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Synthesis and Study of a New Type of Nonanionic Demulsifier for
Chemical Flooding Emulsion Demulsification
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ABSTRACT: The application of chemical flooding improves the stability of the produced emulsion, which reduces the
demulsification efficiency of conventional demulsifiers. To improve the demulsification effect, in this paper, a new multibranched
nonanionic polyether demulsifier, FYJP, was prepared by grafting carboxylate based on a nonionic demulsifier. The FYJP demulsifier
could generate an initiator through p-tert-butylphenol, triethylenetetramine, and methanol, which was polymerized with ethylene
oxide (EO) and propylene oxide (PO) to produce a nonionic polyether demulsifier. Sodium chloroacetate was used to modify the
polyether demulsifier to obtain a new type of nonanionic polyether demulsifier. The FYJP polyether demulsifier was characterized by
the hydrophilic—lipophilic balance (HLB) value, relative solubility (RSN), and surface activity of the demulsifier, and the
demulsification mechanism was analyzed by a microscopic demulsification process test, and the effect of demulsifier dosage on the
demulsification effect was discussed. Meanwhile, a dehydration test was carried out. The experimental results showed that the
highest dehydration rate of the demulsifier was 94.7% at 85 °C, 100 ppm demulsifier dosage, S0 mL of a W/O emulsion, and 120
min demulsification time. The abovementioned studies show that FYJP is an effective demulsifier for chemical flooding emulsions,
and this work promises to provide a reference for future demulsifier research.

B INTRODUCTION

To improve oil recovery, chemical flooding has gradually
replaced conventional primary and secondary oil recovery
techniques such as water flooding and gas flooding,' ~ The use
of chemical flooding to enhance oil recovery has been proven
to be effective, and the injection of chemicals such as

for crude oil. Among them, the chemical demulsification
method has been widely studied because of its rapid and
efficient demulsification.'”™>' Alves et al. analyzed the
demulsification activity of a demulsifier based on a synthetic
chemical surfactant of castor oil and discussed the
demulsification mechanism. The maximum water separation

surfactants makes the production of emulsions easier.*”® The
formation of an emulsion is due to the interaction of solid
impurities, colloids, asphaltene, and other components in
crude oil as well as chemical reagents in the process of crude
oil production and operation, which forms a rigid, viscoelastic,
and stable interface membrane at the oil—water interface.” "
This interfacial membrane makes the emulsion very stable.
The presence of emulsions is hazardous to crude oil
production systems, since water may lead to equipment
corrosion, pump malfunction, and even safety problems.'*'®
Mechanical, electrical, thermal, and chemical demulsifications
are the common demulsification and dehydration techniques
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of the demulsifier was about 90% in a bottled experiment.””
Chen et al. used propylene trimethoxy silane to wrap Fe;O, in
a hyperbranched polyamide and condensation to synthesize a
new magnetic-response demulsifier. By characterization and
demulsification experiment analysis, the new demulsifier was
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Figure 1. (a) Cloud point of the FYJP series demulsifiers and (b) changes in the FYJP1 aqueous solution at the cloud point.

