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Abstract

Brain extracellular matrix (ECM) structure mediates many aspects of neural development and 

function. Probing structural changes in brain ECM could thus provide insights into mechanisms of 

neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of 

pathological aging and neurological disease. We demonstrate the ability to probe changes in brain 

ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally 

stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14–70 

days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the 

brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the 

cortex shifted to smaller pores throughout development. We used the raw data and features 

extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting 

chronological age with high accuracy. Collectively, this work demonstrates the utility of 

combining MPT with machine learning for measuring changes in brain ECM structure and 

predicting associated complex features such as chronological age. This will enable further 

understanding of the roles brain ECM play in development and aging and the specific mechanisms 

through which injuries cause aberrant neuronal function. Additionally, this approach has the 
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potential to develop machine learning models capable of detecting the presence of injury or 

indicating the extent of injury based on changes in the brain microenvironment microstructure.

Graphical Abstract
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The extracellular spaces (ECS) of brain tissue are home to the brain extracellular matrix 

(ECM), a heterogeneous collection of proteoglycans, tenascins, and a hyaluronic acid 

backbone that can either be free floating, tethered to cellular surfaces, or condensed to form 

specific structures.1,2 The ability to organize into specific structures allows brain ECM to 

perform special roles in both development and normal brain function. For example, the 

formation of highly condensed perineuronal nets (PNNs), which envelop the soma and 

proximal dendrites of certain populations of neurons, helps regulate plasticity and protects 

neurons from harmful processes like excitotoxicity and oxidative stress.3,4 Similarly, the 

ECM structure that wraps around brain endothelial cells, known as the basement membrane, 

is a critical functional and structural component of the blood–brain barrier (BBB) and 

neurovascular unit.5,6 Brain ECM is also highly dynamic, and the ability to assemble, 

disband, and reorganize is required for the development of proper neuronal circuitry and 

helps facilitate repair in response to injury.7–12 The structural integrity of PNNs is thought to 

be impacted by many neurological diseases, including epilepsy, schizophrenia, and stroke.
12–15 Likewise, many brain injuries are associated with changes in basement membrane 

protein expression, including stroke16,17 and traumatic brain injury.18,19 Probing real-time 

changes in the ECM microstructure, particularly changes that occur locally at the cellular 

level in living tissue, remains an ongoing challenge. The limited ability to assess ECM 

structural changes prevents a complete understanding of the role ECM plays in 

neurodevelopment and the mechanisms through which brain injuries impair neuronal 

function.

To address these knowledge gaps, we need to characterize both spatial and temporal changes 

in ECM structure, which requires a technique that can probe extracellular dynamics in real-

time at the microscale. Electron microscopy achieves the spatial resolution necessary but 

McKenna et al. Page 2

ACS Nano. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



often requires tissue fixation, and different fixation techniques can lead to significantly 

different estimates of ECS-related parameters.20 Fluorescent-based staining can be used to 

label specific components of brain ECM, but features commonly quantified from fluorescent 

images provide no direct insight into physical and geometric properties of the local 

environment, like viscosity and ECM pore size.21,22 Atomic force microscopy has also been 

used to quantify mechanical properties of brain ECM23 but only provides a surface-level 

analysis, preventing insight into the microrheological properties in the bulk of the tissue. 

Diffusion-based techniques, such as real-time iontophoresis24–27 and integrative optical 

imaging,28–30 have also been used to quantify ECS parameters, specifically ECS volume 

fraction and tortuosity. These methods report an average value for a given volume of brain 

tissue, however, and are limited in providing the resolution necessary to study ECS 

heterogeneity at the submicron level, where variation is known to exist.31 Multiple and 

single particle tracking techniques have thus gained traction across the field of biophysics, as 

they provide ways to study ECS properties and ECM dynamics with submicron resolution.
31–35

Multiple particle tracking (MPT) is a technique that leverages fluorescent microscopy to 

capture the motion of nanoparticles in real-time. A strength of MPT is that the microscopic 

behavior of hundreds to thousands of individual particles is tracked simultaneously, while 

retaining single particle resolution. The motions exhibited by particles provide information 

about the environment in which they reside, and the ability to track the movement of 

individual particles provides high spatial resolution. MPT has already been leveraged to 

characterize structural features of many biological domains, including the vitreous of the 

eye,36 various mucosal membranes,37–40 and intracellular environments.41–43 MPT and 

single nanoparticle tracking have been used to better estimate the average spacing of brain 

