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ABSTRACT Campylobacter spp. are the leading cause of bacterium-derived gastroen-
teritis worldwide, impacting 96 million individuals annually. Unlike other bacterial
pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical
virulence factors that are often associated with the ability to induce disease in humans,
including an array of canonical secretion systems and toxins. Consequently, the clinical
manifestations of human campylobacteriosis and its resulting gastrointestinal pathology
are believed to be primarily due to the host immune response toward the bacterium.
Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious
disorders can occur, including the development of Guillain-Barré syndrome, reactive ar-
thritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from
the host immune response, the development of these postinfectious disorders may be
due to dysregulation or misdirection of the same inflammatory response. As a result, it
is becoming increasingly important to the Campylobacter field, and human health, that
the cellular immune responses toward Campylobacter be better understood, including
which immunological events are critical to the development of disease and the postin-
fectious disorders mentioned above. In this review, we collectively cover the cellular
immune responses across susceptible hosts to Campylobacter jejuni infection, along
with the tissue pathology and postinfectious disorders which may develop.
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C ampylobacter spp. are Gram-negative gastrointestinal pathogens that are pro-
jected to cause 96 million annual infections worldwide (1, 2). Campylobacter jejuni

and C. coli are the leading causes of these infections, accounting for approximately
90% and 10%, respectively (3). While the bacteria are predominantly commensal in
numerous species of livestock, including poultry and cattle, infection in humans and
other hosts can lead to gastroenteritis (3–5). In the developed world, infection most of-
ten occurs through consumption of undercooked, contaminated animal products,
while in the developing world, infections are believed to arise from contaminated
drinking water (6, 7). Once ingested, the bacterium infects the mucosal surface of intes-
tinal crypts, where it can lead to pronounced inflammation and gastrointestinal pathol-
ogy (8, 9). Clinical symptoms of acute gastrointestinal infection typically include bloody
diarrhea, abdominal pain, fever, and weight loss, which last for an average of 6 days in
immunocompetent individuals (10).

While most infections in the developed world are self-limiting, numerous postinfec-
tious disorders can occur. Several Campylobacter spp. have been associated with such
disorders, including C. coli, C. concisus, C. curvus, C. gracilis, C. hominis, C. jejuni, C. rectus,
C. showae, C. sputorum, and C. ureolyticus (4). Postinfectious disorders associated with
Campylobacter infections include Guillain-Barré syndrome (GBS), reactive arthritis
(ReA), and irritable bowel syndrome (IBS) (11, 12). Among patients that develop GBS,
C. jejuni can be attributed to as many as 40% of all cases, with seropositivity toward
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C. jejuni occurring in up to 76% of patients (13). This results in total annual productivity
losses and medical costs up to $1.8 billion per year (14, 15). The outdated nature of
these data, combined with observations that infections are increasing in prevalence,
suggests that the current economic burden of this disease is currently far more than
those previous estimates. Further, in the first year following Campylobacter infection,
patients have a greater risk of developing IBS than uninfected individuals (16). Finally,
it is estimated that 18% of infected individuals develop ReA, which can result in potent
joint inflammation and reduced range of motion (12). Despite the health and financial
impacts of these disorders, understanding of the immunological basis for their onset
and progression is far from complete.

Because gastrointestinal infection results in several hallmarks of inflammation and
that most Campylobacter spp. lack many of the classical virulence factors possessed by
bacterial pathogens of the gastrointestinal tract, the disease and intestinal pathology
that result are likely due to the host’s own immune response (3, 17, 18). For example,
during human infection, there is a potent induction of proinflammatory cytokine produc-
tion, including interleukin 1b (IL-1b), IL-8, IL-6, and gamma interferon (IFN-g) (19).
Unfortunately, the consistency with which these responses occur and the downstream
effects that result in both acute disease and the development of postinfectious disorders
are poorly understood, especially compared to the case with less prevalent gastrointesti-
nal pathogens (20). This deficiency is primarily due to the lack of an immunocompetent
small-animal model that develops clinical symptoms similar to those in human infection
(17). Beyond the gastrointestinal disease and postinfectious disorders mentioned above,
Campylobacter spp. are increasingly associated with long-term health consequences in
the developing world, particularly in pediatric populations, in which persistent intestinal
colonization is associated with enteric dysfunction and decreased development (4).
Taking this all together, it is becoming increasingly apparent that Campylobacter
colonization can be more than a simple, transient gastrointestinal infection: it can be an
inflammatory event that has lasting impacts on diverse hosts. This observation makes it
particularly urgent that the cellular immune response during infection be better under-
stood, including how it affects extraintestinal tissues and the long-term health of the
host gastrointestinal tract.

This review highlights cellular immunity during campylobacteriosis by combining
mouse, ferret, human, and other host studies to understand how mammalian host cells
respond to Campylobacter spp. and how these may drive the acute and chronic diseases
mentioned above. It is worth noting that because C. jejuni is the predominant cause of
diarrheal infections in the developed world, many of these studies focus on that species.
We hope to bring light to the host inflammatory responses and the potential links to the
development of autoimmune diseases and tissue pathology. While highlighting what is
currently known, we also call attention to the large gaps in knowledge that exist regard-
ing the cellular immune responses during campylobacteriosis.

