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ABSTRACT Eicosanoids are lipid-based signaling molecules that play a unique role in
innate immune responses. The multiple types of eicosanoids, such as prostaglandins
(PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bac-
terial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins
(PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leuko-
triene LTB4, which has chemotactic functions. The PG synthesis and secretion are regu-
lated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the
expression of this protein is regulated at multiple levels, both transcriptionally and
posttranscriptionally. Bacterial pathogens use virulence strategies such as type three
secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosa-
noid-specific biosynthetic enzymes, thereby modulating the host response to bacterial
lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids
in inflammasome activation during intracellular infection with bacterial pathogens.
Specifically, PGE2 was found to enhance inflammasome activation, driving the forma-
tion of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the
dying cell. Finally, eicosanoids and IL-1b released from macrophages are implicated in
the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in
phagocytosing and degrading PITs and associated bacteria to restore homeostasis.
This review focuses on the novel functions of host-derived eicosanoids in the host-
pathogen interactions.
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Nonsteroidal anti-inflammatory drugs (NSAIDs) are some of the most taken over-the-
counter pain relievers. While these medications are taken to alleviate the symptoms

of viral and bacterial infections (1, 2), NSAIDs can have severe side effects, including gas-
trointestinal and cardiovascular complications (3–6). Many NSAIDs act by inhibiting cy-
clooxygenase (COX)-1/-2 enzymes, which biosynthesize prostaglandins (PGs) and other
bioactive lipids that downstream trigger pain or elevated temperature (1, 2, 5). PGs
belong to the class of eicosanoids, which are immunomodulatory lipids generated via
the oxidation of arachidonic acid (AA) or other polyunsaturated fatty acids (PUFAs) (7).
Eicosanoids vary in function and structure and act on discrete cellular receptors desig-
nated EP receptors (8, 9). As a result, a wide variety of physiological responses are possi-
ble depending on the generation of specific eicosanoids and the expression of individual
eicosanoid receptors (10–14). Eicosanoids have a complex function in the innate immune
response: in some cases, eicosanoids support inflammation, such as enhancing pro-inter-
leukin-1b (pro-IL-1b) biosynthesis, and in others, eicosanoids block inflammatory proc-
esses, for instance, by destabilizing tumor necrosis factor alpha (TNF-a) transcripts
(15–19). Despite what is known, eicosanoid functions in bacterial infections remain elu-
sive, and it appears that depending on the pathogen, unique mechanisms lead to the
perturbations of the eicosanoid metabolism in the host cell. This review focuses on the

Citation Sheppe AEF, Edelmann MJ. 2021.
Roles of eicosanoids in regulating
inflammation and neutrophil migration as an
innate host response to bacterial infections.
Infect Immun 89:e00095-21. https://doi.org/10
.1128/IAI.00095-21.

Editor Karen M. Ottemann, University of
California, Santa Cruz

Copyright © 2021 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Mariola J.
Edelmann, medelmann@ufl.edu.

Accepted manuscript posted online
24 May 2021

Published 15 July 2021

August 2021 Volume 89 Issue 8 e00095-21 Infection and Immunity iai.asm.org 1

MINIREVIEW

https://orcid.org/0000-0003-2206-0664
https://orcid.org/0000-0003-0459-7716
https://doi.org/10.1128/IAI.00095-21
https://doi.org/10.1128/IAI.00095-21
https://doi.org/10.1128/ASMCopyrightv2
https://iai.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/IAI.00095-21&domain=pdf&date_stamp=2021-5-24


function of distinct classes of eicosanoids such as PGE2, 15d-PGJ2, and LTA4/LTB4 in the
conserved host response to bacterial LPS.

REGULATION OF EICOSANOID BIOSYNTHESIS

Arachidonic acid, AA, is a 20-carbon fatty acid, and it serves as a primary eicosanoid
precursor in the cells. AA is not freely available in the cell, and it is instead associated with
cellular membranes. However, under activation of Toll-like receptor 4 (TLR4) by bacterial
LPS and other stimuli, membrane phospholipids are cleaved by cPLA2 to produce free AA
(20–22) (Fig. 1). Host mitogen-activated protein kinases (MAPK) are rapidly phosphoryl-
ated in response to lipid-A of bacterial LPS binding to host TLR4, leading to activation of
transcription factors such as nuclear factor-κB (NF-κb) that drives pro-inflammatory cyto-
kine biosynthesis (22, 23). The cPLA2 enzyme is activated via phosphorylation by host
MAPKs at serine 505 residue, leading to activation of cPLA2 and consequent AA liberation
(20, 24, 25). Cytosolic AA can then be further metabolized to oxygenated derivatives, eico-
sanoids, which include prostanoids (prostaglandins, PGs, and thromboxanes), leukotrienes
(LTs), lipoxins (LXs), and epoxyeicosatrienoic acids (EETs) (26). In addition to AA, other
PUFAs can also be used as eicosanoid precursors, including v6-derived PUFAs from di-
homo-g-linolenic acid (DGLA) or v3-derived PUFAs from a-linolenic acid (ALA), for
instance, eicosapentaenoic acid (EPA). PGs and LTs are generated via the oxidation of AA
by cyclooxygenase (COX) or lipo-oxygenase (LOX) enzymes, respectively.