shown to have good demulsification performance, and the
demulsification efficiency reached 97%.*° Most chemical
demulsifiers are amphiphilic nonionic surfactants, consisting
of hydrophilic and hydrophobic parts (such as poly(ethylene
oxide) (PEO) and poly(propylene oxide) (PPO) blocks of
block polyether demulsifiers). A chemical demulsifier can
reduce the tension of an oil—water interface film, has higher
surface activity, is easy to adsorb on the oil—water interface,
and can replace the old, more stable interface film with an
easily breakable interface film to achieve the goal of
demulsification and dehydration.”*~>’ However, at the mo-
ment, the stability of emulsions is getting higher and generally
nonionic demulsifiers fail to better meet the demulsification
requirements.30 Therefore, it is necessary to refine the
chemical demulsifiers. The demulsifying effect of a demulsifier
can be improved by physical (compound) or chemical (cross-
linking and chain extension) treatments.”' 7*
p-tert-Butylphenol (PTBP) is a common chemical substance,
mainly used in the synthesis of p-tert-butylphenolic resin,
which is widely used in various fields.”* Because of its low price
and good demulsification effect, it is usually used as one of the
main materials for preparing a polyether demulsifier as a
starting agent. In this paper, a new type of nonanionic
demulsifier was prepared on the basis of nonionic demulsifier,
the carboxylic acid was grafted into the water soluble and oil
soluble blocks of nonionic demulsifier by chain extension
chemical teratment, while increasing the molecular weight of
the demulsifier and nonionic retaining the properties of
nonionic part, it can hydrolyze the anion in solution. At the
same time, the demulsifier adsorbed on the oil—water interface
replaces part of the active substances, reduces the strength of
the interface film, further reduces the stability of the emulsion,
and increases the demulsification effect.>® In this paper, a new
type of nonanionic block polyether demulsifier was prepared
by using a para-tertiary butylphenol (PTBP) initiator; then,
propylene oxide (PO) and ethylene oxide (EO) are used for
the synthesis of a series of nonionic polyether demulsifiers, and
finally, sodium chloroacetate is added to realize successful
synthesis of modified nonanionic block polyether demulsifiers.
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The demulsifier was characterized by the hydrophilic—
lipophilic balance (HLB) value, relative solubility (RSN),
and surface activity, and the optimal demulsifier dosage was
determined. Finally, a dehydration test was used to determine
the optimal nonanionic block polyether demulsifier. This
strategy can effectively improve the dehydration efficiency of
demulsifiers and provide a reference for demulsification and
dehydration of emulsions.

B RESULTS AND DISCUSSION

Hydrophilic and Lipophilic Balance HLB, Cloud Point,
and RSN Values. The abovementioned tests measured the
cloud points of all demulsifiers. Figure la shows the cloud
points of all demulsifiers in the FYJP series. Figure 1b shows
the image of the FYJP1 polyether solution when it reaches the
cloud point, and the change of the solution from transparent to
turbid can be clearly observed. For synthetic polyether
demulsifiers with different proportions, the dehydration of
hydrophilic groups holds the key to cause the cloud point. A
longer hydrophilic group chain can enhance hydration and
improve the solubility of the demulsifier, and the cloud point
also increases.”® On the contrary, the increase of hydrophobic
groups will lead to a decrease in the turbidity point. It can be
seen from the figure that under certain PO conditions, the
cloud point increases with the increase in the EO content.
When the EO content is constant, the cloud point decreases
with the increase in the PO content.””*"

The HLB value can be calculated by the formula using the
measured cloud points.” The HLB value shows the degree of
hydrophilicity or oleophilicity of a polyether demulsifier. The
larger the HLB value, the stronger the hydrophilicity, and the
smaller the HLB value, the stronger the lipophilicity.** The
relative solubility RSN value is similar to the HLB value, which
is also used to evaluate the hydrophilic and oleophilic
properties of demulsifiers.’” At present, it is considered that
a demulsifier is lipophilic when the RSN value is less than 13
and hydrophilic when the RSN value is greater than 17. When
the RSN value is in the range of 13—17, the demulsifier has
both lipophilic and hydrophilic properties.*”~* The calculated
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HLB values and measured RSN values are shown in Table 1.
As can be seen from the table, when the PO content is

Table 1. Cloud Point, HLB Values, and RSN Values of FYP]

Series Samples

demulsifiers cloud point (°C) HLB RSN
FYJP1 34.5 7.4 15.7
FYJP2 36.4 7.6 16.1
FYJP3 25.3 6.5 13.6
FYJP4 28.6 68 143
FYJPS 17.3 5.7 11.2
FYJP6 23.2 6.3 11.7

constant, both HLB and RSN values increase with the increase
in the EO content. When the EO content is constant, the HLB
and RSN values decrease with the increase in the PO content.