EPITHELIAL CELLS
Adhesion and extracellular sensing. The gastrointestinal tract has been referred

to as the largest immune organ in the body, as 65% to 80% of the body’s total immune
cells are associated with it (21). Gastrointestinal epithelial cells not only serve as a phys-
ical barrier but are also equipped with extracellular and intracellular receptors that can
sample the gut lumen and sense invasive pathogens, respectively (22). After being
consumed in a relatively low infectious dose from contaminated food or drinking
water, C. jejuni is able to penetrate the mucus layer of the distal intestine and proximal
colon to reach the apical surface of the intestinal epithelial cells (IECs) (23, 24). To reach
the IECs, C. jejuni resists acidic stomach pH conditions through the upregulation of
numerous acid stress responses and downregulation of protein synthesis (25). Mucus is
crucial in the colonization of C. jejuni, as mucin is a chemoattractant for C. jejuni and
facilitates the increased flagellar gene expression and motility that is required to reach
the underlying epithelium (26, 27). Once C. jejuni has transited through the mucus
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layer, the bacterium is able to adhere to and invade into the IECs, which has been
reviewed elsewhere (28, 29). To sense the bacterium, Toll-like receptor (TLR) reporter
HeLa cells have been found to be stimulated by lysed C. jejuni through the sensing
activities of various TLRs, including TLR1/2/6 and TLR4, which detect bacterial lipopro-
teins and lipopolysaccharides, respectively. Stimulation of these TLRs is transduced
through the MyD88 signaling cascade and leads to activation of NF-κB, which drives
the production and secretion of IL-8, tumor necrosis factor alpha (TNF-a), IL-1b , mono-
cyte chemoattractant protein 1 (MCP-1), GRO-a, and IL-12p42 (30). The Toll/IL-1R do-
main-containing adaptor-inducing IFN-b (TRIF) signaling cascade is also activated by
TLR4 stimulation, resulting in the production of IFN-b (31–33). Secretion of IL-8 from
human IECs stimulated by C. jejuni then promotes chemoattraction and recruitment of
abundant neutrophils to the site of infection (34–36). In addition to IL-8, stimulation of
IEC TLR1/2/6 results in secretion of IL-6, a proinflammatory cytokine necessary to
mount an adaptive immune response (37). C. jejuni adheres to chicken epithelial cells
but does not invade them, resulting in chicken CXCLi2 (chCXCLi2) and chCXCLi1 induc-
tion; however, their levels were significantly lower than those of human IL-8 (38).
Interestingly, C. jejuni is able to evade flagellum-dependent TLR5 recognition through
mutations in flagellin that are recognized by the immune system, allowing the bacte-
rium to become highly motile and evasive (39, 40). When TLR2 and 24 are knocked
down in IL-102/2 mice and the mice are subsequently infected with C. jejuni, the levels
of cytokines TNF-a, IFN-g, and IL-6 and T lymphocyte recruitment are markedly
decreased, demonstrating TLR-dependent responses to animal infection (41). IECs have
also been shown to produce beta-defensins 2 and 3 in response to stimulation by C.
jejuni; however, the stimulus required for induction remains unknown (42). Beta-defen-
sins are secreted cationic antimicrobial peptides which can bind to negatively charged
bacterial membranes, thus driving bacterial cell death and leukocyte chemoattraction
(43). These molecules have been shown to have potent anti-Campylobacter activities in
vitro.

Invasion and intracellular responses. Once C. jejuni is at the apical surface, the bacte-
rium invades into IECs, which is dependent upon the secretion of Campylobacter invasion
antigen (Cia) proteins, the translocation of which is believed to be through the flagellar type
III secretion system (Table 1) (44–46). In addition to promoting cellular invasion, Cia proteins
can stimulate p38 mitogen-activated protein (MAP) kinase and extracellular signal-regulated
kinases (ERK) pathways to drive further IL-8 secretion from IECs, which results in potent neu-
trophil chemotaxis to the site of infection (47, 48) (Fig. 1). Ultimately, C. jejuni uses the
remodeling of host actin and microtubules to invade IECs, though it does not appear to
form actin tails to traffic intracellularly, suggesting that C. jejuni remains confined within a
Campylobacter-containing vesicle (CCV) (48, 49).

Once intracellular, some C. jejuni strains produce a genotoxin called cytolethal dis-
tending toxin (CDT) which can cause cell cycle arrest, cell distension, and cell swelling
(Table 1) (50, 51). This cellular response is predicted to result in the disruption of the
epithelial barrier and impair signaling pathways that alter the host immune response
(52). Using the rat IBS model, CDT was shown to not be necessary for IBS development,
but it was involved in villous widening, a characteristic additionally noted in C. jejuni
infection of the gnotobiotic piglet model, further demonstrating a potential role for
CDT during and after infection (53, 54). Following the release of CDT, the toxin is

TABLE 1 List of C. jejuni effector proteins which influence immune signaling and viability of IECs