Two different cyclooxygenase enzymes are responsible for converting AA into the
various prostaglandins, COX-1 and COX-2. Human COX-1 and COX-2 are homodimers
and share 60% sequence similarity (27). These enzymes contain two different active sites,
a peroxidase and a cyclooxygenase active site, flanking a central heme group (27, 28).
The peroxidase center catalyzes the removal of two electrons from Tyr-385 residue in
the cyclooxygenase active site to produce a tyrosyl radical that can catalyze the cycloox-
ygenase reaction. Due to their functions in regulating inflammation, COX enzymes are
targets of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin or ibuprofen,
which function by inhibiting pro-inflammatory PG synthesis and thus result in decreased
pain, inflammation, and fever (29). Different NSAIDs have distinct selectivity for COX iso-
enzymes. For example, aspirin covalently modifies Ser-530 residue in the active site of
both COX isoenzymes, preventing PG synthesis, while other COX inhibitors such as

FIG 1 Biosynthesis of various prostaglandins and leukotrienes. Membrane phospholipids are converted to AA
by the PLA2 enzyme. Alternatively, AA can be synthesized from diacylglycerol (DAG), where DAG is converted
by PLC to 2-AG intermediate, followed by MAGL degradation of 2-AG to AA. AA serves as a substrate of COX-1
and COX-2, which convert AA to PGH2. Alternatively, AA is used by the 5-LOX enzyme to produce leukotrienes.
PGH2 is converted to PGE2 by prostaglandin E synthase 1 (PGES-1) or PGD2 by hematopoietic prostaglandin D
synthase (H-PGDS). PGD2 undergoes a dehydration reaction to form 15d-PGJ2. LTA4 is derived from 5-LOX
generated HPETE. LTA4 can be processed further to LTB4 via a hydrolysis reaction. Various other eicosanoids,
such as resolvins and other lipoxins, are generated from the oxidation of polyunsaturated fatty acids other
than AA, such as DHA and EPA.
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ibuprofen are reversible inhibitors of both COX enzyme functions (reviewed in reference
30). In addition, while aspirin and ibuprofen are nonselective COX inhibitors, celecoxib
and etoricoxib have high selectivity toward COX-2 and therefore have reduced adverse
effects related to gastrointestinal tract (31, 32). Under biological conditions, AA is first
reduced to the hydroperoxy arachidonate metabolite PGG2 (33) and then further
reduced to PGH2 by the peroxidase activity of COX-1/2 (34). PGH2 is converted rapidly to
biologically active prostanoids by specific synthases and acts on discrete receptors desig-
nated EP receptors, which exist at various levels in particular tissues (35–38). These pros-
tanoids include prostaglandin E2 (PGE2) synthesized by prostaglandin E synthase (PGES),
prostacyclin (PGI2) synthesized by prostaglandin I synthase (PGIS), prostaglandin D2

(PGD2) synthesized by prostaglandin D synthase (PGDS), prostaglandin F2a (PGF2a) syn-
thesized by prostaglandin F synthase (PGFS), and thromboxane A2 (TXA2) generated by
thromboxane A synthase (TXAS) (7). Further, an anti-inflammatory prostaglandin 15d-
PGJ2 is synthesized from PGD2 via its dehydration to PGJ2, which is also converted to
15d-PGJ2 or D-12-PGJ2 (7).

Leukotrienes are generated from 5-lipoxygenase (arachidonate-5-lipoxygenase; 5-LOX)-
mediated conversion of AA to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) intermediate
(39), which is then rapidly reduced to 5-hydroxyeicosatetraenoic acid (5-HETE) (Fig. 1).
However, 5-HPETE can be alternatively converted by 5-LOX to an unstable structure called
leukotriene A4 (LTA4), which can be further modified to generate leukotriene B4 (LTB4) by
LTA4 hydrolase, or to leukotriene C4 (LTC4) by LTC4 synthase, respectively. LTB4 and LTC4

molecules are mainly produced by immune cells. Following the export of these LTs, LTC4 is
metabolized to LTD4 by gamma-glutamyl transpeptidase, while LTD4 can be modified to
LTE4 by cysteinyl glycinase.

The availability of AA and the cell’s physiological state dictate the LT and PG levels at
the same time since COX and LOX enzymes both utilize AA as a substrate for PG and LT
biosynthesis, respectively. Hence, a delicate balance between PG and LT synthesis is
maintained upon various stimuli, resulting in specific physiological responses. Bacterial
LPS and subsequent inflammation associated with these infections serve as such stimuli
contributing to COX and LOX activation. During bacterial infection, pathogen-associated
molecular patterns (PAMPs) are recognized by membrane-bound Toll-like receptors
(TLRs) or other pattern recognition receptors (PRRs), as well as by intracellular cytosolic
nucleotide oligomerization domain (NOD)-like receptors (NLRs) (40). Pro-inflammatory
signaling is not always desirable for a pathogen. Certain bacteria aim to evade the
immune system by inducing changes to the bacterial lipopolysaccharide (LPS), a compo-
nent of Gram-negative bacteria’s outer membrane, impairing TLR signaling (41–44). LPS
is a potent inducer of PGE2 biosynthesis and is involved in a wide variety of bacterial
infections (Table 1). Gram-negative bacterial LPS comprises multiple elements, including
lipid-A, inner core, outer core, and O antigen components. Lipid-A is a potent endotoxin
that binds specifically to TLR4 and, along with the help of MyD88, activates transcrip-
tional factors such as NF-κB to upregulate pro-inflammatory cytokine production as well
as COX-2 expression, the major biosynthetic enzyme of PGE2 (21–23). The binding of
lipid-A to TLR4 activates MyD88, which results in phosphorylation of host mitogen-acti-
vated protein kinases (MAPKs), resulting in the subsequent phosphorylation of IκB kinase
(IKK), which results in derepression of NF-κB, allowing its translocation to the nucleus to
upregulate gene transcription (23). It is unclear if PGE2 biosynthesis in response to LPS-
TLR4 is due to lipid-A or other parts of bacterial LPS since rough or smooth mutants of
Salmonella enterica serovar Typhimurium lacking O antigen or characterized by an
impaired lipid-A biosynthesis all induce PGE2 biosynthesis (19). Chemical inhibitors of the
MAPK cascade during LPS treatment alone or several Gram-negative bacterial infection
models have been reported to abrogate PGE2 biosynthesis, potentially indicating a con-
served host response mechanism of PGE2 biosynthesis in response to Gram-negative
bacterial infection (45). In contrast, Gram-positive bacteria lack LPS, but they contain tei-
choic and lipoteichoic acids as well as a thick peptidoglycan layer, and these pathogens
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typically do not induce large levels of PGE2 biosynthesis except for Staphylococcus aureus
infection (46, 47).

