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Abstract—Breast cancer is one of the most common cancers
in women, with the ability to metastasize to secondary
organs, which is the main cause of cancer-related deaths.
Understanding how breast tumors progress is essential for
developing better treatment strategies against breast cancer.
Until recently, it has been considered that breast cancer
elicits a small immune response. However, it is now clear that
breast tumor progression is either prevented by the action of
antitumor immunity or exacerbated by proinflammatory
cytokines released mainly by the immune cells. In this
comprehensive review we first explain antitumor immunity,
then continue with how the tumor suppresses and evades the
immune response, and next, outline the role of inflammation
in breast tumor initiation and progression. We finally review
the current immunotherapeutic and immunoengineering
strategies against breast cancer as a promising emerging
approach for the discovery and design of immune system-
based strategies for breast cancer treatment.
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INTRODUCTION

One in eightwomenwill develop breast cancer in their
lifetime. It is estimated that there will be 279,100 new
cases of breast cancer and 42,690 deaths in 2020
worldwide.102 Breast tumors have the potential to
metastasize to other organs such as bone, lung, and
brain,112 which is the main cause of cancer-related

deaths.15 Now it is well established that to progress and
metastasize successfully, the breast tumor remodels its
surrounding tissue and creates its own microenviron-
ment.5This newmicroenvironment, knownas the tumor
microenvironment (TME), includes changes in the
extracellular matrix (ECM), the vasculature, and the
supporting cells such as stromal cells (fibroblasts and
adipocytes), immune cells, and endothelial cells,5,6,13,117

all contributing to tumor progression.
Breast cancer has traditionally been considered one

of the cancers with the least immune responses.37,103

Recently, in the last 20 years, there has been an in-
crease in the literature for studies on the immune
effects on breast cancer. This has caused a more
thorough understanding of the immune system and
how it interacts with breast cancer. There are many
cells and cytokines involved in the breast cancer im-
mune environment, some with antitumorigenic roles,
others with protumorigenic or immunosuppressive
functions. These cells and cytokines can also promote
the progression of breast cancer through chronic
inflammation. Investigating how the immune system
functions and affects breast cancer is useful for
designing treatments to utilize the immune system and
microenvironment to treat breast cancer. It can also
enable engineering more predictive models for a bet-
ter understanding of the breast cancer biology, as well
as a more accurate prognosis and better treatment
options for breast cancer patients. Scientists have al-
ready begun to use the immune response to breast
cancer to their advantage and are creating
immunotherapies to perform various tasks such as
vaccinating against breast cancer, helping enrich the
immune system to fight breast cancer, or working in
conjunction with chemotherapy to reduce the breast
cancer mortality.
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This comprehensive review seeks to provide a glance
at the whole tumor immune microenvironment in the
case of breast cancer by looking at the ways the im-
mune system attacks the tumor, the methods through
which the tumor evades the immune response, the role
chronic inflammation plays, and strategies used to
combat breast cancer. To this end, first, we give a brief
introduction on the antitumor immunity and the im-
mune cells involved in antitumor response, then we
continue with how the tumors suppress and evade the
immune system and give an overview of the cells
involved. Next, we explain how inflammation supports
cancer progression. Finally, we give brief information
on immunotherapy and immune engineering, where
state-of-art treatment strategies and engineered models
of the immune system are discussed.

ANTITUMOR IMMUNITY

Antitumor immunity is one of the body’s first line of
defenses against tumors. In this section, we start by
reviewing the immune cells that generate an antitumor
response against breast cancer. Innate immune system
cells, such as natural killer (NK) cells, attack the pri-
mary tumor. These cells have also been thought to
prevent neoplasms from developing into fully formed
tumors.25 Cytotoxic T-cells are adaptive immune cells
that also attack the primary tumor. However, some
adaptive immune cells, such as B-cells may have dual
roles in the breast tumor immune microenvironment,
where they either promote tumor progression or pre-
vent it. A summary of the cell types discussed, and
their actions are shown in Fig. 1. The cells referenced
in this section are meant to highlight the antitumor
immunity function of the specific cells.

Cytotoxic T Lymphocytes (CTLs)

Cytotoxic T lymphocytes are CD8+ cells that play a
role in the antitumor immune response. First, an
antigen presenting cell (APC), in this case a tumor cell,
presents an antigen on its surface that activates the
CTLs. The CTLs respond first through clonal expan-
sion, then through lysing the target cell. CTLs act
through Fas/FasL binding at the surface of the target
cell, which drives the target cell to apoptosis.44

It has been shown previously that elevated levels of
CTLs correspond to a better prognosis and better
overall survival in triple negative breast cancer23,104 as
well as other types of invasive breast ductal carcino-
mas.84 CTLs, T-cells, and B-cells that have infiltrated
into the tumor, tumor infiltrating lymphocytes (TILs),
are found more often in higher grade ductal carcinoma
in situ and in more invasive carcinomas.113 Overall, an

increase in TILs have been proven to have a better
prognosis in breast neoplasms.23 Many researchers are
currently developing immunotherapeutic strategies
based on the use of CTLs as they have more specific
targets and are good at killing breast cancer cells and
cancer stem cells.23