ECS31,33 and evaluate the diffusive ability of many nanoparticle-based drug delivery 

platforms in the brain.33,44,45

An additional advantage of MPT is the sheer amount of data it generates, with experiments 

typically producing anywhere between 102 and 105 total trajectories. Because of this, 

machine learning methods have already started to be incorporated into the MPT workflow to 

explore otherwise hidden trends in data and make predictions. Wagner et al. demonstrated 

the ability to predict motion type (confined, directed, anomalous, normal) using random 

forest classifiers trained on trajectory feature data sets,46 and others have employed artificial 

neural networks to predict agarose gel stiffness and in vitro cell uptake of nanoparticles.47 

The initial success of this approach is promising and raises the question as to whether 

complex biological variables like the presence or extent of injury can be predicted.

The main findings we present herein are two-fold. We first demonstrate the ability of MPT 

to characterize changes in brain ECM structure at varying stages of neurodevelopment and 

provide potential explanations as to why these changes are observed. We then implement 

extreme gradient boosting (XGBoost) to generate boosted decision tree classifiers capable of 

predicting age from nanoparticle trajectory feature data. Collectively, these results support 

the potential of MPT in probing ECM-related mechanisms of disease progression that cause 

aberrant neuronal function. Additionally, MPT can be applied to enhance understanding of 

the specific roles ECM plays during development and aging. This work also further validates 
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the utility of combining machine learning practices with MPT. The ability to develop models 

capable of predicting a complex biological variable like age based solely on nanoparticle 

diffusion information is beneficial, as natural extensions of this work include exploring 

whether tracking data can predict mechanisms of disease pathology or brain injury severity, 

initially in model organisms but eventually in human specimens.

RESULTS AND DISCUSSION

Nanoparticle Diffusive Ability and Effective Brain ECM Mesh Size Decrease with Age in the 
Developing Rat Brain.

The critical period of synaptogenesis, neural circuit formation, and refinement in rodent 

cortex can vary depending on region but typically begins in the first 1–2 weeks postnatal and 

extends another 3–4 weeks before transitioning to a more stable adult state.48–50 Brain ECM 

is thought to be involved in nearly all stages of neural development, including the period of 

elevated synapse formation and plasticity.11,51,52 In addition to distinct ECM protein 

expression during the critical period, neural stem cell behavior in vitro differs depending on 

the composition of the ECM.53 We wanted to leverage MPT to probe ECM structure 

changes during this time. For this, we collected organotypic hemispheric brain slices from 

rats at varying ages, from postnatal (P) day 14, 21, 28, 35, and 70 (P14, P21, P28, P35, and 

P70) Sprague–Dawley (SD) rats. We performed MPT in the cortex of slices from each group 

using near-neutral, poly(ethylene glycol) (PEG)-coated 40 nm polystyrene nanoparticles 

(PS–PEG) (Table S1). At 20–24 h postslice preparation, the nanoparticles were added and 

videos of particle Brownian motions were collected with high-resolution MPT (Figure 

1A,B). Nanoparticle trajectories were quantified using a custom Python package54 that 

leverages TrackMate, an open source Fiji plugin for the tracking of single particles (Figure 

1C).55 Forty nanometer PS–PEG nanoparticles were chosen for two reasons: First, their 51 

nm hydrodynamic diameter falls below the most recently reported mean—150 ± 40 nm 

(mean ± standard deviation)31—and median—270 [130–560 nm] (median [interquartile 

range])56—values of brain ECS width. Second, PEG-coated PS nanoparticles have 

demonstrated an ability to evade adhesive interactions with various cellular and ECM-

associated components33 and remain stable in physiologically relevant conditions such as 

artificial cerebrospinal fluid.57 By minimizing electrostatic and hydrophobic interactions 

while remaining colloidally stable, the motion these particles exhibit is predominantly 

impacted by local fluid properties of the brain ECS and structural properties of the local 

ECM.