C. jejuni protein(s) Influence on epithelial cells
Cia proteins CCV formation, MAPK/ERK signaling activation, and IL-8 secretion
CDT proteins Cell cycle arrest, cell distension, and cell swelling; apoptosis; villous widening during IBD formation; and DNA damage
Cas9 nuclease DNA damage, apoptosis, and NF-κB signaling upregulation
HtrA serine protease Occludin and claudin-8 tight junction cleavage; possible upregulation of MCP-1, IL-6, IFN-g, TNF-a, IL-13, and IL-1b ; and

epithelial cell adherence
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processed by host Rab7, which has also been shown to be an essential component of
the CCV (55). As a result, CDT may have an important role in the development of the
CCV in IECs. While the genotoxin has not been fully investigated for its role in disease,
it was recently shown that Helicobacter hepaticus CDT leads to the development of nu-
cleoplasmic reticulum, a common feature in cancer cells (56, 57). Indeed, there is some
work in germfree ApcMin/1 mice which indicates a potential correlation between tu-
morigenesis and C. jejuni (58). Therefore, if C. jejuni CDT is capable of the same activity,
it may influence colorectal cancer development following infection. Further, because
C. jejuni strains lacking CDT still induce DNA damage and disease, the bacterium may
employ additional strategies to target host DNA. For example, C. jejuni was recently
found to elaborate clustered regularly interspaced palindromic repeat (CRISPR)-
associated gene 9 (CjeCas9), associated with outer membrane vesicles, while in IECs
(Table 1). Once released, CjeCas9 can target host DNA and cause epithelial cell death
and upregulation of proinflammatory gene expression (59, 60). Additionally, other
studies have demonstrated that C. jejuni activates caspase-3-dependent apoptosis of
IECs; however, the mechanism behind this response remains unknown (61). Since it
appears that C. jejuni utilizes numerous systems to damage host DNA and that those
responses may promote inflammation, more research should be conducted to compre-
hensively identify these systems and determine how they influence inflammation and
tissue pathology.

In addition to responding to extracellular bacteria, IECs are also capable of sensing in-
tracellular C. jejuni. While intracellular, C. jejuni is capable of activating TLR9, which recog-
nizes intracellular DNA (31). Furthermore, intracellular C. jejuni appears to be sensed
through nucleotide-binding oligomerization protein (NOD) receptors. For example, when
NOD22/2 mice are infected by C. jejuni, increased bacterial loads and reduced colonic leu-
kocytes are observed (62). While NOD2 is expressed in other immune cells, including mac-
rophages and dendritic cells (DCs), the absence of NOD2 in colonocytes could dampen

FIG 1 Influence of C. jejuni on intestinal epithelial cell immune signaling. For DNA damage, instead of
canonical gastrointestinal effector proteins, C. jejuni is able to secrete the CDT genotoxin and Cas9
nuclease. Both result in DNA damage, apoptosis, and potential upregulation of the neutrophil
chemoattractant IL-8. For transcellular invasion: C. jejuni secretes Campylobacter invasion antigens (Cia
proteins) possibly through a type III flagellar secretion system, in which it activates the MAPK/ERK
pathway. C. jejuni enters the intestinal epithelial cell and is bound within a Campylobacter-containing
vesicle (CCV) as it travels through the cell. Microtubules and actin are utilized by C. jejuni to travel
from the apical side toward the nucleus and basolateral side of the cell. For paracellular invasion,
C. jejuni is able to reach the basolateral side of the IECs by passing between cells through HtrA tight
junction cleavage, rather than through the cell itself. This tight junction disruption results in the
upregulation of proinflammatory cytokines.

Minireview Infection and Immunity

August 2021 Volume 89 Issue 8 e00116-21 iai.asm.org 4

https://iai.asm.org


the host immune response, resulting in increased bacterial burden (63). Indeed, NOD2
results in activation of antibacterial function in IECs and specifically against C. jejuni to
some extent (64). NOD1 is also activated in response to C. jejuni and results in decreased
intracellular C. jejuni presence and increased IL-8 and hBD2 (65). Interestingly, when C.
jejuni transitions from helical to coccoid peptidoglycan, NOD1 and NOD2 have reduced
activation and inflammatory signaling (66). As there is a close relationship between NOD
stimulation and cytotoxicity, epithelial NOD signaling can be hypothesized to result in tis-
sue pathology within infected individuals (67). By understanding the critical role of epi-
thelial cells in coordinating the inflammatory response classically observed during campy-
lobacteriosis, targeted therapies can be developed to reduce inflammation-driven tissue
pathology. While in the CCV, the bacterium can traffic to the basolateral side of the colo-
nocyte and exocytose to the underlying colonic tissue to encounter chemoattracted leu-
kocytes. The exact mechanism of this intracellular trafficking remains poorly understood
and is one area of C. jejuni infection biology that needs to be elucidated (49).

C. jejuni has also been observed passing between IECs to reach the basolateral side
(68, 69). It was found that barrier dysfunction caused by C. jejuni-induced tight junction
disruption results in signaling of proinflammatory cytokines, including MCP-1, IL-6, IFN-
g, TNF-a, IL-13, and IL-1b (70). Specifically, at high temperatures, C. jejuni secretes a ser-
ine protease, HtrA, which cleaves occludin and claudin-8 found within tight junctions
(Table 1) (71, 72). HtrA has additionally been found to be necessary for increased ad-
herence to avian epithelial cells compared to human epithelial cells, demonstrating
the host specificity of HtrA activity (73). As tight junction proteins are essential for reg-
ulating intestinal inflammation upon injury, this virulence factor needs to be further
investigated for influencing inflammation during campylobacteriosis (74).