Natural Killer (NK) Cells

The NK cells interact with a variety of surface
receptors on target cells to distinguish between the self
and non-self. This interaction allows the NK cells to
find and destroy enemies, while avoiding tissue dam-
age. Upon activation, NK cells produce a number of
inflammatory cytokines such as CCL5 and XCL1 to
crosstalk with T-cells and dendritic cells and initiate an
immune response. The presence of these cytokines has
been linked to increased cancer patient survival.11 The
NK cells, typically, take action through releasing
cytotoxic granules to kill the target cells.

The NK cells work to eliminate early tumors and
early metastases,76 but the role of NK cells within
breast cancer has not been fully elucidated. Various
studies87,91 have shown that the NK cell number does
not increase in breast cancer as compared to normal
breast tissue, but the number of lymphokine-activated
killer cells, a population of cells consisting of NK,
natural killer T cells, and T cells, activated by lym-
phokines to kill tumor cells, is increased. On the other
hand, in advanced breast cancer, studies showed that
the NK cell activity is decreased,8 suggesting that NK
cells are active during initial breast tumor develop-
ment.27 NK cell dysfunction has also been connected
to breast cancer progression, indicating that as the
disease progresses, the breast cancer cells decrease the
activation of NK cells in order to promote immune
evasion.74

B-Cells

B-cells are another cell type involved in adaptive
immunity. They act by secreting antibodies or
immunoglobulins as well as various cytokines. Addi-
tionally, the receptors on the surface of the B-cells,
surface immunoglobulins, allow the cell to attach to
specific antigens and neutralize them. B-cells normally
reside in the secondary lymphoid organs, and upon
activation they travel to the specific target site.

B-cell’s role in breast cancer is bilateral, as they
secrete cytokines that inhibit the antitumorigenic CTLs
and NK cells, but have also been found to infiltrate the
tumor and promote antitumor immunity.96 The
immunoglobulins they secrete may reduce early neo-
plasms.25 An increase in B-cell count has also been
linked to an improved breast cancer prognosis.2,36,116
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Despite their role in reducing early neoplasms, B-cells
may also lead to breast cancer progression and
metastasis. Olkhanud et al. showed that B-cells convert
CD4+ or T-helper cells to regulatory T-cells (Tregs),
which mediate breast cancer metastasis.81 Inactivation
of B-cells has been proven to inhibit metastasis of
breast adenocarcinoma cells in a mouse model.60 These
findings suggest that B-cells work towards anti-tumor
immunity in the beginning stages of the breast tumor,
but once the tumor progresses, B-cells begin to be pro-
tumorigenic and promote metastasis.

IMMUNE SUPPRESSION AND EVASION

There are many factors that contribute to breast
tumor’s capacity to evade the immune system and
eventually suppress the antitumor response. One factor
is the immune cells’ inability to identify the tumor as
‘‘non-self’’ or ‘‘foreign’’, which allows the tumor to
escape antitumor activity. As discussed previously,
there are multiple different cell types with bilateral
roles in breast tumor progression. In this section, we
briefly explain the immune cells involved in immune
suppression and evasion, and thus breast tumor pro-
gression. The cells referenced in this section are meant

to highlight the immune suppression and evasion
functions of the specific cells.

Regulatory T-Cells (Tregs)

Regulatory T-cells (Tregs), that regulate the immune
response by maintaining ‘‘self-tolerance’’, are one of
the most prevalent cell types when it comes to immune
suppression and immune evasion, although they
account for a low percentage of the overall T-lym-
phocytes.25 ‘‘Self-tolerance’’ ensures that the immune
system is not attacking the body itself. Tregs can inhibit
the function of CD8+ CTLs as well as the response of
T-helper cells, DCs, NK cells, and B-cells3,16,65,90,108 in
order to limit the attack on self. Tregs also promote
‘‘self-tolerance’’ by inhibiting effector cytokines like
interleukin (IL)-2 and by producing immunosuppres-
sive cytokines like IL-10.20,24,109 Tregs are CD4+,
CD25+ and can be identified by the expression of
FOXP3. Treg populations have also been shown to
diminish in the case of autoimmune disorders to reduce
the immune response against the self.32

It has been proven in breast adenocarcinomas and
in spontaneous mouse models of breast cancer that
there is an increase of Tregs in the TME.54,71 This
corresponds to a poor prognosis with shorter recur-
rence-free survival and a decrease in overall patient