Tracking revealed an inverse relationship between nanoparticle diffusive ability in the cortex 

and brain age. Raw MPT data come in the form of nanoparticle trajectories or x–y positions 

over time. By calculating nanoparticle mean squared displacements at various lag times, the 

Einstein–Smoluchowski relation can be used to obtain effective diffusion coefficients in the 

brain (Db,eff) for each nanoparticle in the population. Distributions of Db,eff values shift to 

lower values as the cortex develops (Figure 2A). Significant differences in Db,eff values exist 

between all groups (p = 0.05), with median (95% CI) Db,eff values of 2.71 (2.64–2.81), 1.42 

(1.39–1.45), 1.05 (1.00–1.09), 0.705 (0.692–0.721), and 0.376 (0.369–0.383) μm2/s for P14, 

P21, P28, P35, and P70, respectively (Figure 2B). Compared to theoretical diffusion 
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coefficients in a representative free medium of artificial cerebral spinal fluid (DACSF), 

diffusivity in cortical ECM (Db,eff) decreased 5-, 9-, 12-, 18, and 34-fold in P14, P21, P28, 

P35, and P70 aged brains, respectively (Figure 2B). To estimate the distribution of effective 

ECM pore sizes, we fit the Amsden obstruction-scaling model for entangled and cross-

linked hydrogels58,59 to the Db,eff data in Figure 2A. As brains aged, the distribution of 

ECM pore sizes in the cortex shifted to smaller pores (Figure 2C–G). The average effective 

pore size (ζ) decreased from 76.8 nm in P14 brains to 36.0 nm in P70 brains (Figure 2B).

Inducing Changes in Brain ECM in Rat Brain Tissue Ex Vivo.

One likely contributor to the decreased diffusivity observed with increasing age is an 

increase in the number of physical obstructions present in the ECS. PNNs, a densely cross-

linked and entangled form of brain ECM, begin forming early in life and increase in 

abundance as the critical period of neurodevelopment ends.11,12,60 We confirm an increased 

presence of PNNs from P14–P70 (Figure S1). An increase in the presence of these dense 

aggregates of insoluble protein and glycans likely hinders extracellular diffusion by 

increasing the number of physical obstructions present and reducing the effective size of 

brain ECM pores. To test this hypothesis, we designed experiments to determine if 

exogenously induced breakdown of brain-specific ECM structures would lead to changes in 

nanoparticle diffusion. With brain slices taken from P35 rats, an age at which PNNs are 

present in the cortex,11 we first demonstrate the ability to induce ECM breakdown ex vivo. 

P35 brain slices were treated with either chondroitinase ABC (ChABC, 0.4 U/mL) or 

hyaluronidase (HYase, 35 U/mL), two enzymes known to degrade components of brain 

ECM.8,61,62 Brain slices treated with enzyme-free slice culture media (SCM) served as the 

negative control (nontreated, NT). We monitored the presence of PNNs following treatment 

by staining with a fluorescently labeled wisteria floribunda agglutinin (WFA) lectin at 15, 

30, 45, and 120 min post-treatment (Figure 3A). The PNN structure was completely lost in 

the cortex within 120 min of enzyme treatment (Figure 3B). PNN structures in nontreated 

brain slices were unaffected over the experimental window (Figure 3B).

MPT in Enzyme-Treated Rat Brain Slices Ex Vivo.

Having identified 2 h as sufficient for complete loss of PNN structure in brain slices treated 

with either ChABC (0.4 U/mL) or HYase (35 U/mL), we next investigated whether changes 

in the diffusion of 40 nm PS–PEG nanoparticles—the same nanoparticles used in the age-

dependent study (Table S1)—would result from these induced ECM structural changes. PS–

PEG nanoparticles are not expected to be affected by newly free components of brain ECM 

or the applied enzymes due to their high PEG surface density (>9 PEG chains per 100 

nm2)63 which prevents protein adsorption.64 Ex vivo MPT in the cortex revealed that 

nanoparticle populations explore a greater area, move faster, and have increased diffusivities 

when navigating enzyme-treated brain tissue. Representative trajectory maps generated from 

a single video taken in a nontreated, ChABC-treated, and HYase-treated brain slice are 

provided in Figure 4A. Despite each map containing around the same number of total 

trajectories (1478, 1593, and 1732 for nontreated, ChABC-treated, and HYase-treated, 

respectively), nanoparticles surveyed a greater area when diffusing in slices treated with 

ECM-degrading enzymes. The ranges of Db,eff values were similar for all treatment groups, 

but the median Db,eff value was greater in magnitude for both enzyme-treated groups 
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compared to the nontreated control (Figure 4B). The median Db,eff at a 0.33 s lag time was 

1.34 and 1.20 μm2/s for ChABC- and HYase-treated slices, respectively, compared to 0.67 

μm2/s for nontreated slices. This represented a 19-, 10-, and 11-fold decrease compared to 

diffusivity in a representative free medium of artificial cerebral spinal fluid (DACSF) (Figure 

4C). The Db,eff data were also used to estimate how the distribution of effective ECM pore 

sizes changes in response to ECM degradation via ChABC or HYase. The distribution of 

ECM pore sizes in the cortex shifted to larger pores in both instances (Figure S2). The 

average ζ increased from 43.4 nm in nontreated P35 brains to 56.1 and 54.4 nm in ChABC- 

and HYase-treated P35 brains, respectively (Figure 4C).