As mentioned above, IECs are vital for coordinating the host immune response to
Campylobacter infection, which can be inhibited in individuals that are immunosup-
pressed or have poor nutrition and can result in the inability to combat the infection
(75). The role of nutrition in the gastrointestinal response to Campylobacter infection is
particularly interesting, since IECs are the point whether nutrients and the bacterium
intersect. A potential result of this fact is that Campylobacter infections have been
shown to be more prevalent and persistent in malnourished children (6). Related to
this, in developing regions, Campylobacter infection is endemic; however, children are
more likely to display symptoms than adults, possibly due to the protective immunity
resulting from the early exposure to the bacterium (4, 76). In contrast, in the developed
world, campylobacteriosis is an acute, inflammatory illness with a greater incidence of
the postinfectious disorders mentioned above. A potential dietary driver of these dif-
ferences is the amount of fiber consumption. Fiber-rich diets allow for greater short-
chain fatty acid (SCFA) production by microbial fermentation in the colon, and it has
been shown that diets in developing countries are more fiber rich. As a result, patients
in these regions may experience less inflammation but greater persistence because of
the anti-inflammatory effects of SCFAs, most notably, butyrate (77). Beyond effects on
the host, butyrate abundance may also promote colonization by C. jejuni, as the BumSR
two-component system has recently been shown to indirectly sense butyrate and up-
regulate genes essential for colonization of avian and human hosts (78). In addition to
SCFA abundance, vitamin C treatment of IL-102/2 mice can decrease C. jejuni loads and
significantly reduce the number of apoptotic cells in the colon and secretion of proin-
flammatory cytokines (TNF-a, IFN-g, and IL-6) (79). Interestingly, vitamin C deficiencies
are more prevalent in developing nations than in developed regions, which suggests
that the differences in clinical manifestations between these regions may not be due
to vitamin C abundance (80). For the above reasons, there has been an emerging inter-
est in developing dietary strategies that can promote an adequate immune response
to eliminate the bacterium while at the same time preventing tissue damaging inflam-
mation. Within C. jejuni-infected intestinal tissue, enteroendocrine cells increase in
prevalence 5-fold (81). As these cells have previously been associated with IBS develop-
ment, this area of research needs to be further investigated (82). As mentioned earlier,
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an understanding of the intersecting responses of the IECs and the pathogen to their
nutritional environments is required to develop such targeted therapies to reduce dis-
ease and tissue pathology.

INNATE IMMUNE CELL RESPONSES
Neutrophils. After Campylobacter successfully breaches the epithelial barrier, neu-

trophils are the first innate immune cells recruited to the site of infection (83).
Neutrophils are produced at high numbers in humans, with around 1011 cells daily,
accounting for 50% to 70% of the leukocytes in circulation (84). Neutrophils possess
three main antibacterial mechanisms: phagocytosis of microbes, degranulation of anti-
microbial proteins, and extrusion of neutrophil extracellular traps (NETs) (85, 86). While
these cells have long been noted as simple, transcriptionally inert phagocytes, current
research demonstrated their multifunctionality and transcriptional diversity (87). Using
human, ferret, cat, porcine ileal loop, and the IL-102/2 mouse models of campylobac-
teriosis, neutrophils have been consistently shown to migrate and accumulate within
the gastrointestinal tissue of infected hosts (10, 88–91). As a result of this trafficking,
several indicators of neutrophil involvement during infection have been identified
using these models. Furthermore, recent evidence has demonstrated that neutrophil-
to-lymphocyte ratios of 3.05 correlate with GBS onset and hyperinflammation (normal
ratio is 1.51) (92). As neutrophils are the most numerous leukocytes within colonic tis-
sue during C. jejuni infection and are incredibly proinflammatory, they need to be con-
sidered a potential source for acute and chronic diseases and tissue pathology.

Within colonic crypts, neutrophils transmigrate from the basolateral to the apical
side of the epithelium, which is dependent on bacterially sourced n-formyl peptides
and the host-derived enzyme, 12-lipoxygenase (12-LOX) (93). Furthermore, IEC-de-
pendent secretion of IL-8 results in neutrophil chemotaxis and peaked within the
blood and colon at 3 days postinfection, which correlated with the height of C. jejuni
fecal loads in the ferret model of campylobacteriosis (90). Using green fluorescent pro-
tein (GFP)-labeled C. jejuni in the IL-102/2 mouse model, 99.7% to 100% of CD11b1 Gr-
11 peritoneal neutrophils were found to have engulfed C. jejuni by 4 h postinfection
(94). During Campylobacter infection of cats, there appeared to be a close association
with neutrophil elastase within the colon and the development of neutrophilic irritable
bowel disease (IBD) (95).

At the molecular level, phosphatidylinositol 3-kinase-g (PI3K-g)-dependent signaling
leads to the recruitment of neutrophils into colonic crypts during C. jejuni infection of
IL-102/2 mice, which leads to the development of colitis (89) (Fig. 2). PI3K-g is highly
expressed in numerous immune cells and, via actin polymerization, mediates chemo-
taxis through G protein-coupled receptors (96, 97). Inhibition of PI3K-g activity by the
pharmacological inhibitor AS252424 resulted in reduced inflammation, neutrophil
accumulation, NF-κB activity, and transcript levels of IL-1b , CXCL2, and IL-17a during
C. jejuni infection (89). This C. jejuni-induced inflammatory cascade was found to be de-
pendent on mTOR activation, which is a signaling event downstream of PI3K-g. Further,
inactivation of mTOR signaling using rapamycin, a pharmacological inhibitor, led to
attenuation of C. jejuni-induced inflammation (98).