BIOMEDICAL
ENGINEERING 
SOCIETY

FIGURE 1. A graphical representation of the cells discussed and their actions on breast tumors. Cytotoxic T-Lymphocytes (CTLs)
and Natural Killer (NK) cells directly act on the breast cancer cells and promote antitumor immunity through destroying the cells. B-
cells promote antitumor immunity by secreting immunoglobulins that reduce early neoplasms. They promote tumor progression
through acting on CTLs and transforming them into Treg cells. Treg cells act by inhibiting CTLs to promote tumor progression. T-
helper cells secrete interleukins that promote a proinflammatory environment, activate B-cells and macrophages, and promote CTL
anergy. Macrophages secrete proinflammatory cytokines that promote tumor progression. Myeloid Derived Suppressor Cells
(MDSCs) promote Treg cell population and suppress NK cells.
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survival.7,77 The ratio of Tregs to CTLs has also been
shown to be a predictor of adverse outcomes in
patients, with worse outcomes and shorter disease-free
survival when Treg to CTL ratio is higher.23 The in-
crease in this ratio is associated with the molecular
subtype of breast cancer, with the largest Treg to CTL
ratio coming from triple negative breast cancer. These
Tregs are members of the T-cell population that infil-
trates the breast tumor.38,70 Once they have infiltrated
into the breast tumor, they start to expand, which then
suppress the function of other effector immune cells so
as to help the breast tumor evade the antitumor im-
mune response. The percentage of Tregs was even
shown to increase with increasing disease stage in
breast cancers from normal tissue to DCIS to invasive
carcinoma,7 proving that as the breast cancer becomes
more invasive, the TME expands the Treg population.
It is thought that an increase in the production of
prostaglandin E2 from tumor cells and production of
CCL22 from tumor-associated macrophages (TAMs)
leads to increased Treg population.21,22,28,40 As the
breast tumor proliferates and becomes more invasive,
the production of these cytokines increases, which
again leads to immune evasion.

T-Helper Cells

T-helper cells are members of the adaptive immune
system as they cannot mount an immune response until
they have been activated through an APC. T-helper
cells activate B-cells, macrophages, cytotoxic T-cells,
and other cells involved in the adaptive immune
response. T-cells have the potential to differentiate into
T-helper 1 (Th1), T-helper 2 (Th2), T-helper 17 (Th17),
or T follicular helper (Tfh) cells upon stimulation. The
different types of T-helper cells secrete different
cytokines in response to an insult. Th1 cells secrete
IFN-c and TNF-a which activate macrophages or
CTLs, but can also favor immune evasion.14 Th2 cells
secrete interleukins that activate antibody production
in B-cells. Th17 cells primarily produce IL-17, while
Tfh cells mainly mediate the B-cell response.

Because the T-helper cells can activate various other
cells in the adaptive immune system, they are an
important mediator in breast cancer antitumor
immunity and in immune evasion. Namjoshi et al.
showed that the cytokines produced by Th1 cells pro-
moted apoptosis as well as the loss of the HER-2
oncodriver in breast cancer, displaying the role Th1
cells could play in antitumor immunity.79 Conversely,
the presence of T-helper cells within the TME corre-
lates with breast tumor progression, metastasis, and an
increase in tumor diameter.18,55 The same study14 also
proved that the ratio of T-helper cells to CTLs was
important, with a greater ratio of T-helper cells to

CTLs corresponding to an increase in breast tumor
progression, metastasis, and tumor diameter. The
interleukins secreted by the Th2 cells decrease T-cell
cytotoxicity and mediate T-cell anergy, leading to im-
mune suppression.83 Fu et al. also reported that in
postoperative breast cancer patients, the circulating T-
helper cells showed immunosuppressive properties.33

These T-helper cells were linked to poor prognosis in
these postoperative patients. Gruber et al. showed a
correlation between the number of T-helper cells and
circulating tumor cells, which both were associated
with higher grade breast tumors.42 T-helper cells may
also promote both antitumor immunity and immune
evasion.

The role of Th17 and Tfh within the immune
response to cancer has not been fully elucidated. Th17
cells have been shown to have both a protumorigenic
effect and antitumor immunity.45 Il-17, secreted by
Th17 cells, decreases with increasing tumor progres-
sion, while Th17 cell content was consistent for healthy
women, pre-, and post-operative breast cancer
patients.4,34 While the Th17 content did not change
between patients with or without breast cancer, the
ratio of Th17 cells to Tregs in TILs was increased in
early breast cancer and decreased in advanced breast
cancer, proving that as breast cancer progresses, less
Th17 cells and more Tregs infiltrate the breast tumor.110

Th17 cells promote tumorigenesis through secreting
angiogenic and anti-apoptotic factors.45 Th17 cells also
show antitumor immunity through cytotoxic activity
and expressing MHC antigens.45 Tfh cells have been
studied even less in the case of breast cancer. Tfh cells
were found to activate B-cells in immune therapies.47

In one study, when Tfh cells were detectable in breast
tumors, there was an increase in patient survival,43

however, another study has shown no differences in
the levels of Tfh cells in breast cancer patients as
compared to healthy women.121 The full extent of
Th17 and Tfh cells’ response to breast cancer is still
under investigation, as conflicting reports of their
function and presence within breast cancer leaves their
function yet to be discovered.