The immunomodulatory effects of PGs and LTs depend on the expression of cognate
receptors on recipient cells, which varies depending on the cell population and the cells’
physiological state. For example, macrophages generate a wide variety of PGs and LTs in
response to TLR stimuli, but the biosynthesized levels of specific eicosanoids change
across macrophages from different sources and under distinct physiological states (12).
While COX-1 is constitutively expressed in almost all tissue types, COX-2 is inducible by
inflammatory cytokines and TLR activation (48). The 59-UTR (untranslated region) of the
COX-2 gene includes binding sites for several transcription factors such as NF-κB, AP-1,
CRE, and others (49). COX-2 is also regulated by posttranscriptional processes due to
instability sequences in the 39-UTR. RNA-binding proteins that recognize AU-rich ele-
ments (AREs) are hypothesized to control COX-2 mRNA stability, such as CUGBP2 or HuR,
which binds to COX-2 mRNA and prevents translation (50). Mitogenic inhibitors can also
influence COX-2 expression in a protein kinase C-p38 MAPK (mitogen-activated protein
kinase)-dependent manner (41–44). TLR4 signaling is in particular essential for COX-2 up-
regulation. COX-2 and PGE2 biosynthesis is upregulated in response to a wide variety of
Gram-negative pathogens, including Salmonella enterica serovar Typhimurium, Shigella
flexneri, Helicobacter pylori, Yersinia enterocolitica, and Escherichia coli, which will be cov-
ered in following sections (14, 19, 50–53).

The leukotriene biosynthesis is also enzymatically controlled by several proteins.
Specific LOX enzymes are present in different cells to metabolize AA, including 5-LOX
in leukocytes, 12-LOX in platelets, or 15-LOX in endothelial cells. LTB4 is a chemoattrac-
tant for polymorphonuclear leukocytes (PMNs), such as neutrophils and eosinophils
(54, 55). Accordingly, 5-LOX and LTB4 are heavily regulated in immune cells. For
instance, pro-inflammatory or M1 macrophages secrete high levels of LTB4, whereas

TABLE 1 The effect of bacterial infections on eicosanoid production and function of eicosanoids in bacterial infections

Organism The effect of infection on eicosanoids The effect of eicosanoids on infection Reference(s)
Burkholderia pseudomallei Increase in PGE2 PGE2 has detrimental effects on the survival

of infected mice
155

Campylobacter jejuni Increase in PGE2 156
Escherichia coli Increase in PGE2 PGE2 increase by colibactin-producing E. coli

functions in colon cancer tumorigenesis;
inhibition of COX-2 enhances infection with
extraintestinal E. coli

51, 134, 137

Francisella tularensis Increase in PGE2 PGE2 has detrimental effects on the infected
host via downregulation of Th1 immunity

157, 158

Helicobacter pylori Increase in PGE2 PGE2 contributes to chronic inflammation
but also cancer cell growth and proliferation

130, 131, 133

Klebsiella pneumoniae LTB4 promotes phagocytosis, enhances ROS-
dependent NADPH oxidase activation

111

Legionella pneumophila Increase in PGE2 159
Mycobacterium tuberculosis Degradation of LTB4 to its inactive form

12-oxo-LTB4; decrease in PGE2

LTA4H deficiency downregulates TNF-a;
COX-2 inhibition leading to reduced PGE2
enhances phagocytosis ofM. tuberculosis

109, 124, 125

Pseudomonas aeruginosa Increase in PGE2 COX-2-deficient mice have increased survival
rates during infection

160–162

Salmonella enterica Increase in PGE2 by SPI-2 T3SS factors PGE2 affects macrophage polarization 19, 57, 123
Shigella flexneri PGE2 levels are elevated in the stool of

infected patients and in rabbit ileal loops
52, 148, 149

Staphylococcus aureus Increase in PGE2 PGE2 promotes the growth and biofilm
formation of S. aureus and enhances the
attachment of bacterium to the human
fibronectin

47

Yersinia enterocolitica Increase in PGE2 but downregulation of
PGE2 by T3SS virulence factors

PGE2 affects macrophage polarization 19
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anti-inflammatory M2 macrophages express lipoxins, which aid in immune suppres-
sion. 5-LOX is inactive in resting cells and becomes activated by increasing intracellular
calcium or phosphorylation (56, 57).

THE FUNCTION OF EICOSANOIDS IN THE REGULATION OF INFLAMMATORY
PROCESSES IN RESPONSE TO BACTERIAL INFECTIONS

Eicosanoids regulate pro-inflammatory processes, often associated with bacterial
infections. Bacterial products (PAMPs) and danger-associated molecular patterns
(DAMPs) are recognized by both intracellular and extracellular receptors expressed by
the host cell, such as macrophages. PAMPs include LPS, flagellin, and the needle and
rod protein of the bacterial T3SS, while DAMPs include elevated ATP levels or K1 influx
(58–60). These components are recognized by typically extracellular membrane-bound
TLRs or cytosolic NOD-like receptors (NLR). The initial stimulus triggers the oligomeriza-
tion of NLRs with an adapter protein, ASC, to form the inflammasome (61). Five well-
studied receptors capable of creating inflammasomes in response to bacterial infection
and noncanonical inflammasomes that detect bacterial LPS and activate caspase-11
are NLRP1, NLRP3, NLRC4, AIM2, and pyrin (61). For example, during S. Typhimurium
infection, NLRP3 and NLRC4 inflammasomes are upregulated and activated to produce
a large quantity of IL-1b (62).