Once neutrophils and C. jejuni interact, complement-opsonized cells are phagocy-
tosed, which leads to reactive oxygen species (ROS) generation, resulting in direct bacte-
rial killing and localized tissue damage (99). Interestingly, the ability of neutrophils to kill
C. jejuni varies, as some bacteria can escape these bactericidal effects (99). In addition to
phagocytosis and direct killing, numerous neutrophil-derived antimicrobial proteins are
released into the surrounding tissue and accumulate in the feces of C. jejuni-infected
humans, including calgranulin C (S100A12), lipocalin-2 (Lcn2), myeloperoxidase (MPO),
and neutrophil elastase (Ela2) (90, 100). Within the C. jejuni-infected porcine ligated loop,
numerous neutrophil-derived markers were shown to increase, including matrix metallo-
peptidase 9 (MMP9), Lcn2, Ela2, and proteinase 3 (PRTN3) (91). Based on the activities of
these antimicrobial proteins, their release during infection is likely to contribute to C.
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jejuni growth restriction, which is supported by recent data showing that these purified
components reduced growth in vitro (90, 100). While these antimicrobial proteins are
likely released as a result of degranulation, MPO, and Ela2 were also found to colocalize
with NETs induced by C. jejuni. Additionally, NET-like structures were found within crypt
abscesses of colon tissue isolated from ferrets infected with C. jejuni (100). As the pres-
ence of Ela2 and MPO correlates with colonic tissue damage and IBD due to protease
and ROS-generating activities, respectively, more research needs to be done on their
roles during campylobacteriosis (101, 102). Due to the cytotoxic nature of NETs, it has
been hypothesized that NETs contribute to crypt abscess formation and intestinal pa-
thology during campylobacteriosis. As NETs are also associated with numerous autoim-
mune diseases, these structures could have tremendous influence on the development
of the postinfectious disorders mentioned above (103–106). Because of the association
between neutrophil activity, inflammation, pathology, and autoimmune development,
more research needs to be conducted on C. jejuni-neutrophil interactions.

Eosinophils. Eosinophils account for 1% to 4% of bone marrow nucleated cells and
have been investigated extensively as drivers of asthma and parasite immunity (107,
108). Eosinophils display a wide array of antibacterial activities against both Gram-posi-
tive and Gram-negative organisms (109). C. jejuni is a potent activator of eosinophils in
vitro, resulting in chemotaxis, a respiratory burst, degranulation, and the release of eo-
sinophil cationic proteins (ECP); however, there has been little direct evidence of eosin-
ophil involvement during campylobacteriosis (110, 111). Interestingly, eosinophils play
an important role in the development of IBS and functional dyspepsia, which are both
postinfectious disorders associated with C. jejuni infection (4, 54, 112–114). While eosin-
ophils are not abundant, the response of these cells to C. jejuni and their role in gastro-
intestinal inflammation provide the foundation for hypotheses that eosinophils may
contribute to inflammation during infection and/or the development of postinfectious
disorders.

Mast cells. Mast cells are inflammatory granulocytes responsible for the release of
histamine and a variety of cytokines (115). While mast cells have been observed in the
stool of Campylobacter-infected individuals, it is suspected that they play only a

FIG 2 Innate leukocyte responses during early stages of campylobacteriosis. During infection,
neutrophils are recruited to the site of infection as a result of IEC IL-8 secretion, leading to
elaboration of NETs and degranulation. Macrophages and dendritic cells are then recruited to the site
of infection and perform both inflammatory and anti-inflammatory signaling. Within these first days
of infection, macrophages, dendritic cells, neutrophils, and colonocyte antimicrobial proteins reduce
C. jejuni levels within the infected host. These innate immune responses classically peak on day 3
postinfection, the heightened day of infection in hosts.
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minimal role during infection (28). Interestingly, other gastrointestinal diseases have
mast cell involvement, including IBS, a postinfectious disorder that can occur following
Campylobacter infection. For example, mast cell proximity to enteric nerves was found
to correlate with abdominal pain during IBS (116). Consequently, while mast cells do
not appear to be directly involved in campylobacteriosis, their role in gastroenteritis
cannot be entirely ignored.

BRIDGING THE GAP BETWEEN INNATE AND ADAPTIVE IMMUNE RESPONSES
Monocytes/macrophages. In circulation, monocytes make up 2% to 8% of total leu-