Macrophages

Macrophages are effector cells within the immune
system that use phagocytosis to digest various targets
such as cellular debris, cancer cells, and other foreign
substances. There are two different subclasses of
macrophages entitled M1 and M2 macrophages. M1
macrophages are more proinflammatory while M2
macrophages are more anti-inflammatory. Macro-
phages change their phenotype based on the immune
response needed and the microenvironment. They may
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promote antitumor immune response, as well as tumor
progression.

The first response of macrophages to a neoplasm is
from the tissue-resident macrophages that secrete
various factors in order to draw other immune cells
like NK cells, CTLs, and DCs to the site of action to
destroy the neoplasm.25 If the defense is prolonged and
becomes chronic, the macrophage response can also
become protumorigenic. With chronic infiltration of
macrophages, the macrophages secrete cytokines and
factors that contribute to tumor cell survival, TME
remodeling, and immune suppression.25

TAMs, macrophages that reside in the TME, are
altered by the tumor in such a way that they help with
tumor development. In a mouse model of breast can-
cer, increased tumor progression was reported when
macrophages infiltrated into the mammary tissue,73

while decreased tumor development as well as
decreased metastasis was reported when macrophages
did not infiltrate into the tissue.68 Macrophages also
regulate vascular endothelial growth factor levels,
which controls angiogenesis.67 In an early neoplasm,
typically the M1 macrophages invade into the breast
tumor and secrete proinflammatory cytokines, which
draw other cells to the tumor site. If the macrophages
cannot kill the tumor, the proinflammatory cytokines
will convert the M1 macrophages into TAMs to pro-
mote tumor progression. In the late stages of breast
cancer, the TAMs transition to M2 macrophages and
secrete other cytokines to drive T-cell differentiation to
Th2 cells, as well as immune suppression by Tregs.

10

Those breast tumors with high number of M2-TAMs
have a higher tumor grade and a lower survival.53

Specifically, within the breast tissue, adipocytes only
further aggravate the macrophage response to promote
tumorigenesis. The macrophages within the breast
tissue form a crown-like structure (CLS) around dead
or dying adipocytes. The macrophages phagocytose
the dying or dead adipocytes, and thus become lipid-
loaded ‘‘foam’’ cells that release a number of proin-
flammatory cytokines.101 Increased inflammation
within the adipose tissue of the breast has been linked
with a shorter recurrence-free survival post-mastec-
tomy,49 and with an increase in CLSs caused by mac-
rophages, corresponding to a reduced survival in
breast cancer.58 Macrophages have also been shown to
help disseminate early breast cancer cells and promote
early metastasis.69

Myeloid-Derived Suppressor Cells (MDSCs)

Myeloid-derived suppressor cells (MDSCs) are an-
other immune cell population that is involved in reg-
ulating the immune response in a healthy individual as
well as in response to various diseases and infections.

This population of cells mainly consists of myeloid
progenitor cells, and immature dendritic cells, granu-
locytes, and macrophages. The MDSC population
expands in response to various factors, most of which
are present at high levels in the TME. MDSCs pro-
mote Tregs which suppress the antitumor immune
response, while reducing the activity of CTLs. They
interact with and affect other cells through cell-to-cell
contact, reactive oxygen species production, and mul-
tiple other mechanisms. MDSCs have also been shown
to suppress DCs and NK cells which have antitumor
response.75 As a result, MDSCs also contribute to
immune suppression and evasion specifically within the
breast tumor environment. An increase in MDSCs in
patients with metastatic breast cancer showed worse
outcomes and lower overall survival,19 while inhibiting
MDSCs improves outcomes and increases survival.75

MDSCs have also been correlated with breast cancer
progression and metastasis.9

INFLAMMATION

Inflammation can cause irreparable damage within
the body and is typically protumorigenic. Inflamma-
tion is caused by various immune and non-immune
cells secreting inflammatory cytokines. It also helps
with the recruitment of more immune cells to the in-
flamed tissue. There is both acute and chronic
inflammation. Acute inflammation is usually seen in
the case of an environmental insult such as injury and
infection and lasts a shorter period of time. Chronic
inflammation is more persistent and typically does not
show symptoms of inflammation. Chronic inflamma-
tion can cause a lot of damage through various lym-
phocytes actually attacking the healthy tissue. This
occurs frequently in the breast tissue. In this section,
we review the immune cells that secrete proinflamma-
tory cytokines and the resulting consequences these
cells have on breast cancer.