In contrast, other pathogens such as Mycobacterium tuberculosis and Yersinia pestis
actively repress inflammasome formation by employing virulence factors and impairing IL-
1b signaling during infection (63, 64). Inflammasomes are a hallmark of pyroptosis, a form
of pro-inflammatory programmed cell death that leads to the rapid clearance of bacteria
by removing intracellular replication niches and enhancing chemotaxis of neutrophils to
the site of infection (51). Recent studies have investigated PGs’ role in modulating the ac-
tivity of inflammasomes and will be discussed below. Relatively few categories of eicosa-
noids have been extensively studied in the context of infections, whereas PGs and LTs are
some of the best-characterized eicosanoids due to their roles in inflammatory conditions,
such as arthritis and bacterial sepsis (65). Below, we will discuss specific functions of eicosa-
noids in inflammasome activation, phagocytosis, and efferocytosis, giving specific exam-
ples of bacteria that modulate the biosynthesis of eicosanoids. Finally, we will review the
outcomes of eicosanoid biosynthesis changes in these infections, focusing on gastrointes-
tinal pathogens.

The role of PGE2 and 15d-PGJ2 during inflammasome activation and inflammation.
PGE2 is one of the most significant eicosanoids released during infection with Gram-negative
pathogens (Table 1). PGE2 stimulates the production of pro-inflammatory cytokines such as
IL-1b , IL-23/17, or IL-8 while limiting inflammation by controlling TNF-a levels and inducing
IL-10 secretion (19, 66). These unique functions of PGE2 in the stimulation of specific cytokine
profiles emphasize the importance of this molecule in maintaining homeostasis during infec-
tion. Bacterial components such as LPS or virulence factors can induce transcriptional
changes that enhance COX-2 expression, resulting in the biosynthesis and secretion of PGE2
(19, 21). PGE2 acts on neighboring immune cells by binding to discrete G-protein coupled
receptors, designated EP receptors 1 to 4, each with different downstream consequences in
response to activation (as extensively reviewed in reference 8). Once bound, the G-linked
receptors control levels of secondary messengers in the cell, such as cAMP, IP3, and Ca21,
which induce transcriptional changes via NF-κB or C-JUN (67–70). Gene regulation by EP re-
ceptor signaling has a wide range of effects on host cells, including shifts in macrophage
polarization or downregulation of bactericidal capabilities in neutrophils by downregulating
NADPH oxidase and reducing the generation of reactive oxygen species (ROS) (19, 71–73).

PGE2 has also been reported as having a pro-inflammatory role in inflammasome activa-
tion in pyroptosis that is often present during bacterial infections. For instance, PGE2
increases inflammation by leading to an elevated IL-1b expression, which is subsequently
cleft by caspase-1 and secreted and in this way can reach neighboring cells (15, 74). The
binding of IL-1b to IL-1R also increases the expression of the COX-2 enzyme, creating a posi-
tive feedback loop by stimulating host MAPK-extracellular signal-regulated kinase (ERK)
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signaling-mediated transcriptional changes (15). Additionally, increased PGE2 biosynthesis is
associated with decreased phagocytosis (67). The killing ability of macrophages is also
reduced by PGE2, for instance, by diminished nitric oxide synthesis in macrophages, leading
to larger bacterial loads during some infections, such as Mycobacterium tuberculosis (75). As
such, PGE2 has become increasingly acknowledged as an essential factor in determining the
fate of the host during bacterial infection and has made PGE2 an appealing option for anti-
microbial treatments targeting COX-2 or EP receptor inhibition (76–79). PGE2 signaling via
the EP3 receptor increases activation of inflammasome in some infections. Specifically, PGE2
signaling through the EP3 receptor leads to activation of the NLRC4 inflammasome during
infection with Anaplasma phagocytophilum, a bacterium that causes anaplasmosis (80).

Although EP2 and EP4 receptors also have been shown to be involved in inflamma-
some activation, reports of PGE2 function in mediating inflammasome activation through
EP2 and EP4 have been conflicting. For example, PGE2 inhibits NLRP3 inflammasome by
signaling through the EP4 receptor (69). The EP4 receptor activates adenylate cyclase,
increasing intracellular cAMP levels via phosphoinositide 3-kinase (PI3K), leading to the
downregulation of NLRP3 (16). Interestingly, EP2 receptor agonists failed to produce a
similar result in dampening NLRP3 activation, even though PGE2 has a much stronger af-
finity for the EP2 receptor. The EP2 receptor is more strongly associated with the cAMP
production by adenylate cyclase than is the EP4 receptor, thus leading to more consider-
able changes in cAMP intracellular concentrations (81). In zebrafish, macrophage uptake
of apoptotic neutrophils was found to be required for the resolution of inflammation. In
this model, PGE2 acts via EP4 receptors to drive inflammation resolution by reverse
migration (82). Other reports have suggested that PGE2 and IL-1b form a positive feed-
back loop, which may be downstream of EP2 or EP4 (79). A receptor-specific response to
PGE2 has been reported multiple times, emphasizing that the functions of EP2 and EP4
receptors have to be studied more extensively (70, 79, 83, 84).

Apart from PGE2, there are other PGs that affect inflammasome activity and inflamma-
tion, such as 15d-PGJ2. 15d-PGJ2 is a cyclopentane prostaglandin formed via the dehydration
of PGD2 and has been shown to activate PPARg promoting adipocyte and monocyte differ-
entiation (85–87). 15d-PGJ2 also inhibits inflammatory gene expressions such as inducible
NO synthase and tumor necrosis factor a (TNF-a) (88–90). Additionally, 15d-PGJ2 inhibits
multiple steps in the NF-κB signaling pathway by directly modifying critical cysteine residues
in IKK-b kinase and the DNA-binding domains of NF-κB subunits (91). 15d-PGJ2 also inhibits
inflammasome activation by inhibiting caspase-1 activation by the NLRP1 and NLRP3 inflam-
masomes in response to anthrax lethal toxin in a murine infection model (92). The negative
effect of 15d-PGJ2 on inflammasome activation is independent of canonical signaling path-
ways activated by 15d-PGJ2. Instead, 15d-PGJ2 induces a cell state that does not process cas-
pase-1 to its active form, indicating a unique form of inflammasome inhibition (92).
Additionally, exogenous administration of 15d-PGJ2 appears to be anti-inflammatory in addi-
tional mouse models by inhibiting NLRP3-dependent peritonitis (93).