To account for biological variability slice to slice and animal to animal, MPT experiments 

were performed using four separate rats, all within the same developmental range (P35–

P38). Significant differences in nanoparticle diffusive ability existed across treatment 

groups, independent of both slice and animal. If the trajectories from all videos taken in all 

slices and all animals are compiled into one data set, nanoparticle populations diffusing in 

ChABC-treated and HYase-treated slices have median Db,eff values significantly larger than 

those diffusing in nontreated slices (Figure 4B). If data are instead split by animal, 

significant differences in Db,eff remain between treated and nontreated groups (Figure S2).

The extracellular environment of cortical brain tissue changes throughout 

neurodevelopment, and our findings demonstrate MPT is capable of detecting changes in 

extracellular nanoparticle diffusion with age (Figure 2A). There are many factors that 

potentially contribute to the decreased diffusivity observed with age. First, there are changes 

in the organization and density of ECM structures, like PNNs, that occur throughout 

development. An enzyme-induced breakdown of PNNs leads to increased nanoparticle 

diffusivity, along with an increase in the distribution of effective ECM pore sizes (Figure 4). 

The evidence thus suggests that changes in the number of steric obstructions present in the 

ECS plays a role in decreasing extracellular diffusivity with age, but it remains difficult to 

label it as the sole contributor. This hypothesis is also supported by previous work, albeit in 

different models of brain tissue, that demonstrates enhanced diffusion of various probes 

following chondroitin sulfate or hyaluronic acid breakdown.31,34,65 The incorporation of 

high-temporal resolution confocal or two-photon microscopy into the MPT technique for 

simultaneous fluorescent microscopy would allow future work targeted at tracking the 

behavior of nanoparticles away from, in close proximity too, and interacting directly with 

PNNs and help confirm the conclusions drawn herein.

In addition to steric interactions with ECM constituents and cellular surfaces, nanoparticles 

are also subject to hydrodynamic interactions brought about by the narrow channels of brain 

ECS and pores present in ECM structures.66,67 Diffusion theory tells us that increased drag 

is experienced when a diffusing particle’s size approaches the width of the pore it is 

navigating.68 Existing work by Lehmenkühler et al. found that ECS volume fraction 

decreases from ~40% at P2–P4 to about 27% at P10–P11 and then steadily declines to an 

adult value of ~22% by P21;69 however, it is still unknown if volume fraction relates directly 

to ECS channel width, especially given the interconnectedness of ECS channels. We did see 

a shift in effective ECM pore size distributions to smaller pores when our data were fit to the 

Amsden obstruction-scaling model (Figure 2C–G), but our analysis only included one 
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nanoparticle size (40 nm). The analysis becomes more robust when diffusion data are pooled 

across nanoparticles of varying size.33 Similar to the effect of increased physical 

obstructions with age, it is likely the decrease in nanoparticle diffusivity observed with age 

is partly due to the narrowing of ECS channels, but it is difficult to know the exact extent at 

which it contributes. Changes in the magnitude of certain geometric features associated with 

the raw trajectory data, such as trajectory aspect ratio, elongation, or straightness, could also 

be indicative of a reduction in ECS width. To know definitively, MPT would have to be 

carried out in controlled environments where brain ECS pore size can be tuned precisely, 

and the impact of pore size on each specific trajectory feature could be investigated in 

greater detail.

Interestingly, a notable portion of ECM pores were predicted to be smaller than 40 nm, the 

particle diameter, especially in the P70 age group (Figure 2C–G). There are two main 

reasons for this. First, only a single probe size was included in this study. It is known that a 

significant portion of ECS channels in the brain are larger than 100 nm in diameter,33,35,56 

and that pores greater than 1 μm in diameter do exist.56 There is potential that a 40 nm probe 

will not fully explore the entirety of the space it resides within the tracking window. 