Determination of Surface Tension. Figure 2a shows the
change curve of surface tension of a demulsifier at different
concentrations in an aqueous solution at a test temperature of
80 °C. Surface tension is one of the important properties to
evaluate demulsifiers.””** Compared with the blank control
experiment, it can be found that the FYJP series polyether
demulsifiers can significantly reduce the surface tension of the
aqueous solution. It can also be seen that their ability to reduce
the surface tension is roughly the same; all of them can reduce
the surface tension of the aqueous solution to about 32 mN-
m~'. This indicates that the surface activity of the FYJP
polyether demulsifier is higher than the surface activity of a
natural emulsifier in the emulsion, which can make the
interfacial tension lower, so that the FYJP polyether demulsifier
can preferentially adsorb on the oil-water interface and
replace the original natural active film, and the interface film
formed is more prone to rupture so as to achieve the
demulsification effect. It can be observed that at a low
concentration of the demulsifier, the surface tension of the
aqueous solution decreases rapidly with an increase in the
concentration. When the concentration reaches a certain level,
the decrease in surface tension becomes slow. With a further

increase in the concentration, the surface tension basically
reaches equilibrium. The surface tension curve usually presents
double inflection points.”” The range between the double
inflection points is the cmc range of a polyether. The second
inflection point is _generally considered to be the value of the
polyether cmc.***” Wider molecular weight distribution of
block polyethers, the change of the conformation of molecular
segments at the gas—liquid interface, and the formation of
monomolecular micelles in an aqueous solution before the
critical micelle concentration of polyethers can all lead to the
formation of double inflection points.*** Comparing the
different FYJP polyether demulsifiers, it can be found that the
cmc value increases with the increase in the EO content when
the PO content is constant. When the EO content is constant,
the cmc value decreases with the increase in the PO content.
This is because when EO increases, the hydrophilicity of
polyether increases and the cmc value increases accordingly.
When the PO content increases, the hydrophobicity of
polyether increases, making micelle formation easier and
resulting in the decrease in cmc.””!

Figure 2b shows that the surface tension of the FYJP1
aqueous solution changes with the concentration of polyether
at 40, 60, and 80 °C. The surface tension gradually decreases
with an increase in solution temperature and the cmc
significantly decreases, indicating that temperature can
improve the adsorption capacity of the FYJP polyether
demulsifier, thus promoting the micellization of the solution.
The first inflection point decreases with increasing temper-
ature, indicating that the surface activity of the demulsifier
increases with increasing temperature, thus promoting the
ability to reduce surface tension.

Influence of Demulsifier Dosage on Demulsification
Performance. The demulsification and dehydration experi-
ments of an FYJP polyether demulsifier with dosages of 20, 50,
100, 150, and 200 ppm were carried out for 120 min at 85 °C.
The experimental data graph is shown in Figure 3. As can be
seen from the figure, with the increase in dosage, the
dehydration rate of the FYJP series demulsifiers gradually
increases. Among them, the demulsification rates of FYJP2 and
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Figure 2. (a) FYP]J series surface tension curves at 80 °C and (b) surface tension of FYJP1 under different temperature conditions.
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Figure 3. Effect of dosage on FYJP demulsification performance.

FY]JP1 at various concentrations are higher than those of other
FYJP demulsifiers. When the amount of the demulsifier is low
(less than 20 ppm), the dehydration rate is also low. When the
amount of the FYJP demulsifier is increased (20—100 ppm),
the dehydration rate increases rapidly. Finally, when the dosage
of the FYJP demulsifier is greater than 100 ppm, although the
dehydration rate is still increasing, it is extremely slow and even
tends to balance. This is because the higher the amount or
concentration of the polyether demulsifier, the lower the
interfacial tension at the oil—water interface, the lower the
strength of the interfacial film at the oil—water interface, and
the easier the demulsification and dehydration.”> When the
amount or concentration of the polyether demulsifier
increases, the interfacial tension of oil and water decreases
slowly, and the increase in the dehydration rate also slows
down.>>>* Although a high dosage or a high concentration of
the FYJP demulsifier has a high dehydration rate, the cost of
demulsification also increases due to the large increase in
dosage of the demulsifier. To sum up, the optimal dosage of
the FYJP polyether demulsifier is 100 ppm.

Demulsification Test. The moisture content of a crude oil
emulsion measured by the distillation method is 23%. The
demulsifier dosage of 100 ppm and the demulsifier temper-
ature of 85 °C were set to conduct demulsification and
dehydration tests on the synthesized YJP series and FYJP series
demulsifiers. The amount of water removed from the tube
during different time periods and the calculated dehydration
rate were recorded. The experimental results are shown in
Figures 4 and S.