The function of 15d-PGJ2 during bacterial infection models has become a new inter-
est among researchers considering its ability to interact with PPARg. In a brain abscess
inflammation model, microglial activation by Staphylococcus aureus (S. aureus), one of
the main etiologic agents of brain abscess in humans, was selectively attenuated by 15d-
PGJ2 (94). 15d-PGJ2 inhibited increases in pro-inflammatory cytokines IL-1b and TNF-a,
immunological markers such as TLR2, CD14, MHC class II, CD40 expression, and a variety
of chemokines in microglial infected with S. aureus (94). Another study found similar
anti-inflammatory effects for 15d-PGJ2 in an astrocyte infection model of S. aureus but
interestingly was able to function independently of PPARg since inhibition of inflamma-
tion was still observed in PPARg-deficient astrocytes (95). 115d-PGJ2 also has been
reported to play an anti-inflammatory role in several sepsis models, including Salmonella
enterica serovar Typhimurium (S. Typhimurium) and Escherichia coli infections (96–98). In
vivo infection with S. Typhimurium led to increased 15d-PGJ2 biosynthesis in the spleen
and livers of infected mice (99), and follow-up studies using RAW macrophages, bone
marrow-derived macrophages, and J774 cells indicate that 15d-PGJ2 is essential for
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reducing bacterial colonization (100). 15d-PGJ2 suppresses RANTES expression by inhib-
ited NADPH oxidase activation in Helicobacter pylori-infected gastric epithelial cells (101).
Ultimately, these studies suggest an important anti-inflammatory role for 15d-PGJ2 dur-
ing inflammasome activation and inflammation, which indicates a potential use of 15d-
PGJ2 in a variety of infectious diseases.

Functions of LTs in phagocytosis and efferocytosis. Among the LTs, LTB4 is most
involved in the early phases of inflammation during infection. For instance, these eicosa-
noids act as factors that recruit neutrophils to phagocytize and degrade invading patho-
gens (102). LTB4 is a potent activator and chemoattractant of neutrophils and is biosynthe-
sized and secreted primarily by polymorphonuclear leukocytes in macrophages and
monocytes in response to bacterial infection (103, 104). LTB4 works with other chemokine
gradients such as C5a to attract neutrophils to the site of infection (105). LTB4 signaling,
through its cognate receptor BLT1, is critical for neutrophil migration to the foci of damage
(106). For example, in Wistar rats, neutrophil migration induced by IL-1b is lost when ani-
mals are treated with MK866, a LOX-5 inhibitor (107). In a methicillin-resistant S. aureus
(MRSA) skin infection model, LTB4 promotes cutaneous abscess formation absent in
LTB4R1-deficient mice (108). Interestingly, an ointment containing LTB4 acted synergisti-
cally with the antibiotic mupirocin in lowering MRSA bacterial numbers in cutaneous
abscesses, thereby indicating LTB4 as a novel potential therapeutic option (108). In the
zebrafish model of Mycobacterium tuberculosis infection, LTB4 appears to be detrimental to
host defense (109). LTA4H (which converts LTA4 to LTB4) overexpression results in
increased TNF-a secretion and increased M. tuberculosis bacterial numbers (110). LTB4 also
plays an important role in promoting phagocytosis (14, 104). Exogenous LTB4 restores the
phagocytic ability of 5-LOX-deficient neutrophils for serum opsonized Klebsiella pneumo-
niae (111). Once phagocytized, neutrophils utilize reactive oxygen species (ROS) to kill
invading pathogens. LTB4 enhances ROS-dependent NADPH oxidase activation via phos-
phorylation of the cytosolic subunit p47phox (112). LTB4 also enhances MyD88 expression,
which is required for NF-κB-mediated activation of pro-inflammatory cytokines (23). Upon
PAMP or DAMP recognition, TLRs recruit Toll/IL-1R domain (TIR) adaptor molecules such as
MyD88 or TRIF to initiate downstream signaling events, dictating the type of host
response. LPS recognition and binding to TLR4 induce MyD88- and TRIF-dependent signal-
ing pathways involving multiple host-activated mitogen kinases (MAPKs) such as MEK,
JNK, and p38 kinases, which function by altering translocation of transcription factors to
the nucleus to bind to and alter gene transcription during MyD88-dependent responses.
For example, activation of host MyD88-dependent MAPKs results in derepression of NF-κB
signaling by inhibiting IKK repression of NF-κB by direct phosphorylation of IKK, allowing
NF-κB to migrate to the nucleus and initiate transcription of pro-inflammatory cytokines
such as IL-1b and TNF-a (NF-κB has been extensively reviewed, e.g., see reference 113).
These cytokines are important for the host immune response to invasive pathogens.