Additionally, a 40 nm particle within a large ECM-filled pore might not diffuse as readily as 

it would in a free medium, due to nonsterically imposed hindrances to diffusion. This 

provides a second explanation for the apparent underestimation of the distribution of pore 

sizes. The Amsden obstruction-scaling model assumes the probe is completely inert to its 

environment and only impacted by steric obstructions.59 While the PEGylation reaction used 

to synthesize the probe particles achieves a dense PEG surface coating63 and results in near-

neutral zeta-potential (Table S1), there is still potential that electrostatic and hydrophobic 

forces are affecting their movement in tissue. By neglecting these nonsteric interactions, the 

model likely underestimates pore sizes. Future work would benefit from quantifying the 

motions of multiple sizes of nanoparticle probes, as has been done previously.32,33 This 

would also provide insight into whether the observed relationship between particle 

diffusivity and chronological age is consistent regardless of probe size. Similar particle 

tracking methodologies have been used by others to demonstrate elevated diffusivity and an 

increase in ECS dimensions following treatment with hyaluronidase, and these experiments 

used single-walled carbon nanotubes (SWCNTs) ranging from ~490 to 780 nm in one 

dimension (length; SWCNTs do have a diameter in the range of a nanometer).31,70 The 

alignment of results, between our studies using 40 nm PS–PEG nanoparticles in 

hyaluronidase-treated brain slices (Figure 4) and previous experiments using 490–780 nm in 

length SWCNTs,31 suggests that alterations in ECM structure are detectable by a range of 

probe sizes. We thus expect the trend of decreased extracellular diffusivity with 

developmental age to hold regardless of probe size and probe material, so long as the applied 

probe can penetrate brain tissue effectively.31,33–35,44,71–73

Finally, changes in the viscosity of the extracellular fluid could also influence nanoparticle 

diffusion, although viscosity is thought to be less influential than ECS geometry as particle 

size approaches the width of the ECS.74 Extracellular fluid viscosity can vary depending on 

fluctuations in the concentration of extracellular components, such as proteins, 

neuromodulators, extracellular vesicles, glycans, and metabolic waste. PNN-specific 

chondroitin sulfate proteoglycan (CSPG) mRNA expression profiles in the rat cortex have 
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been shown to vary during the first 6 weeks of life,75 and the total amount of hyaluronic 

acid, a ligand for CSPGs, also fluctuates during development before eventually stabilizing in 

adulthood.76 Both hyaluronic acid and CSPGs spend time in matrix-immobilized states, 

however, so their impact on extracellular fluid viscosity likely varies depending on current 

ECM dynamics. Any non-cell-adhered, free floating aggregates of ECM would certainly 

influence viscosity. Collectively, both ECM-associated and non-ECM-associated 

components can be in flux during development. It is therefore plausible that the composition 

and consequently viscosity of the extracellular fluid varies, as well. Whether these changes 

are significant enough to alter nanoparticle diffusion in a notable way is difficult to 

determine—it would require a technique capable of probing the viscosity of the extracellular 

fluid in vivo at the microscale, and diffusion-based strategies that leverage nanosized probes 

are confounded by other factors, such as steric hindrances and hydrodynamic factors.

The decreased diffusivity of nanoparticles in brain ECS as brains age is likely due to a 

combination of all three factors: narrowing of ECS channels and shifts to smaller ECM 

pores, an increase in the number of physical obstructions present in the ECS, and changes in 

extracellular fluid viscosity. The ability to delineate the significance of each will remain a 

challenge until methods can be developed to assay each individually. There is also potential 

that cellular changes contribute to changes in the extracellular diffusion of nanosized probes. 

In the mouse cortex specifically, axonal and dendritic arborization is actively occurring 

during the first 3 weeks postnatal77 and potentially continues into the later stages of 

development. Glial cells are also active participants in many neurodevelopment processes, 

including synapse formation, pruning, and plasticity, and thus their current morphology, 

activation state, and density could influence local ECS properties. Brain ECM helps 

facilitate communication between neurons and glial cells, so any neuronal- or glial-specific 

change in cellular dynamics, morphology, and activity would likely result in a change in 

brain ECM that impacts local extracellular diffusion.

Similar to existing, well-established methods of fluorescence single particle tracking,78 our 

ex vivo MPT technique allows the tracking of individual particles that are present over the 

duration of a high frame-rate video. The scale of the age-dependent study carried out herein, 

which included 15 videos per age group with each video containing hundreds to thousands 

of individual trajectories, provided an abundant amount of data in the form of nanoparticle 

x–y positions over time. These trajectory data sets represent an obvious target for the 

incorporation of machine learning algorithms; we were interested to see if models could 

actually predict a complex biological variable such as age based solely off features 

associated with the trajectory of an individual nanoparticle.

