated as shown in Eq. (1):

Pi ¼ pi � pmin

pmax � pmin
where pi ¼

XM

j¼1

zijgj (1)

Here, g represents all genes with gene gjðj 2 1; 2; ¼ ;MÞ set to 1 if it is
included in the Human Protein Atlas list of liver-specific markers, else 0. z
represents the row/gene-wise mean-centered gene expression matrix.
Ordinary least squares regression was used to solve X= PB and derive the
expression of the cancer cell proper, xc, as the residuals xc= X− PB.
Example R code is included in the following.
If x represents a gene expression matrix (gene in rows/sample in

columns), the “liver background” was estimated and regressed out as
follows:
## R code
## liver background estimate
x_centered <- sweep(x, 1, rowMeans(x))
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g <- ifelse(rownames(x_centered) %in% liver_markers, 1, 0)
p <- colSums(x_centered[g,])
P <- (p - min(p)) / (max(p) - min(p))
## regress out liver background
fit <- lm(t(x)~P)
x_adj <- t(fit$residuals)
x_adj <- x_adj + abs(min(x_adj))
P is a vector of sample-wise estimates of the proportion of “liver

background”, and x_adj is the background-adjusted gene expression
matrix used for the classification of liver metastases.

Sample classification. CMS labels were assigned using the classifyCMS.RF
function in the R package CMSclassifier (v1.0.0)2, using the default
posterior probability of 0.5 to assign confident sample classifications. For
primary CRCs, the resulting labels were considered “true” and used to train
the tailored classifier.
Genes in the feature-selected template set were used as predictors to

train a nearest shrunken centroids classifier on the gene expression data
from CMS-labeled primary CRCs (n= 252 confidently classified tumors)18.
The tuning parameter t was used to control the shrinkage of the data, and
we used leave-one-out cross-validation to estimate the accuracy and
determine the optimal tuning parameter. The resulting classifier was
applied to the “background adjusted” liver metastases. The posterior
probability threshold for confident sample classification was set to obtain a
similar proportion of unassigned samples (NA) as initially reported2. This
liver metastasis classifier was implemented as a PAM model. To provide a
classifier that is not dependent on non-malignant liver samples, a random
forest44,45 classifier was trained on the resulting labels and implemented in
the lmCMScaller function. This model can be applied directly to liver
metastases, with no need for “liver background” adjustment.

Gene set analysis
Fourteen CRC- and CMS- informative gene sets (Fig. 2d) were retrieved as
previously described13, and sample-wise gene set scores were calculated
using the gene set variation analysis method implemented in the R
package GSVA (v1.36.2)15.

Statistical methods
All p-values were two-sided. Fisher’s Exact, Kruskal–Wallis, Pearson’s
correlation, and Wilcoxon tests were performed using the functions
fisher.test, kruskal.test, cor, and wilcoxon.test in the R package stats. PCA
was performed using the R function prcomp on genes (n= 5000) with the
largest cross-sample expression variance. Two-dimensional density esti-
mates of principal component scores were computed using the function
kde in R package ks (v1.11.7)46. General transcriptomic heterogeneity
between pairs of samples from each patient was calculated as the pairwise
Euclidean distance of the 3 first principal components (PC1–PC3 scores;
dimensionality reduction was used to lower the challenge of high variance
in gene expression data). R package sinaplot (v1.1.0) was used to add data
points to boxplots47.
Kaplan–Meier and Cox proportional hazard analyses were performed for

patients with liver metastases using the R package survival (v3.2–7). Hazard
ratios, 95% CIs, and Wald tests were calculated using the coxph function.
The primary end-point was median overall survival. Death from any cause
was registered as an event and patients were censored at loss to follow-up
or after five years. Time to event/censoring was calculated from the start of
treatment, either date of surgical resection or neoadjuvant treatment.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Gene expression profiles of primary CRCs (n= 211; Gene Expression Omnibus
accession numbers GSE79959, GSE96528, and GSE139170) and CRC cell lines (n= 34;
GSE97023) have previously been published. Data from liver metastases (n= 283),
including clinicopathological annotations, have been submitted under accession
number GSE159216 (private until the publication of a separate manuscript). The
remaining primary tumor samples have been submitted under accession number
GSE178120. The validation data set was downloaded from GSE131418 (Consortium
cohort).

CODE AVAILABILITY
The new CMS classifier tailored to liver metastases (random forest model) is
implemented in the updated version of the R package CMScaller (v2.0.1) with the
function lmCMScaller, and is available from https://github.com/Lothelab/CMScaller
with documentation and user examples.
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