LTs are critical for efferocytosis of neutrophils to resolve inflammation, but para-
doxically high levels of LTB4 are associated with chronic inflammatory disorders such
as type-1 and type-2 diabetes or arthritis (114–116). Paradoxically, LTB4 plays a critical
role in bacterial clearance but also contributes to long-term inflammatory disorders.
Aberrant leukotriene production is hypothesized to alter immune cell function, which
results in the hyperproductivity of inflammatory cytokines such as TNF-a, IL-8, and Il-6
during chronic inflammation (117–119). A genetic screen discovered that mutants of
the Ita4h locus in zebrafish resulted in altered LT4AH expression, which caused
increased susceptibility to Mycobacterium marinum infection (120). LTA4H deficiency
leads to anti-inflammatory activity in the host, which happens due to aberrant TNF-a
production, damaging the host since a moderate level of inflammation is typically
required to resolve infection (120). Accordingly, bacterial numbers were lower in wild-
type zebrafish than in LTA4H-deficient zebrafish (120). In an additional study,
Streptococcus iniae infection of zebrafish with deficiencies in LTB4 production due to
loss of LTB4H expression resulted in a loss of macrophage aggregation and increased
susceptibility to disease (121). The resulting phenotype was reversible when
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exogenous LTB4 was restored, indicating the importance of functional LTB4 during bac-
terial infection (120). LTB4 signaling also contributes to bacterial sepsis during endo-
toxic shock (122). For instance, BLT1/2-dependent signaling pathways mediated the
expression of IL-17, IL-6, and IL-1b , key cytokines for the development of this endo-
toxic shock, via NF-κB activation in the LPS-induced endotoxic shock mouse model
(122).

Modulation of host eicosanoids by bacterial agents causing gastrointestinal
diseases. PGE2 is rapidly generated in response to infections with Gram-negative bac-
teria such as Salmonella enterica, Escherichia coli, Chlamydia trachomatis, Legionella
pneumophila (19, 46, 51, 57, 123), acid-fast bacterium Mycobacterium tuberculosis (109,
124), and the Gram-positive bacteria Staphylococcus aureus (46, 47). Some pathogens,0
such as Yersinia enterocolitica and Mycobacterium tuberculosis, have mechanisms to
counteract PGE2 biosyntheses, (19, 125). While mounting evidence suggests that bacte-
ria can use virulence factors to increase or decrease PGE2 production, specific mecha-
nisms that regulate eicosanoid levels are mostly unknown. Although several pathogens
have been reported to stimulate eicosanoid biosynthesis during infection (Table 1), in
this review, we focus on pathogens that primarily cause gastrointestinal diseases (124).

Helicobacter pylori. Helicobacter pylori is among the most prevalent infectious dis-
ease-causing pathogens, being present in approximately half of the world population,
although this microorganism often persists in the host without inducing disease (126).
H. pylori uses a variety of virulence factors, including outer membrane proteins (OMPs)
such as OipA, toxins like CagA, and a type 4 secretion system (T4SS), and thus induces
severe inflammation and damage in the host (127). However, H. pylori is also proposed
to have favorable immunomodulatory properties in the case of asthma and skin aller-
gies by reducing inflammation (128). H. pylori has recently been postulated to activate
the NLRP3 inflammasome in murine bone marrow-derived dendritic cells (129).
H. pylori LPS signals through the TLR4-MyD88 axis to drive IL-1b transcription, which in
turn results in increases IL-1b secretion upon inflammasome activation in macro-
phages. In dendritic cells, H. pylori urease B subunit (UreB) mutant was unable to trig-
ger inflammasome activation (129). What triggers the oligomerization of the NLRs to
form the inflammasome in H. pylori infection is still unclear. H. pylori infection also
induces COX-2 expression in gastric epithelial cells, where it first comes in contact with
the stomach by activating the epidermal growth factor receptor (130) in a T4SS-de-
pendent fashion, leading to robust production of PGE2, which contributes to chronic
inflammation. PGE2 supports cancer cell growth and proliferation, which are associated
with H. pylori infection. Treatment with COX-2/EGFR inhibitors leads to a decrease in
gastric tumorigenesis (131). Moreover, 15d-PGJ2 is reportedly downregulated upon
infection with H. pylori and even more so in gastric tumors associated with H. pylori
infection (132). These observations suggest that control of homeostatic imbalance
between the PGE2 and 15d-PGJ2 levels could counteract gastric cancer tumorigenesis.
Other studies in monocytes and macrophages have indicated an important role of
host microRNA-155 in increasing COX-2, TNF-a, and IL-23 during H. pylori infection
(133). The mechanism by which H. pylori induces miRNA-155 is unknown.

Escherichia coli. E. coli is one of the most abundant species of bacteria found in the
gut of mammals. Depending on the species, E. coli has various pathogenicity levels,
from the highly pathogenic pedestal-forming E. coli (EPEC) or uropathogenic E. coli
(UPEC) to commensal E. coli found in the gut of most mammals. EPEC, UPEC, and com-
mensal E. coli induce PGE2 secretion, but more invasive strains contribute a more ro-
bust PGE2 response (134). Using a T3SS, EPEC induces COX-2 expression via the viru-
lence protein EspT independent of LPS or passive recognition by the host in an ERK1/
2-dependent manner (51). Some E. coli strains belonging to the B2 phylogroup and
producing colibactin are capable of inducing COX-2 and are hypothesized to have a
role in colon cancer tumorigenesis (135). Macrophages are heavily involved in tumor
infiltration and removal (136). Macrophages affected by colibactin-producing E. coli
enhance the tumorigenesis of colon cancers and are more resistant to killing by THP-1
macrophages (135).
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Extraintestinal pathogenic Escherichia coli (ExPEC) can colonize sites outside the
gastrointestinal tract, and as a comparison to EPEC, ExPEC infection also upregulates
COX-2, which happens in the TLR4-dependent manner (137). However, in ExPEC infec-
tion, COX-2 inhibition enhances the infection, leading to an increased bacterial burden
in blood, liver, lung, spleen, and brain (137). The mechanism by which COX-2 downreg-
ulation has a deleterious effect on the host depends on autophagy, which is a process
that the host can direct against bacterial pathogens, such as Salmonella (138). In ExPEC
infection, COX-2 inhibition leads to a decrease in macrophage autophagy, and inhibi-
tion of the autophagy process leads to increased bacterial survival in the cells. In con-
trast, enhanced autophagy leads to decreased bacterial survival in macrophages.
Hence, COX-2 upregulation can prime the activation of autophagy in macrophages,
thereby facilitating clearance of this bacterium (137).