kocytes. Monocytes are produced at a rate of 3� 108 cells/liter of blood per day, main-
taining a half-life of around 1 day (117). Once reaching the colon, monocytes can develop
into tissue resident macrophages, possessing a half-life of 4 to 6 weeks within the tissue
(118). These cells are mononuclear phagocytes with significant roles in tissue homeostasis
and inflammation. While monocytes are involved in inflammation and pathogen recogni-
tion, monocyte-derived tissue resident memory macrophages provide crucial immuno-
logical functions, including tissue repair and promotion of anti-inflammatory signaling
pathways (119). Specifically, tissue resident macrophages are responsible for ingesting
and degrading dead cells, debris, and foreign material, while also serving as professional
antigen presenters and orchestrating the inflammatory immune response within the tis-
sue (120). Within C. jejuni-infected ferrets, mononuclear cell chemotaxis is observed within
the blood and colon, where it peaks at day 3 postinfection (90). During IL-102/2 murine
infection, 77.0% to 80.0% of CD11b1 Gr-12 peritoneal macrophages had engulfed C.
jejuni at 4 h postinfection (94). Interestingly, macrophage uptake of C. jejuni appears to
vary among hosts, as both chicken and human macrophages can internalize the bacte-
rium, while mouse and guinea pig macrophages exhibit a reduced capacity to phagocy-
tose C. jejuni (121–123). In contrast, another study determined that acidified nitrite within
bone marrow-derived murine macrophages could kill C. jejuni in a nitric oxide synthase 2
(NOS2)-dependent manner (124). As a result, C. jejuni catalase (KatA) activity is essential
for intramacrophage persistence, as it is required for ROS detoxification (125). In response
to infection, human peripheral blood mononuclear cells (PBMC) were found to secrete
elevated levels of IL-8 and IL-6 (126). Secretion of IL-8 was also demonstrated using mac-
rophage-like differentiated THP-1 cells, further supporting the role of neutrophil chemo-
taxis during infection (127). To sense the bacterium, murine macrophages are activated
by hypoacylated C. jejuni LOS via TLR4, which results in secretion of IL-6 and TNF-a (128).
Further phagocytosis of the bacterium leads to the secretion of additional proinflamma-
tory cytokines, including IL-1a, IL-1b , IL-6, IL-8, and TNF-a (90, 122, 127). Interestingly,
C. jejuni lacking a capsule and O-methyl phosphoramidate (MeOPN) modification elicited
enhanced IL-6 and IL-10 transcripts, suggesting that the C. jejuni capsule and modification
are involved in immune evasion (122). Further, C. jejuni lacking a capsule resulted in
increased TLR4 activation and more severe gastroenteritis in Sigirr2/2 mice (129). The
result of this stimulation was also observed during ferret infection with C. jejuni, in which
numerous macrophage-dependent cytokines were found to be upregulated, including
TNF-a and IL-10 (90, 130). Once internalized, C. jejuni activates NOD-1 in macrophages,
resulting in enhanced activation markers and potent IL-1b secretion via inflammasome-
dependent signaling pathways (131). Additionally, there was a notable positive correla-
tion between intracellular bacteria and NLRP3 activation via Campylobacter LOS; however,
lactate dehydrogenase (LDH) secretion was absent, indicating that C. jejuni can activate
macrophage inflammasomes without inducing cell death (132, 133). While some strains
of C. jejuni are capable of surviving intracellularly within monocytes and inducing apopto-
sis, differentiated macrophages are efficient at killing intracellular bacteria due to
the inability of C. jejuni to avoid delivery to lysosomes (49, 134, 135). Interestingly,
Campylobacter DNA is present in CD141 CD331 mononuclear cells from C. jejuni-infected
GBS patients (136). Additionally, monocyte-to-macrophage ratios are unbalanced during
colonic inflammation, with increased monocyte presence and subsequent tissue pathol-
ogy (137). Recently, macrophage infiltration into peripheral nerves has been strongly
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associated with GBS development; however, this phenomenon has yet to be investigated
during campylobacteriosis (138). As C. jejuni-infected monocytes and macrophages
undergo proinflammatory switches, more research is needed to understand the molecu-
lar mechanisms of this event.

Dendritic cells. Monocytes can additionally develop into dendritic cells (DCs), which
act as professional antigen-presenting cells that activate the adaptive immune response
(139). During infection, DCs likely encounter Campylobacter in the lamina propria intralumi-
nally, as these cells transcytose and sample the intestinal lumen (140). In the colonic lam-
ina propria of C. jejuni-infected mice, anti-inflammatory Siglec-10-expressing CD11c1

CD1031 DCs were found to express IL-10. While IL-10 plays a vital role in resolving intesti-
nal inflammation, Siglec-10-expressing DCs may play an anti-inflammatory role in C. jejuni
mucosal immunity; however, the role of these cells shaping campylobacteriosis has yet to
be elucidated (141). Once encountered, C. jejuni activates DCs through a unique TLR4-
MyD88/TLR4-TRIF cooperative signaling mechanism that is driven by C. jejuni LOS sialyla-
tion, which demonstrates that the carbohydrate moiety can modulate DC activation and
drive B cell proliferation and T cell polarization (142–144). Further, C. jejuni-stimulated DCs
secrete NF-κB-dependent chemokines, including macrophage inflammatory protein 1a
(MIP-1a), MIP-1b , RANTES, growth-related oncogene a (GRO-a), IP-10, and monokine
induced by gamma interferon (MIG) (145). In order to stimulate secretion of cytokines and
chemokines, C. jejuni induces phosphorylation of P38, P44/42, stress-activated protein ki-
nase/Jun N-terminal protein kinase (SAPK/JNK), and mitogen-activated protein kinases
(MAPKs) (146). Once activated, DCs efficiently internalize and kill C. jejuni, resulting in sig-
nificant upregulation of mature phenotype cell surface major histocompatibility complex
class II (MHC-II), CD40, CD80, and CD86 (146) (Table 2). Although DCs efficiently secrete
cytokines during infection, C. jejuni with capsule and capsule modifications, including O-
methyl phosphoramidate modifications, result in diminished cytokine secretion (147).
While DCs appear to have anti-inflammatory activities during campylobacteriosis, proin-
flammatory DCs have been shown to be in significant quantities within damaged colonic
tissue in response to pathogen-associated molecular patterns (PAMPs), along with their
involvement in the development in GBS and IBS (148–151). Through the secretion of both
inflammatory and anti-inflammatory cytokines, along with antigen presentation, DCs play
a critical role in shaping campylobacteriosis and setting the stage for postinfection
activities.