Immune Cells Secreting Inflammatory Cytokines

Neutrophils, macrophages, NK cells and T-helper
cells all secrete proinflammatory cytokines that con-
tribute to the inflamed breast environment. Macro-
phages are one of the main mediators of inflammation.
They secrete a whole suite of inflammatory cytokines
such as tumor necrosis factor (TNF), IL-1, IL-6, IL-8,
IL-23, and IL-27.114 IL-6 is an important mediator of
breast tumorigenesis through increasing inflammation.
T-helper cells recruit the macrophages to the target
tissue by producing IFN-c and TNF-a, as mentioned
earlier, which promote an inflammatory environment.
Neutrophils also release IFN-c as well as other
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proinflammatory interleukins.106 NK cells also secrete
proinflammatory interleukins as well as granulocyte-
macrophage colony-stimulating factor (GM-CSF),
IFN-c, and TNF-a, which, again, lead to recruitment
of macrophages to the target site. The inflammatory
environment can promote proliferation and expansion
of the breast tumor cells and cancer stem cells, as well
as angiogenesis.

Proinflammatory Cytokines

There are many different cytokines, mainly pro-
duced by macrophages, that contribute to a proin-
flammatory environment within the breast tissue.
Proinflammatory cytokines typically are protumori-
genic and can even induce chemoresistance.17 Inter-
leukins are a primary mediator of the inflammatory
environment. IL-6 is one of the strongest players
involved in chronic inflammation and tumorigenesis. It
has been shown that IL-6 creates a feed-forward loop
with inflammation that expands the cancer stem cell
population.57 IL-6 can also inhibit apoptosis, which
benefits breast cancer cell survival.12,62 In addition, IL-
6 promotes inflammation, which allows the breast
tumor to proliferate and have increased angiogenesis.
The advancement of inflammation leads to increases in
IL-6 in this feed-forward loop, which is further sup-
ports tumor progression. Some interleukins such as IL-
12 cause tumor regression through decreasing angio-
genesis and remodeling. These cytokines have been
used for cytokine therapy to help activate the immune
system to promote tumor regression.

TNF-a is another cytokine that contributes to
inflammation and, therefore, increases tumorigenesis.
TNF-a does this through multiple mechanisms such as
interacting with the apoptosis and NF-kB pathways to
activate inflammation,118 driving remodeling of blood
vessels, and inducing angiogenesis,98 all which contribute
to tumor progression. TNF-a has also been shown to
increase matrix metalloproteinase (MMP) expression
and correlate with disease progression in breast cancer.59

An increase inMMP expression leads to increased breast
tumor invasion and progression.80 TNF-a creates an
inflammatory phenotype within the cancer associated
fibroblasts and mesenchymal stem cells that promote
tumor progression through releasing other proinflam-
matory cytokines.52 In summary, TNF-a promotes
breast cancer progression through inducing a proin-
flammatory environment with other cells and cytokines.

Other interleukins such as IL-1b, IL-23, and IL-27 are
also important proinflammatory cytokines. IL-1b pro-
motes breast tumor growth and metastasis through a
proinflammatory and proangiogenic environment.46 IL-
23 also correlates with a negative prognosis for breast
cancer but does this through expanding and maintaining
a subset of the Treg cell population.

35 IL-27 is similar to
IL-1b in that it supports tumor growth and metastasis
through a proinflammatory and proangiogenic environ-
ment when it is upregulated in the case of breast cancer.72

Important cytokines and their effects onbreast cancer are
summarized in Table 1. It should be noted that, these are
only a summary of a few of the many proinflammatory
interleukins and proinflammatory cytokines that play a
role in breast cancer proliferation, invasion and metas-
tasis. A thorough review of the role of proinflammatory
cytokines in breast cancer can be found elsewhere.39
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TABLE 1. Proinflammatory cytokines and their effect on breast cancer.

Cytokine Effects Sources

TNF-a Activates inflammation, induces angiogenesis, increases MMP pro-

duction, creates inflammatory environment within stromal cells

52,59,80,98,118

IFN-c Promotes inflammatory environment, recruits macrophages to the tumor

site, can inhibit the macrophage from processing the tumor antigen

61

GM-CSF Proinflammatory cytokine, activates macrophages to TAMs, associated

with EMT and poor prognosis

105

IL-1b Creates proinflammatory, proangiogenic environment 46

IL-6 Creates a proinflammatory environment, expands cancer stem cell

population, inhibits cancer cell apoptosis

12,57,62

IL-8 Promotes angiogenesis, promotes cancer cell growth and survival,

promotes breast cancer cell invasion

107

IL-12 Anti-angiogenic, decreases VEGF and MMP levels, causes breast

cancer regression

26

IL-18 Increases immunosuppression, promotes migration and invasion 64,82

IL-23 Expands and maintains subset of Treg cell population 35

IL-27 Creates proinflammatory, proangiogenic environment 72
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IMMUNOTHERAPY