Figure 4a shows the dehydration rate of FYJP demulsifiers in
different time periods, and Figure 4b intuitively reflects the
amount of dehydration in each time period. The dehydration
rate of FYJP demulsifiers increased the fastest in the first 60
min, and all of the other dehydration rates except that of
FYJP5 were more than 65%. Moreover, according to Figure 4b,
it can be seen that the amount of dehydration was most in the
first 30 min, among which the dehydration rate of FYJP2 in 30
min was more than 40%, and its dehydration rate in 60 min
was more than 80%. However, FYJPS had the lowest
dehydration rate, which was only 57% at 60 min. In two
time periods of 60—90 min and 90—120 min, the amount of
dehydration decreased, and the increase in the dehydration

rate of the FYJP series demulsifiers decreased. The overall
demulsification rate of the final modified FYJP polyether
demulsifier was above 70%, and the dehydration rate of FYJP2
was the highest, reaching 94.7%.

Figure 4c shows the demulsification results of a W/O crude
oil emulsion in Liache Oilfield by FYJP demulsifiers. It can be
seen that the amount of dehydration of FYJP2 is significantly
higher than that of the others by comparing the six test tubes.
The demulsification and dehydration capacity was in the order
FYJP2 > FYJP1 > FYJP4 > FYJP3 > FYJP6 > FYJPS. By
comparing FYJP1, FYJP2, FYJP3, and FYJP4 in Figure 4a,c, it
can be seen that when the PO content is constant, the amount
of dehydration and the dehydration rate increase significantly
as the EO content increases. This is because the hydrophilicity
of the polyether demulsifier increases with the increase in the
proportion of EO.”>*® The improvement of hydrophilicity
makes the demulsifier reach the oil—water surface faster, the
surface tension of the oil—water interface is weakened, the
strength of the interface membrane of the oil—water interface
is reduced, and the dehydration rate is increased. But greater
hydrophilicity is not always better. When the hydrophilic
energy is too large, the amount of the demulsifier dissolved in
water increases, which reduces the amount of the demulsifier
adsorbed on the oil—water interface, resulting in a lower
dehydration rate. Only when the hydrophilicity is a certain
value do the dehydration rate and the demulsification rate
reach the highest values.

As can be seen from Figure S, the overall demulsification
rate of an unmodified YJP polyether demulsifier is less than
70%, and YJP2 has the highest dehydration rate, which is only
68%. As can be seen from the comparison between Figures 4a
and S, the overall demulsification rate of the modified FYJP
polyether demulsifier is more than 70%, with the highest
reaching 94.7%. However, the overall demulsification rate of
the unmodified YJP polyether demulsifier is less than 70%, and
the overall demulsification rate of the FYJP polyether
demulsifier is much higher than that of the YJP polyether
demulsifier. This indicates that the demulsification perform-
ance of the modified demulsifier is better than that of the
unmodified polyether demulsifier. At the same time, in terms
of modified or unmodified polyether demulsifiers, the
demulsification capacity of demulsifier no. 2 is higher than
other types.

Microscopic Demulsification Process. The microscopic
demulsification process of a W/O emulsion can be clearly
observed in Figure 6. The dehydration ability of the FYJP
demulsifier is excellent. The emulsion was very stable and the
small water droplets were enveloped in the oil phase. At 30
min, demulsifier molecules began to adsorb on the oil—water
interface film. The hydrophilic group extended to the water
phase to attract small water droplets around. The hydrophobic
group extended to the oil phase to replace natural emulsifiers
such as asphaltene and reduced the thickness of the interface
film. At 60 min, demulsifier molecules stretched on the oil—
water interface and small water droplets combined to form
large water droplets, which began to settle at the bottom of the
test tube. At 90 min, the separation of oil and water in the W/
O emulsion was stable and the number of water droplets
decreased. At 120 min, the dehydration was completed, only
small-diameter water droplets were left free in the emulsion,
and almost no large water droplets were left.