Boosted Decision Trees Generated from MPT Feature Data Far Outperform the Accuracy of 
a Random Guess for Predicting Chronological Age.

Using the XGBoost (eXtreme Gradient Boosting) software library,79 we trained boosted 

decision tree classifiers on the age-dependent MPT data to determine if the incorporation of 

machine learning could result in predictive power. Prior to model training, the amount of 

features the algorithm could access was enhanced by calculating additional trajectory 

features to complement the Deff values already available. A total of 39 features were 
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computed, some based on trajectory geometry (aspect ratio and straightness, for example) 

and some based on traditional diffusion theory (anomalous diffusion exponent and MSD 

ratio, for example). Trajectory features were adopted from previous literature47 but scaled by 

introducing additional, local-averaged features; Table S2 contains a full list of features and 

feature calculations. Using a subset of the original age-dependent feature data set, we trained 

a boosted decision tree targeted to classify between P14, P21, P28, P35, and P70 age groups. 

The resulting model achieves a total predictive accuracy of 60.09% when tested on a 

separate subset of data, triple the accuracy of a random guess (20.00%) (Figure 5A). The 

weighted average precision and recall are also notable, at 58.28 and 60.09%, respectively. 

The model most accurately predicted P14 and P70 ages (recall of 74.47 and 84.40%, 

respectively) and performed worse in the intermediate age groups (Figure 5B). Recall for the 

P21, P28, and P35 ages was 48.08, 28.44, and 53.02%, respectively. However, even the 

lowest recall of 28.44% is still greater than a one in five random guess. Of the entire 

population of P70 trajectories included in the test data set (348 in total), 26 trajectories were 

incorrectly classified (17 predicted as P35 and 9 predicted as P28) (Figure 5B), and 79 

trajectories of the entire P14 population (out of 324) were mislabeled.

A distinct advantage of decision-tree-based classifiers is the ability to quantify the 

importance of each feature to the classification being made. To identify features that impact 

the model most significantly, a summary plot of Shapley Additive exPlanation (SHAP) 

values80,81 was created for the 5-age predictor (Figure 5C). Interestingly, four of the top five 

and 13 of the top 15 features are local-averaged features. The top five feature dependencies 

are mean Deff at 0.33 s (Mean Deff1), mean fitted diffusion coefficient (D_fit), mean 

trappedness, mean boundedness, and progression (Figure 5C). Both Mean Deff1 and D_fit 

are calculated using diffusion theory and are based on particle mean square displacements at 

varying lag times, while mean trappedness, mean boundedness, and progression relate to the 

geometry of the trajectory.

To understand how feature impact varies depending on feature magnitude, we generated 

SHAP dependence plots for the four most influential features in the 5-age boosted decision 

tree classifier (Figure 6A–D). SHAP dependence plots show the SHAP value associated with 

each trajectory fed into the model (grouped by age) and how that SHAP value varies with 

feature magnitude. Positive SHAP values increase the likelihood of prediction, whereas 

negative SHAP values decrease the likelihood of prediction. For example, when trajectories 

from the P70 data set possess small values of mean Deff, mean Deff has a positive SHAP 

value and thus increases the likelihood the model classifies the trajectory as P70. As mean 

Deff increases, SHAP values decrease toward zero and eventually go negative, meaning 

mean Deff becomes progressively less influential in the prediction (Figure 6A). The opposite 

trend is observed for the P14 age group (Figure 6A). SHAP dependence plots for mean Dfit, 

mean trappedness, and mean boundedness are presented in Figure 3B–D. In general, when 

trajectories from the P70 age group were slower moving, defined by a small mean Deff and 

Dfit, and more confined, defined by a small mean trappedness and boundedness, the model 

leveraged those features to make the prediction. The opposite is observed for the P14 age 

group, with the intermediate ages behaving between the extrema.
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SHAP summary plots, like the one presented in Figure 5C, can also be split and used to rank 

the most influential features for predicting each of the discrete classes (Figure 7A–E). These 

summary plots combine feature importance with feature effects. Each point on the summary 

plot is a SHAP value for a specific feature and instance. The position on the y-axis is 

determined by the feature and the x-axis by SHAP value. The color represents the magnitude 

of the feature from low (blue) to high (red). Local-averaged features make up the entirety of 

the top five features for four of the five age groups. The only age to include a standard not 

locally averaged feature was P70, where progression is the second most influential feature. 