Current treatments for breast cancer include surgi-
cal intervention, radiotherapy, chemotherapy, and
hormone replacement therapy. These are usually
applied to non-invasive or non-metastatic breast can-
cers. A method that would address invasive and me-
tastatic breast cancers is still missing. Immunotherapy
is one promising approach to tackle this need. There
are multiple different techniques for immunotherapy.
One of the first methods of immunotherapy created
was cytokine therapy which uses cytokines to activate
certain immune cells to antitumor immunity. Some of
these have shown promising results on invasive or
metastatic breast cancers, while others have shown an
enhanced effect when used in conjunction with
chemotherapy.120 Many of these immunotherapies are
experimental and are in the process of clinical trials for
efficacy and safety but show positive outcomes for the
treatment of breast cancer. These methods of
immunotherapy are displayed in Fig. 2. This section
will cover four of the main treatments being studied for
immunotherapy of breast cancer. These immunother-
apies have been used as building blocks, with each
method building on the base of immunotherapy
knowledge and the studies within each method build-

ing on each other to better enhance the immunother-
apy.

Antibody-Based Immunotherapy

Antibodies can bind to the antigens present on the
surface of the tumor cells and mark them, which allows
the immune system to recognize and destroy the tumor
through a variety of immune responses such as
phagocytosis, tumor lysis, inhibiting the invasion and
spread of the tumor, or apoptosis that occurs as a re-
sult of the immune response. Antibody-based
immunotherapy typically focuses on developing anti-
bodies that target antigens specific to a particular cell
type, in this case, breast cancer cells. Antibodies have
recently been created to target certain cytokines or
cytokine receptors to inhibit immune functions or
target various points in the immune checkpoint to help
inhibit immune evasion by the tumor.120

The main antibodies that have been tested for breast
cancer have been monoclonal antibodies for HER-2+

breast cancers. The monoclonal antibody tratsuzumab
increased the survival in patients with metastatic breast
cancer and had a response rate of 23.1% in patients with
HER-2 overexpressing breast cancer.50,63,93,100 This
response was only increased when combined with
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FIGURE 2. Graphical representation of four immunotherapy methods discussed in this review. (1) Antibody-based
immunotherapy: antibodies are created to target the specific tumor and can be used to target drugs to the site or target
specific cytokines. (2) Cancer vaccine: peptides, DNA, or other proteins are injected into the body to activate CTLs to lyse the
tumor cells. (3) Adoptive T-cell transfer: a portion of the tumor is resected, and the TILs are cultured from this resection and
implanted back into the body to lyse the tumor cells. (4) T-cell receptor gene transfer: T-cells are removed from the body and the
TCR gene is transferred to one that can recognize a specific breast cancer antigen. These cells are then implanted back into the
body to lyse the tumor cells.
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chemotherapy. Another antibody being tested is a
monoclonal antibody against the VEGF receptor which
showed a 19.1% response rate by itself and a 30.2%
response rate in combination with chemotherapy.50

Antibodies are an attractive treatment option as they are
more specific than general chemotherapy and can,
therefore, mitigate some of the off-target effects. Anti-
bodies could even be used as a targeted drug delivery
system to make a drug more specific. There has been
some success with targeted antibodies atezolizumab,
which targets a transmembrane protein PD-L1 found in
breast cancers, and pembrolizumab, which targets an-
other cell surface protein PD-1 found in breast cancers,
against triple negative breast cancers.30 The use of these
antibodies against triple negative breast cancer shows
promise that antibody-based immunotherapies can be
developed for more than just HER-2+ tumors.

Cancer Vaccine

Cancer vaccines use CTLs to help kill the tumor
cells. This method uses a variety of different tumor
specific antigens, such as peptides, DNA, and proteins,
to activate the CTLs to lyse the tumor cells expressing
that specific antigen. Currently, there are only a few
breast cancer specific antigens: HER-2/neu, MUC-1,
or NY-ESO-11,85,111 The limited number of available
antigens has made it challenging to develop a breast
cancer vaccine. However, many more antigens are
currently being investigated for the development of a
vaccine.

A study showed that 89% of the patients with HER-
2 overexpressing breast cancer developed a T-cell
immunity in response to the breast cancer vaccine and
82% developed immunoglobulin G antibody immu-
nity, but no clinical response such as tumor lysis or
improved survival was observed.89 There have been no
promising results from the trials of the NY-ESO-1
breast cancer vaccine. The only breast cancer vaccine
that has shown an effect is MUC-1, although not very
promising. In a trial containing patients with meta-
static breast cancer, only two out of 28 had a partial
regression of the tumor in response to the MUC-1
breast cancer vaccine.95 Again, many of these patients
had an increase in antigen-specific immune response,
but this did not translate to a clinical response.56 There
has also been a vaccine developed to stimulate T-cell
activation, but the T-cell response has been low with
little to no clinical response.29 After more thorough
testing and identifying more breast cancer antigens,
cancer vaccines could be a viable immunotherapy op-
tion in the future.