Demulsification Mechanism. When the demulsifier is
dispersed into the emulsion, due to its high surface activity and
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Figure 4. (a) Dehydration rate of FYJP demulsifiers in different time periods, (b) dehydration of FYJP series demulsifiers in different time periods,

and (c) dehydration results of FYJP series demulsifiers at 120 min.

hydrophilic and oleophilic properties, it passes through the
external phase of the emulsion to reach the oil—water interface
and is adsorbed. The hydrophilic end of the demulsifier is
adsorbed in the water layer, and the oil—water end is inserted
into the oil layer. A large amount of the demulsifier is adsorbed
on the oil—water surface at the same time to form a new layer
of an oil—water interface membrane. The phenomenon of
displacing or replacing the old interfacial membrane occurs. At
the same time, in the state of external action, such as stirring,
heating, etc., the new interfacial membrane ruptures due to its
less stable nature. As a result, water droplets in the inner phase
enter the outer phase and coalesce with other water droplets.
When the droplets coalesce to a certain extent, they settle
slowly under the action of gravity and form a water layer at the
bottom to realize oil—water separation. With the decrease of

water droplets in the emulsion, the coalescence probability of
the remaining water droplets decreases, and the sedimentation
rate of the bottom water phase slows down until the
equilibrium demulsification is achieved. Figure 7 shows the
demulsification mechanism diagram.

B CONCLUSIONS

The preparation of an efficient demulsifier is essential for the
demulsification and dehydration of an emulsion. In this paper,
a new nonanionic polyether demulsifier was successfully
synthesized and characterized. The measurement of the surface
tension showed that the demulsifier features high surface
activity and can effectively reduce the surface tension. The
analyses of the cloud point, HLB values, and RSN values
showed that the overall dehydration rate and demulsification
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efficiency of the demulsifier increased as the hydrophilicity
increased but did not exceed a certain value. The microscopic
demulsification process of the demulsifier was studied, and it
was proved that the FYJP demulsifier had fast diffusion and
adsorption at the oil—water interface and excellent demulsifi-
cation ability. The demulsification test illustrated that the
demulsification performance of the modified demulsifier was
much higher than that of the unmodified demulsifier.
Alongside that, the optimal dosage of 100 ppm was determined
by comparing and analyzing the dosage of different
demulsifiers. The best demulsifier, FYJP2, was selected by a
demulsification and dehydration test. The highest dehydration
rate of the demulsifier was 94.7% at 85 °C, 100 ppm
demulsifier dosage, and 120 min demulsification time.

B EXPERIMENTAL SECTION

Materials. EO and PO were provided by the laboratory,
methanol, p-tert-butylphenol (PTBP), potassium hydroxide,
and formaldehyde (40 wt %) were purchased from Tianjin
Tianli Chemical Reagent Co., Ltd, and triethylenetetramine
was purchased from Tianjin Cameo Chemical Reagent Co.,

Ltd. In addition, sodium chloroacetate was provided by the
Tianjin Damao Chemical Reagent Factory. All of the
abovementioned drugs and reagents were of analytically pure
grade. The physicochemical properties of the crude oil taken
from Liaohe Oilfield are shown in Table 2.

Synthesis of Nonionic Polyether Demulsifiers. To
begin with, 30 g of p-tert-butylphenol (PTBP) and $8.4 g of
triethylenetetramine were put into a three-neck flask, which
was placed in an oil bath and heated to 50 °C. After 15 min of
heat preservation, 30 g (40 wt %) of formaldehyde solution
was slowly added into three three-mouth flask using a
separating funnel. After dripping, the solution was kept warm
for 30 min. Then, 60 g of methanol was poured into the flask
on which the condensing reflux device was installed, and the oil
bath temperature was increased to 110 °C for reflux
dehydration for 2 h. After that, the temperature was increased
to 150 °C again to steam out the methanol. During the process
of a 1 h reaction, the material transparency in the flask needed
to be observed. The final step was to cool the flask and pour
out the internal solution to get the initiator.