Uropathogenic E. coli also increases COX-2 transcription and secretion of PGE2
during urinary tract infections (UTIs) (139). The type 1 fimbriae of uropathogenic
Escherichia coli (UPEC) have been described as important for establishing bladder infec-
tions and urinary tract infections (UTI) (139). Induction of COX-2 in infected human
bladder 5637 cells by UPEC is mediated via host TLR4-dependent activation of MAPKs
such as JNK, p38, and ERK, and inhibition of transcription factors AP-1 and NF-κB
resulted in abrogation of COX-2 promoter activity and expression (139).

Salmonella enterica. S. enterica Typhimurium is a foodborne pathogen which causes
severe inflammation upon infection. Salmonella’s virulence originates in at least two different
Salmonella pathogenicity islands (SPI) designated SPI-1 and SPI-2, which control the infection
process by encoded protein effectors. The T3SS of S. Typhimurium injects host macrophages
with virulence factors that induce COX-2 expression. For example, individual deletions of
genes carried by the SPI-2 revealed SpiC as a significant contributor to COX-2-based prosta-
glandin biosynthesis via activation of the ERK1/2 pathway (57). Interestingly, COX-2 inhibi-
tion does not impair Salmonella’s ability to invade and replicate in host cells, but it enhances
host survival during later infection stages. Our group identified an essential role for PGE2 pro-
duction in inflammasome activation with S. Typhimurium (19). Consistent with other studies,
infection with wild-type S. Typhimurium leads to an increase in PGE2 biosynthesis and up-
regulation of COX-2 compared to infection with ssaV-deficient mutant, which has an
impaired SPI-2. PGE2 priming of macrophages results in a robust inflammasome upregula-
tion in macrophages infected with S. Typhimurium, signified by an enhanced IL-1b secre-
tion. This PGE2-mediated effect on inflammasome in infected cells is most likely a result of
PGE2 signaling via EP4 receptor, which effectively leads to increased transcription of IL-1b in
human THP-1 macrophages. Following the inflammasome oligomerization, a greater pool of
immature IL-1b is converted to mature IL-1b , which drives the inflammation and may play
a beneficial role for the pathogen during later stages of infection (19). As another outcome,
PGE2 also alters macrophage polarization following the infection with Salmonella, suggesting
that other functions of macrophages are also changed by PGE2 (19).

Another PG that is enhanced by Salmonella Typhimurium infection is 15-deoxy-PGJ2
(15d-PGJ2). This lipid is released from macrophages during infection with Salmonella
Typhimurium and exerts anti-inflammatory effects. 15d-PGJ2 acts on two different PDG2

receptors, DP1 and DP2, with a preference for the DP2 receptor (140), which is found pri-
marily on Th2 cells, T cytotoxic cells, eosinophils, and basophils and plays a role in che-
motactic migration (141). Interestingly, 15d-PGJ2 is known to be active in the cytosol,
binding to the intranuclear receptor PPARg leading to reduced inflammatory cytokine
gene expression (142). Many of the effects attributed to PPARg activation contribute to
the production of anti-inflammatory cytokines in macrophages. For example, 15d-PGJ2
inhibits TNF-a, IL-1b , and inducible nitric oxide synthase in vitro (88).

Yersinia enterocolitica. Y. enterocolitica is a foodborne pathogen that resides almost
exclusively in the lymphoid tissue. This bacterium resists the host immune system’s acti-
vation by virulence factors encoded within its 70-kb virulence plasmid designated pYV.
Yersinia’s T3SS encodes several adhesins, including YadA and virulence proteins desig-
nated Yops (143). Elevation of the temperature to 37°C increases the expression of genes
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involved in pathogenesis such as the T3SS, loss of motility by flagellar downregulation,
and upregulation of Yops (144).

The pYV virulence plasmid plays a crucial role in modulating eicosanoid responses to
infection (19). While COX-2 is slightly increased upon infection with Y. enterocolitica, the Y.
enterocolitica devoid of pYV virulence plasmid leads to an extensive induction of COX-2
mRNA in infected macrophages, suggesting that some yet unidentified effectors encoded
by Yersinia play a role in COX-2 downregulation (19). The function of this downregulation of
COX-2 signaling by Y. enterocolitica is unclear. The baseline activation of COX-2 by wild-type
Y. enterocolitica may be due to LPS-TLR-4 signaling, which is reduced in the case of Y. pestis
infection due to changes in LPS composition but appears active in Y. enterocolitica infection
(145). PGE2 is also secreted from macrophages in response to Y. enterocolitica, which
depends on the presence or absence of the pYV virulence plasmid (19). Triple-quadruple
mass spectrometry analysis of media from macrophages infected with Y. enterocolitica
revealed large quantities of PGE2 in response to a pYV mutant compared to those in
response to the wild type. Exogenous addition of PGE2 before infection with Y. enterocolitica
resulted in a strong inflammasome response via EP4 stimulation and decreased bacterial
load 2, 24, and 48h postinfection (19). In summary, Y. enterocolitica downregulated PGE2 bio-
synthesis, which might be a possible pathogen strategy to skew the macrophage function.