These SHAP summary plots provide insight into why the extreme ages were predicted with 

the highest accuracy. In the P14 and P70 age groups, SHAP values were typically clustered 

at two separate locations along the axis of SHAP magnitude. The clusters for a given feature 

tended to either be on separate sides of the neutral value of 0.0 or have one cluster much 

closer to 0.0 (Figure 7A,E). While this clustering behavior was also observed for certain 

features within the intermediate age groups, the magnitude of the SHAP value where 

clustering occurred was greater for the P14 and P70 groups. Additionally, SHAP values 

were, in general, closer to the neutral value of 0.0 for the intermediate ages. SHAP values 

ranged from −1.1 to 1.6 and −2.6 to 1.4 for the P14 and P70 data sets, respectively, while the 

widest range for the intermediate ages, the P35 group, only spanned from −1.0 to 0.5 (Figure 

7A–E).

Reducing Resolution to Three Ages (P14, P35, and P70) Increases Classifier Accuracy to 
>86%.

Our 5-age boosted decision tree classifier struggled most at predicting the intermediate age 

groups (P21, P28, and P35) (Figure 5). To determine how accurate a model could be if 

resolution was reduced, we removed the P21 and P28 data sets from our analysis and trained 

a boosted decision tree classifier using data from the remaining groups (P14, P35, and P70). 

With these wider age gaps, we expected the differences in trajectory features from group to 

group to be larger and more readily leveraged by the machine learning algorithm. The new 

model far outperformed the 5-age predictor. The new 3-age model achieves an 86.64% 

accuracy overall, with individual recalls of 90.86, 76.72, and 92.92% for the P14, P35, and 

P70 groups, respectively (Figure 8A). This represents a significant increase in overall 

accuracy compared to the 5-age classifier (60.09%, Figure 5A). Similar to the 5-age 

classifier, the model was better at predicting the extreme ages (P14 and P70) than the 

intermediate age (P35). Of the 1609 P14 trajectories used to test the model, 147 were 

incorrectly classified (Figure 8B) and 101 of the 1498 P70 trajectories were mislabeled 

(Figure 8B). The P35 group had the lowest precision, recall, and f1-score, and of the 1632 

trajectories tested, 380 were incorrectly classified (with 200 trajectories classified as P14 

and 180 trajectories classified as P70).

SHAP feature importance plots, both for the overall model (Figure S3) and specific age 

groups (Figure S4), were generated along with SHAP dependence plots for the four most 

influential features in the 3-age classifier (Figure S3). Similar to the 5-age classifier, local-

averaged features dominated the feature importance plots. Local-averaged features 

accounted for four of the top five and 13 of the top 15 most influential features overall 

(Figure S3). When focusing instead on the most influential features for predicting specific 
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ages, local-averaged features remained dominant. The five most influential features for P14 

and P35 prediction were all local-averaged features, and only one of the top five for the P70 

group was not local-averaged (Figure S4).

In addition to showing changes in nanoparticle diffusivity with brain age, we also 

demonstrated the effectiveness of combining machine learning algorithms with biological 

MPT data sets. Through XGBoost, we generated boosted decision tree classifiers capable of 

predicting age with high accuracy. The model trained to classify trajectories between all five 

age groups (P14, P21, P28, P35, P70) predicted age with a 60.09% average accuracy (Figure 

5), and the 3-age classifier was 86.64% accurate (Figure 8). To date, machine learning in 

combination with trajectory data has predominantly been used to predict motion type; the 

majority of this existing work has relied on artificial or simulated trajectories to train the 

model rather than experimentally collected trajectory data from particle tracking 

methodologies.46,82,83 MPT trajectory data have been used to train classifiers capable of 

predicting nanoparticle probe properties, such as size and surface charge,46,84 with high 

accuracy, but the focus herein was to allow prediction of a biological variable such as age. 

Based on existing MPT data that show differences in nanoparticle diffusivity and motion 

type depending on the duration of oxygen–glucose deprivation in rat brain slices,85 this 

approach can be expanded to a wide range of biological factors, such as the presence or 

extent of brain injury.