A total of 5 g of the initiator obtained from the above
reaction and 0.70 g of potassium hydroxide were added to the
reactor with high temperature and high pressure. N, was
employed to replace the air in the reactor. The gas in the high-
pressure reactor was pumped out by a vacuum pump, and the
pressure indicator was observed to stop when it reached
negative pressure. Overall, 345 g of epoxy propane (PO) was
slowly fed into the feed port and heated to 130 °C, and the
pressure gauge reading was maintained at about 0.2 MPa. The
feed valve was closed when the feed was completely finished.
The first step of the reaction ended when the pressure
indicator was reduced to negative pressure.

Following the first step of the experiment, 0.71 g of
potassium hydroxide was put in the high-pressure reactor
again, and 127.8 g of ethylene oxide (EO) was passed into the
reactor in the same way for the polymerization reaction, and
finally the nonionic polyether demulsifier YJP1 was obtained
by cooling and opening the reactor; the mass ratio of its
initiator to propylene oxide (PO) was 1:69, and the mass ratio
of propylene oxide (PO) to ethylene oxide (EO) was 2.7:1.

In each experiment, the mass ratios of the initiator to
propylene oxide (PO) were 1:69, 1:99, and 1:159. The mass

W/O emulsion

Figure 6. Microscopic demulsification process.
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Table 2. Basic Physical Properties of Crude Oil Produced in a Block of Liaohe Oilfield

density (kg-m™>)
920.6

dynamic viscosity (50 °C) (mPa-s)
219.1

gum (%)  asphaltene (%)  acid value (mgKOH-g™")
14.34 8.47 1.93 16

sulfur content (%)
0.158

pour point (°C)
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Figure 8. Polymerization formula of demulsifiers.

ratios of propylene oxide (PO) and ethylene oxide (EO) were hydroxide solution was added with a gel head dropper and

2.7:1 and 3.7:1.

Figure 8 shows the specific polymerization formula of
demulsifiers, and Table 3 shows the synthesis ratio of the YJP
demulsifiers.

Modification of the Nonionic Polyether Demulsifiers.
A total of 20 g of a nonionic polyether demulsifier was added
to a three-neck flask, which was placed in an oil bath, stirred,
and heated to S0 °C. Next, 0.6 g (40 wt %) of potassium

Table 3. Synthesis Ratio of the YJP Demulsifiers

demulsifier initiator/ PO/ demulsifier initiator/ PO/
sample PO EO sample PO EO
YJP1 1:69 3.7:1 YJP4 1:99 2.7:1
YJP2 1:69 2.7:1 YJPS 1:159 3.7:1
YJP3 1:99 3.7:1 YJP6 1:159 2.7:1
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stirred for 20 min at 150 rpm. The temperature was increased
again to 65 °C, and 1.3 g (30 wt %) of sodium chloroacetic
acid solution was slowly added with a separating funnel, and
the drip was finished at about 2.5 h with a controlled drip
acceleration. After dripping, the temperature was increased to
85 °C, and the reaction ended after 8 h of heat preservation.
After cooling, water and methanol were added to prepare 50 wt
% of the sample to obtain the FYJP nonanionic polyether
demulsifier. In the configuration of 30 wt % sodium
chloroacetate solution, the mass ratio of sodium chloroacetate,
methanol, and water was 10:16.3:7.

Figure 9 shows the modification reaction equation of the
nonionic polyether demulsifier. Figure 10 shows a schematic
diagram of the chemical synthesis of the FYJP nonanionic
polyether demulsifier.
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Figure 9. Modification equation of the polyether demulsifier.
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Figure 10. Schematic diagram of chemical synthesis of modified polyether demulsifiers.

Determination of the Cloud Point and the HLB Value
of the Demulsifiers. The turbidity point method is used to
measure the turbidity point of nonanion polyether demulsi-
fiers. The FYJP synthetic nonanionic polyether demulsifier was
configured as a 10 wt % aqueous solution in a test tube; the
thermometer was mounted on the test tube, and the height of
the liquid level was controlled at 70 mm. The tubes were
heated in an oil bath, controlled for a gradual increase in
temperature, and the solution was observed. When the solution
appeared cloudy, the value on the thermometer needed to be
read quickly. After cooling the tube to room temperature, the
abovementioned experimental steps were repeated and the
data were obtained. All of the data were collated and averaged
to obtain the cloud point of the demulsifier.