Shigella flexneri. Another pathogen proposed to alter eicosanoid biosynthesis upon
infection is Shigella flexneri. S. flexneri is a highly inflammatory intracellular pathogen that
tends to cause bloody stool and diarrhea during shigellosis. S. flexneri expresses virulence
genes from a conserved virulence plasmid and encodes multiple secretion systems,
including the T3SS (146). Both pathogens activate the inflammasome and are known to
release IL-1b and IL-18. However, S. flexneri is also known to inhibit the release of pro-
inflammatory cytokines, such as IL-8, by inhibiting the NF-κB pathway (147). Due to the
conserved nature of the T3SS and inflammasome activation, it is unsurprising that PGE2
levels are elevated in the stools of patients suffering from shigellosis T3SSs (146). Both
pathogens activate the inflammasome and are known to release IL-1b and IL-18.
However, S. flexneri is also known to inhibit the release of pro-inflammatory cytokines,
such as IL-8, by inhibiting the NF-κB pathway (147). Due to the conserved nature of the
T3SS and inflammasome activation, it is unsurprising that PGE2 levels are elevated in the
stool of patients suffering from shigellosis (148). Another study performed by Sansonetti
et al. also indicated that COX-2 transcripts are strongly induced in the rabbit ileal loops
infected with S. flexneri (149). It has also been shown that S. flexneri leads to the upregula-
tion of COX-2 transcription in Peyer’s patches of the infected rabbit ligated intestinal
loops and that this upregulation of COX-2 mRNA is abrogated by secretory IgA (SIgA)
(52). HeLa cells infected with DospF S. flexneri exhibit increased COX-2 mRNA compared
to that of cells infected with wild-type strains (150). OspF/OspB are involved in the activa-
tion and sustained phosphorylation of host MAPKs, including p38, JNK, and ERK signaling
pathways, in response to LPS-TLR4 interactions during infection, which lead to cPLA2
activation. cPLA2 activation is the first step in PGE2 biosynthesis and is necessary for AA
synthesis prior to conversion to PGE2 by COX-2 (151).

NOVEL ROLES FOR PGE2 AND LTB4 DURING BACTERIA-DRIVEN PYROPTOSIS:
PORE-INDUCED INTRACELLULAR TRAPS

During pyroptosis, the inflammasome activates caspase-1, which activates other
enzymes via proteolytic cleavage. One such target, gasdermin D (GSDMD), is cleaved
to produce an N-terminal product that triggers inflammatory cell death. The N-terminal
product oligomerizes into the cell membrane to form pores visible by microscopy
(152). High affinity for negatively charged lipid heads allows the pore to be formed via
binding of GSDMD and subsequent insertion. The pore formation disrupts the sodium-
potassium gradient across the plasma membrane, resulting in a massive influx of so-
dium into the cell, causing intracellular changes and eventual cell death.

One of the most recent discoveries pertaining to pyroptosis is that this form of cel-
lular death is associated with the formation of cell corpse consisting of insoluble
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components, which trap bacteria inside the macrophage. The formation of these pore-
induced intracellular traps (PITs) is hypothesized to destroy the replicative niche the
pathogen is trying to use and immobilize the invading bacteria. Neutrophils are then
recruited via PGs and LTs to phagocytize and degrade the dead cell, including the
trapped bacteria (153). It appears that pyroptosis damages the bacteria but is not suffi-
cient for the complete clearance of the pathogens. The efferocytosis of neighboring
neutrophils by PGs and LTs is critical in controlling bacterial escape from PITs.

While undergoing pyroptosis, large amounts of eicosanoids are released from cells, such
as PGE2 (7) and the chemotactic leukotriene LTB4, hypothesized to play a role in neutrophil
migration toward newly formed PITs. Studies done by Jorgenson et al. have demonstrated
that neutrophil migration is influenced by inflammasome activation products like IL-1b and
IL-18 (154). By using an engineered strain of S. Typhimurium expressing flagellin during intra-
cellular infection, it was determined that IL-1b and IL-18 work cooperatively to clear the bac-
terium in vivo. Interestingly, inhibition of individual COX enzymes or leukotriene generating
lipooxygenases (LOXs) did not affect bacterial clearance, while simultaneous inhibition of
both enzymes resulted in impaired clearance. It is possible that optimal neutrophil migration
is not specific to essential prostaglandins or leukotrienes and that the loss of one of these lip-
ids is complemented by the other. Future studies likely will further investigate the mecha-
nism behind PIT-mediated clearance by neutrophils and roles for eicosanoids in this process.

CONCLUSION AND FUTURE DIRECTIONS

Bacteria-modulated changes in eicosanoid biosynthesis play a vital role during pyrop-
tosis or inflammatory cell death (Fig. 2). Evidence is mounting to support a conserved
mechanism used by Gram-negative pathogens. S. Typhimurium, EPEC, and S. flexneri use

FIG 2 Gram-negative pathogens such as S. Typhimurium and EPEC use T3SS to inject virulence
factors such as EspT and SpiC that activate NF-κB to induce COX-2 expression. This activation of COX-
2, in turn, leads to the production of prostaglandins, such as PGE2, which act via discrete EP receptors
EP2 and EP4 to enhance inflammasome activation during pyroptosis. Inflammasome activation further
drives the formation of PITs, which trap live bacteria. Neutrophils are recruited to the site of infection
via eicosanoids and phagocytize PITs to clear the invaders.
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T3SSs to inject virulence factors into host cells that alter COX-2 transcription. By increas-
ing COX-2 levels, PGE2, one of the most predominant COX-2-derived PGs, is released in
large quantities during infection. PGE2 enhances inflammasome activation, secretion of
IL-1b and IL-18, and formation of PITs, which are associated with pyroptosis. Upon cell
death, live bacteria are trapped in the cell matrix (called PITs), preventing escape from
the dying cell. For complete clearance, neutrophils must migrate to PITs and subject
them to efferocytosis to degrade the dying cell and immobilized bacteria. COX-2 induc-
tion by Gram-negative pathogens may seem counterintuitive considering how PGE2
enhances inflammasome activation, but the secretion of IL-1b , IL-18, and PIT formation
alone is not sufficient for the clearance of Salmonella infection in vivo. PGE2 may inhibit
normal leukocyte function by lowering the killing abilities of neutrophils and macro-
phages, such as inhibiting phagocytosis and reactive oxygen species (ROS) generation.
Studies with COX-2-deficient mice or animals treated with COX-2 inhibitors display
enhanced survival rates during later stages of S. Typhimurium infection. Future studies
should focus on the role eicosanoids play in modulating the phagocytic and killing abil-
ity of neutrophils toward PITs formed during infection with Gram-negative pathogens
and discovering new pathogens that alter eicosanoid production.
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