Adoptive T-Cell Transfer

Adoptive T-cell transfer has been shown to be an
effective method for immunotherapy, especially in the
case of metastatic cancer. Adoptive T-cell transfer
works by resecting a portion of the primary tumor and
generating the anti-tumor T lymphocytes. These anti-
tumor T lymphocytes are then expanded ex vivo and
activated. After expansion and activation, the anti-tu-
mor T lymphocytes are infused back into the patient’s
body to elicit an anti-tumor immune response. This
immunotherapy has been achieved with great success
in the case of melanoma patients who showed a
reduction in the metastatic tumors as well as some
patients that achieved regression of their cancer.120

It has been shown previously that TILs are present
in breast tumors, meaning that adoptive T-cell transfer
could be a viable immunotherapy option. TILs were
able to be cultured from primary breast tumors in 15
out of 19 patients.97 These cultures were primarily
CD4+ T-helper cells with only 21% being CTLs,
meaning the cultures had poor lysis capabilities. The
TILs lysed the autologous tumor in one out of 12
patients with low lysis and low specificity. Other labs
have shown that anti-tumor TILs with tumor reactivity
can be generated from primary tumor tissues.29 A
clinical trial found that 12 out of 81 patients treated
with adoptive T-cell transfer survived over 5 years.51

More research into adoptive T-cell transfer needs to be
done before it can be considered as an effective
immunotherapy for breast cancer.

T-Cell Receptor Gene Transfer

There are two problems related to the adoptive T-
cell transfer: (i) not all patients will have the correct
size and accessible tumors, and (ii) only 50% of TIL
cultures can generate the specific anti-tumor TILs
necessary for this treatment. In order to work around
these issues, T-cell receptor (TCR) gene transfer is also
being studied. The T-cell is activated through the TCR,
which is necessary for specific antigen recognition.
Hence, researchers could, theoretically, transfer the
specific gene for a TCR to recognize a specific antigen,
such as one pertaining to breast cancer. There has been
some success with generating specific T-cells that target
and kill the melanocytes containing the antigen rec-
ognized due to TCR gene transfer94 in the case of
melanomas.

In the case of breast cancer, researchers have con-
structed a chimeric gene of the HER-2/neu monoclonal
antibody with the TCR in order to express the TCR
with HER-2/neu antigen specificity. This was success-
ful with the cells releasing cytokines upon recognition
of HER-2+ breast cancer cells and primary tumors.
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Cells with the TCR gene transfer also lysed the target
cells in vitro with specificity to the HER-2/neu anti-
gen.41 Currently, this is the only work that has been
done with HER-2+ cancers, so it will need to be
researched if this treatment could be applied to other
types of breast cancer. Early results are promising for
TCR gene transfer as an immunotherapy, but there are
many more clinical trials needed before this will be
considered for immunotherapy.

IMMUNE ENGINEERING

Immune engineering, as it relates to breast cancer, is
a large field that ranges from machine learning for
better breast cancer diagnoses to engineering immune
cells for targeting breast cancer. There have been many
recent developments in immune engineering. For
example, Sahan et al. used machine learning to create a
‘‘fuzzy’’ artificial immune system to better model
breast cancer diagnoses.92 They engineered a method
to quantitatively capture immune system cells such as
B-cells, T-cells, and macrophages through interactions
with antigens, cell size, cell shape, and other factors.
Polat et al. made the Feature Select Artificial Immune
Recognition System to better diagnose breast
cancers.86 This is an algorithm that uses an artificial
immune system to help make diagnostic decisions
based on previous data. Shafiee et al. invented a tissue
engineered bone model to investigate the effects of the
immune system on breast cancer metastasis.99 Mice
models have also become more sophisticated through
implanting human immune cells and human cancer
cells within the mice in order to study tumor-immune
effects.48

There have been recent advances in the field of
engineering micro and nanoparticles for immune sup-
pression or stimulation for a therapy to be more
effective.78 Recently, researchers have also been using
particle-laden cells to target for anti-cancer drugs.
Zhao et al. treated lung metastases with erythrocytes
attached to chemokine encapsulating nanoparticles.119

This allowed more effector immune cells to infiltrate
into the lung metastasis and showed greater animal
survival. This could provide a much-needed therapy in
the future for breast cancer metastases to the lungs.
PEGylated bilirubin nanoparticles were even created
to increase the effectiveness of immune-chemotherapy
in breast cancer.115

Escobar et al. used genetic engineering to introduce
IFN-a to hematopoietic stem cells that will differenti-
ate into macrophages.66 This approach was able to
limit tumor progression and metastasis in mouse
models of breast cancer. T-cells have long been an
attractive cell for immune engineering purposes. An-

other method for immune engineering has been the
development of chimeric antigen receptor (CAR) T-
cells. Researchers create chimeric antigen receptors for
specific breast tumor antigens and transfer these
receptors to the T-cells. CAR-T cells directly interact
with these external antigens. Once activated within the
body, the CAR-T cells will lyse the target tumor cells
presenting these antigens. These CAR-T cells are
engineered to target specific breast cancer cells and
there have been many new developments with using
these cells for breast cancer therapy.31 CAR-NK cells
have also been investigated as another potential ther-
apeutic for breast cancer, although most of the trials
have been preclinical.88

As the immune system is one of the most complex
systems in the body, and some cells may have both
antitumor and pro-tumor effects, care must be taken to
avoid unwanted outcomes that could lead to tumor
progression instead of treating the tumor. For exam-
ple, B-cells have anti-tumor effects against new neo-
plasms, they may contribute to tumor progression in
the later stages of cancer. Therefore, therapeutics
should be applied at the right time, stage, and cir-
cumstances.