The hydrophilic—lipophilic balance (HLB) value of
polyether demulsifiers has a certain quantitative relationship
with the cloud point. The HLB value can be calculated from
the cloud points obtained in the abovementioned experiments,
and the calculation formula is shown as eq 1.%

HLB = 0.0980X + 4.02 (1)

X is the cloud point value of the 10 wt % FYJP polyether
demulsifier.

Determination of Relative Solubility (RSN) of
Demulsifiers. A total of 30 mL of the prepared titration
solution (mixed with 2.6 vol % toluene and 97.4 vol % ethylene
glycol dimethyl ether) was poured into a beaker, and 1 g of the
polyether demulsifier was dropped, stirred with a glass rod
until the mixture was uniform, titrated with distilled water until
the solution became turbid for 1 min or longer, and the volume

of titrated distilled water was recorded, which was the RSN
value of the demulsifier.

Determination of Interfacial Tension of Demulsifiers.
A Kruss DSA100 contact angle measuring instrument was used
for measuring modified polyether demulsifiers. The polyether
aqueous solutions with different concentrations were heated in
a water bath after being prepared and then measured at a set
temperature of 80 °C. A 1 mL disposable syringe was selected
as the instrument of the hanging drop method to measure the
interfacial tension of polyether aqueous solutions with different
concentrations.

Experiment on Demulsification and Dehydration of
the Demulsifiers. Preparation experiment of the W/O crude
oil emulsion: A certain amount of crude oil and sewage was
weighed and preheated at 65 °C for 1 h. The mixer was started
and sewage was gradually added into the crude oil at a stirring
speed of 7000 rpm. After adding water and stirring for 15 min,
a stable W/O crude oil emulsion was obtained.

Determination of the moisture content of the W/O type
crude oil emulsion by distillation: The emulsion was heated to
flow at 65 °C and poured into a round-bottom flask containing
diesel oil with a few shards of porcelain at the bottom to
prevent the liquid from boiling over. The condensing tube and
the receiver were installed, the distillation flask was heated in a
constant temperature oil bath, and the drop rate of the
condensate was controlled to approximately 4 drops/s until
there was no more water in the distillation unit and the volume
of the liquid in the receiver had not changed for a period of
time. Next, heating was stopped and then the mixture was
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Figure 11. Schematic diagram of the demulsification and dehydration experiment.

cooled to room temperature. The water droplets attached to
the receiver were scraped into the liquid with a tool, and the
volume of water in the receiver was read. The volume fraction
of water in the crude oil emulsion was calculated according to
formula 2.%%

- W)
%

@ = X 100%

)
@ is the volume fraction of water, V| is the volume of separated
water of the blank experimental control, V; is the volume of
separated water in the receiver, and V is the volume of the
crude oil emulsion.

The demulsification temperature was selected as 85 °C,
which was consistent with the actual demulsification temper-
ature in the oil plant. The emulsion was heated in a water bath
until it began to flow, and the upper emulsion was placed in a
beaker and put into an electric stirrer at a speed of 2000 rpm
for 8 min and then put aside for 5 min; then, S0 mL was
poured into a tapered graduated tube. A small amount of the
FYJP nonanionic polyether demulsifier was added to the test
tube; the test tube was shaken by hand 150 times and heated in
a water bath at the temperature specified above. Each tapered
scale tube retained a set of blank controls to record the volume
of water released at different times. The demulsification
efficiency can be calculated by the volume of demulsified water
and the volume of water in the emulsion, as shown in eq 3.*'

VW
W (%) = = x 100
|4 3)

W is the demulsification rate of the demulsifier for the heavy
oil emulsion, V, is the volume of water from the emulsion, and
V,, is the volume of emulsion dehydration under the action of
the demulsifier.

Figure 11 shows a schematic diagram of the demulsification
and dehydration experiment.

Microscopic Demulsification Process Test. A W/O
emulsion with 0.1 ¢ L™' FYJP demulsifier was evenly spread on
the glass slides at 25 °C. A BH-2 microscope was used for
observation. Microdemulsifier processes at different time
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periods were recorded using SPECTRUMSEE-ADVANCE
software.
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