NK cells. Natural killer (NK) cells are large granular lymphocytes that possess an ex-
pansive arsenal of cytotoxic and chemoattractant effector functions (152). Within the
epithelium and stroma, NK cells interact with antigens of pathogenic and commensal
bacteria along with several other host cell types, including epithelial cells, fibroblasts,
macrophages, dendritic cells, and T lymphocytes (153). During infection of IL-102/2

mice with C. jejuni, NK cells (CD192 NKp461 [Table 2]) increased in the colon and mes-
enteric lymph nodes at days 7 and 11 postinfection but returned to preinfection levels
at day 21 (154). Relevant to this timing, it is important to note that in many IL-102/2

mouse studies, C. jejuni infection is persistent and often not self-limiting. During this
infection, NK cells secreted IL-22 and IFN-g, which should result in tissue regeneration,
cellular defense, and inflammation (154). NK cells bind to C. jejuni LOS using Siglec-7
molecules, which leads to the promotion of host inflammation and immunity (155).
Siglec-7 dampens NK cell activation pathways and cytotoxicity, resulting in reduced

TABLE 2 List of cell surface markers characterizing leukocytes and lymphocytes during campylobacteriosis

Immune cell type Cell surface markers Reference(s)
Neutrophils CD11b1, CD631, Gr-11, CD1771 90, 91, 94, 100
Natural killer lymphocytes CD19-, NKp461, Siglec-71, KIR2DS41 154, 157
Monocytes/macrophages CD11b1, Gr-12, CD141, CD331 94, 122, 136
Dendritic cells CD11c1, CD1031, Siglec-101, MHC-II1, CD401, CD801, CD861 141, 145, 146
T lymphocytes CD31, CD19-, CD41 (Th1, Th17), CD901, CD81 154
B lymphocytes CD11b2, CD45R1 94
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inflammation (156). In addition to LOS binding, conserved C. jejuni RecA epitopes pre-
sented by HLA-C*05:01 bound strongly to the killer cell immunoglobulin-like receptor
KIR2DS4, which led to stimulation of KIR2DS41 NK cells (157). Taken together, the
above responses indicate that NK cells coordinate T lymphocyte responses through
antigen presentation and dampen the immune system to benefit the host following
C. jejuni infection.

ADAPTIVE IMMUNE RESPONSES
T lymphocyte response and subtype switching. During late stages of infection, T

lymphocytes coordinate numerous aspects of the adaptive immune response, including
responses to pathogens, allergens, and tumorigenesis. From CD41 helper T lymphocytes
to CD81 cytotoxic T lymphocytes, these cells play an enormous role in combating infec-
tions and developing memory to fight future infections (158, 159). In IL-102/2 mice
infected with C. jejuni, the number of T lymphocytes (CD31 CD192 [Table 2]) increases
within the colon and mesenteric lymph nodes at days 7 and 11 postinfection (154). In C.
jejuni-infected gnotobiotic IL-102/2 TLR22/2 TLR42/2 mice, significant decreases in both
apoptotic cells and T lymphocytes within the colonic tissue were observed, indicating a
TLR-dependent mechanism for T lymphocyte recruitment and activation (160).
Furthermore, infected IL-102/2 mice treated with a Thy-1 antibody to deplete innate
lymphocytes and T lymphocytes developed lower histopathology scores, indicating a
potential link between inflammatory T lymphocyte functions and tissue pathology (154).
During the later stages of infection, mature dendritic cells secrete IL-12 to promote naive
T cells to differentiate into T helper 1 (Th1) cells to secrete IFN-g (144, 146). Once differen-
tiated into Th1 lymphocytes, Th1-derived cytokines peaked 7 to 14days postinfection,
with IFN-g1 CD41 T cells being the most abundant lymphocyte in C. jejuni-infected
humans (161) (Fig. 3). Furthermore, infected IL-102/2 mice exhibited significantly higher
levels of type 1 and 17 cytokines, but not type 2 cytokines, within the colonic tissue.
Based on these observations, it can be hypothesized that campylobacteriosis is primarily
a Th1 lymphocyte disease; however, Th17 lymphocytes additionally develop. This is

FIG 3 Generation of the adaptive immune response through antigen presentation during
campylobacteriosis. During infection, macrophages and dendritic cells present processed C. jejuni
antigens to naive T lymphocytes. Through T cell differentiation, naive T cells develop into Th1 and
Th17 CD41 T lymphocytes, resulting in IFN-g and IL-17 secretion, respectively. These activated T
lymphocytes can then cause the upregulation of proapoptotic pathways within colonocytes.
Additionally, T cells present processed C. jejuni antigen to B cells, leading to proliferation of memory
B cells and C. jejuni-specific IgG, IgA, and IgM secreting plasma cells. These antibodies have been
hypothesized to target self-GM1 gangliosides on neurons, leading to the generation of numerous
autoimmune diseases, such as Guillain-Barré syndrome.
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supported by data showing that C. jejuni capsular mutants exhibit elevated IL-17 secre-
tion due to increased recognition by CD41 Th17 cells in the lamina propria in infected
mice; this response was also observed in C. jejuni-colonized chickens (162–164). Within
the lumen of C. jejuni-infected porcine intestinal loops, IL-17A was detected at signifi-
cantly higher concentrations than in the control loop (91). This demonstrates that there
is a specific and localized Th17 lymphocyte response during campylobacteriosis. Of the T
cells produced during human Campylobacter infection, patients can possess more Vd 1
gd (Vd 1) CD81 T cells, which is particularly interesting because these cell types are asso-
ciated with cytotoxicity and autoimmunity, including Guillain-Barré syndrome and IBD
(165–167). Within the intestines and colon, Vd 1 T cell receptor (TCR) can be activated by
proinflammatory cytokines and activation of Vd 1 cells by DCs is achieved using micro-
bial antigens, especially lipid extracts from Gram-negative bacteria. This recognition is
key for the potent host defense and immunoregulation attributed to Vd 1 T lymphocytes
(168). Furthermore, T lymphocytes may be able to recognize C. jejuni LOS via TLR4,
an antigen associated with the GM1 ganglioside mimicry mentioned earlier (169).
Therefore, T lymphocytes may play a crucial role in the tissue pathology and the devel-
opment of autoantibodies following campylobacteriosis.