CONCLUDING REMARKS

The immune system plays a dynamic role in the
prevention and progression of breast cancer. Cells such
as CTLs and NK cells promote antitumor immunity
through targeting breast cancer cells. Tregs, macro-
phages, MDSCs, and T-helper cells aid in the pro-
gression of breast cancer through various mechanisms
such as inhibiting the function of cytotoxic T-cells,
secreting proinflammatory cytokines, promoting
metastasis, and others. B-cells may have an antitu-
morigenic role through releasing tumor-neutralizing
antibodies, and a protumorigenic role through sup-
pressing antitumor immunity. Inflammation can cause
serious damage to the breast tissue and make it easier
for the progression of breast cancer through the in-
crease of proinflammatory cytokines such as inter-
leukins and TNF-a. Immunotherapy and immune
engineering are relatively new fields with new discov-
eries being made constantly. These fields seek to
engineer the immune microenvironment or the immune
cells to either attack the cancer cells themselves or to
release chemotherapeutic drugs to be able to destroy
the breast tumor. There has also been work in the
immune engineering field to be able to diagnose breast
tumors better and give a more accurate prognosis.
There is still a long way to go before many of these
treatments become valid therapy possibilities, but the
studies show promise to be able to engineer the im-
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mune system to destroy the breast tumor and promote
antitumor immunity.

This paper reviewed the complex tasks that immune
cells have in relation to breast cancer. Some cells
promote antitumor immunity, while others contribute
to tumor progression. Other cells have bilateral roles,
as they may either promote cancer or prevent it.
Inflammation also plays a key part with proinflam-
matory cytokines also promoting tumor development.
Understanding the immune effects on breast cancer
can lead to better therapeutic strategies by improving
the abilities of the antitumor cells or inhibiting the cells
that promote tumor progression. This knowledge can
also be used for creating better models of the immune
system. Immune cells should be included in 3D engi-
neered tumors to better study cancer biology and the
reaction of immune system against the tumor before
they are tested in animal models. Immune cells would
allow researchers to create more precise and physio-
logically relevant breast cancer models. These models
would serve as more realistic drug testing platforms, as
well as tools for studying the biology of breast cancer.
Incorporating immune cells into the model systems will
allow for high-throughput evaluation of breast cancer
drug candidates. The immune system is very complex,
and it may be explored in more detail through engi-
neered models for a better understanding of the im-
mune system’s reactions.
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classification method for breast cancer diagnosis: feature
selection artificial immune recognition system (FS-AIRS).
In: Advances in Natural Computation, ICNC 2005, Vol.
3611, edited by L. Wang, K. Chen, and Y. S. Ong. Lecture
Notes in Computer Science, Berlin: Springer, 2005. http
s://doi.org/10.1007/11539117_117.

87Pross, H. F., E. Sterns, and D. R. Macgillis. Natural killer
cell activity in women at ‘‘high risk’’ for breast cancer,
with and without benign breast syndrome. Int. J. Cancer

34(3):303–308, 1984. https://doi.org/10.1002/ijc.29103403
03.

88Rezvani, K., R. Rouce, E. Liu, and E. Shpall. Engineering
natural killer cells for cancer immunotherapy. Mol. Ther.
25(8):1769–1781, 2017. https://doi.org/10.1016/j.ymthe.20
17.06.012.

89Ridgway, D. The first 1000 dendritic cell vaccinees. Can-
cer Investig. 21(6):873–886, 2003. https://doi.org/10.1081/
CNV-120025091.

90Romagnani, C., M. Della Chiesa, S. Kohler, et al. Acti-
vation of human NK cells by plasmacytoid dendritic cells
and its modulation by CD4+ T helper cells and CD4+
CD25hi T regulatory cells. Eur. J. Immunol. 35(8):2452–
2458, 2005. https://doi.org/10.1002/eji.200526069.

91Sachs, G. Lytic effector cell activity and major depressive
disorder in patients with breast cancer: a prospective
study. J. Neuroimmunol. 59(1–2):83–89, 1995. https://doi.
org/10.1016/0165-5728(95)00029-2.

92Şahan, S., K. Polat, H. Kodaz, and S. Güneş. A new
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