B cell response and antibody production. Initiation of humoral immune responses
requires that antigen-reactive B lymphocytes come into contact with antigens. These
interactions occur within secondary lymphoid organs, where B cells are trained by anti-
gen-presenting lymphoid tissue (165). Once in the periphery, these stimulated B cells
produce a diverse array of antibodies (approximately 1012 variants) (170, 171). During
human infection with C. jejuni, titers of serum IgG, IgA, and IgM antibodies specific to
bacterial epitopes peak around 11 days postinfection (10). These results were sup-
ported using the ferret model of campylobacteriosis in which IgA antigen-secreting
cells (ASC) were found to increase during infection, which correlated with increased se-
rum and fecal IgA and IgG levels at 9 days postinfection (88). In terms of immunodomi-
nant epitopes, human serum antibodies were detected to be specific to 62-kDa flagel-
lin, an uncharacterized 40-kDa antigen, and an uncharacterized 29-kDa antigen, while
human salivary antibodies were specific to flagellin, a major outer membrane protein
(MOMP), and the same uncharacterized 40-kDa antigen. These antibodies were able to
be detected for up to a year postinfection (172). Of the antibodies produced, autoreac-
tive IgG1 antibodies are the most numerous subtype following campylobacteriosis
(154). Because there is a positive correlation between GBS severity and IgG1 levels, it
has been hypothesized that this response is important to the development of GBS fol-
lowing C. jejuni infection, which can occur in 1/900 individuals. This hypothesis is
largely due to the observation that of the IgA and IgG antibodies that are produced
during infection, several can be cross-reactive to the human GM1 gangliosides in neu-
rons (173, 174). This response is also likely due to some C. jejuni LOS core oligosaccha-
rides mimicking human ganglioside GM1 structures (175–178) (Table 3). Furthermore,
antibody cross-reactivity has been reported in a recent case in which an individual
with C. jejuni gastroenteritis developed encephalopathy (179). As encephalopathy is
also associated with autoantibodies toward GM1 gangliosides, it can be hypothesized
that this target is a critical component of developing postinfectious neurological condi-
tions (180). Because of these findings, more research needs to be conducted to under-
stand the molecular and genetic bases of these responses at the gut-neuron axis.

TABLE 3 List of potential factors of campylobacteriosis leading to the generation of postinfection disorders

Postinfection disorder Factors during campylobacteriosis Reference(s)
Guillain-Barré syndrome Self-reactive antibody generation from LOS-ganglioside mimics, neutrophil-to-lymphocyte ratio 154
Colorectal cancer Cytolethal distending toxin, NET formation 58, 100
Irritable bowel syndrome NET formation, CDT-dependent villous widening 53, 100
Reactive arthritis Interaction with host HLA-B27 12
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CONCLUSIONS AND FUTURE RESEARCH

Although Campylobacter is the leading cause of bacterium-mediated gastroenteritis in
humans, the host immune response remains poorly understood (181, 182). Despite C. jejuni
lacking classical virulence factors possessed by better-studied gastrointestinal pathogens, it
still colonizes the human gastrointestinal tract and induces a robust immune response that
appears to be responsible for pronounced colonic and extraintestinal site immunopathol-
ogy. While C. jejuni is considered a commensal organism within chickens, recent findings
demonstrate that this paradigm is much more complicated than previously described (183).
In line with this, there is a large gap in knowledge for the immune responses of chicken het-
erophils in response to C. jejuni, as they undergo numerous processes similar to those in
human neutrophils (184, 185). Over the last 2 decades, there has been a tremendous
increase in our understanding of both innate and adaptive immunity regarding bacterial
pathogens. As a result, the C. jejuni field is well positioned to begin understanding the bac-
terial and host factors that lead to both colonic and systemic inflammation, as well as what
strategies and therapies may be effective at reducing these effects. For example, the recent
discovery of innate memory may provide insights into the autoimmunity that is characteris-
tic of the postinfectious disorders mentioned above (186, 187). Further, there have also
been advances in our understanding of neutrophil biology, including transcriptional and
epigenetic changes that lead to neutrophil subtype diversity (188–190). Neutrophil subtype
diversity has been demonstrated during infection with Helicobacter pylori, which is closely
related to C. jejuni, and this finding may therefore have tremendous implications for the de-
velopment of campylobacteriosis (191). Along this line of inquiry, because campylobacterio-
sis appears to be an inflammatory disease, there is a need to further understand immune
signaling pathways and transcriptional changes in leukocytes that lead to the onset of
inflammation. With tremendous advances in sequencing, these effects can now be under-
stood in both in vitro and in vivo systems. In addition, since C. jejuni colonizes numerous
mammals with various clinical signs, understanding the response of each host to the bacte-
rium may provide insights into the shared or divergent evolution of immune mechanisms
in hosts. Furthermore, because symptoms and disease progression may vary depending on
diet, as is observed in the developed versus developing worlds, it is necessary that we
understand how dietary or microbiome variations affect the immunological processes men-
tioned above. By advancing our understanding of cellular immunity during and after infec-
tion, the field can begin devising approaches that allow for antibacterial levels of inflamma-
tion without the levels or specificities that lead to immunopathology.
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