A distinct advantage of decision-tree-based classifiers like XGBoost is the ability to quantify 

individual feature importance. Through the use of SHAP summary plots, the five most 

important trajectory features for predicting chronological age between all five age groups 

were determined to be mean Deff at 0.33 s (Mean Deff1), mean fitted diffusion coefficient 

(D_fit), mean trappedness, mean boundedness, and progression. There is potential that 

certain features are indicative of specific interactions the nanoparticle experiences in the 

biological environment. For example, a shift in trajectory trappedness can represent 

nanoparticle uptake into a more confined environment like cytoplasm or lysosome, or an 

increase in efficiency can be indicative of particles being actively transported across a 

membrane via directed motion.46 One thing that remained consistent across models and age 

groups was the significance of local-averaged features to model prediction. These made up 

four of the top five most influential features for the 5-age classifier. Brain ECS is known to 

contain randomly distributed void spaces, commonly referred to as “lakes”, connected by 

highly tortuous channels of variable widths.30,67,86 If a nanoparticle is present in a “lake”, 

neighboring trajectories are likely experiencing a similar environment and exhibiting 

comparable behavior. Alternatively, behavior is expected to be more heterogeneous across 

neighboring trajectories if a nanoparticle is diffusing in an ECS channel whose width varies 

spatially. The distribution and density of these “lakes”, along with the fraction of the 

extracellular volume of which they consist, likely varies throughout neurodevelopment. It is 

thus unclear whether these differences are linked to the differences observed in local-

averaged features as a function of age, but we do know that the significance of features 

varies depending on the age being predicted (Figure 7) and following the elimination of P21 

and P28 groups (Figure S3). Regardless, local-averaged features were the most influential in 

predicting brain age from boosted decision tree classifiers and promote the importance of 

including statistical features in future applications of machine learning to MPT data sets.
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While the 5-age and 3-age classifiers were able to achieve an average accuracy of 60.09 and 

86.64%, respectively, which both far exceed the accuracy of a random guess, there is still 

room for improvement, especially when predicting the intermediate age groups. The 5-age 

classifier only accurately recalled 48.08, 28.44, and 53.02% of the P21, P28, and P35 age 

groups, respectively. In instances where brain microstructure undergoes changes from week-

to-week, and potentially day-to-day, like elevated periods of plasticity during 

neurodevelopment, being able to predict age with single day resolution would be ideal. The 

incorporation of MPT data from additional nanoparticle sizes and types, the generation of 

extra features, and the implementation of alternative machine learning algorithms are all 

potential ways to improve model performance in future iterations. However, it is 

encouraging that even the worst-performing age group (P28) still outperformed a random 

guess (20.00% for 5-class prediction).

The MPT studies carried out herein were performed in the motor and somatosensory cortex. 

One limitation to this study is a lack of control over the cortical layer in which MPT was 

performed and that experiments are carried out ex vivo. In humans and rodents, the cortex 

consists of six layers, each having different cell populations87 and timelines of increased 

excitatory and inhibitory activity.88 ECM protein expression can also vary from layer to 

layer.89 To determine if MPT is sensitive enough to detect intercortical differences, studies 

will need to be run in each of the six cortical layers in the rat or in more advanced species, 

such as the ferret, where cortical macrostructure is more aligned with the human brain.90 

There is potential that the processing steps required to generate ex vivo brain slices alter the 

innate structure of brain ECM. However, Nance et al. has previously demonstrated good 

agreement between the behavior of 40, 100, and 200 nm PS–PEG nanoparticles in mouse 

brain in vivo and rat brain tissue ex vivo.33 Additionally, organotypic brain slices have been 

used extensively to study the diffusion of various substances,33,84,85,91 neural 

electrophysiology,92 and cell migration.93,94 Sources of error stemming from slice 

preparation, if present at all, would likely only exist in the older age groups, which have less 

documented cases of their use and more limited culturing viability. Regardless, this study 

demonstrates the utility of combining MPT with machine learning to predict the 

chronological age of rat brain slices using features generated solely from nanoparticle 

trajectories.

The success of this approach lends itself to numerous avenues of future study. Of particular 

interest would be studies aimed at better understanding the mechanisms of 

neurodegeneration, whether it is induced by a traumatic event such as stroke or traumatic 

brain injury, or disorders associated with aging, like Alzheimer’s disease and Parkinson’s 

disease. Neurodegeneration is typically associated with the activation of neuroinflammatory 

pathways, which triggers the release of ECM-degrading matrix metalloproteinases (MMPs).
95,96 In addition to the onset of neuroinflammation, astrocytes take part in a process known 

as glial scarring, where they migrate to areas of neuronal death, proliferate, and deposit 

CSPGs in an attempt to wall off damaged areas and prevent the propagation of injury.97,98 

The upregulation of ECM-degrading MMPs will inevitably cause changes to the 

extracellular environment but so should the processes associated with glial scarring. It is thus 

difficult to predict whether neurodegeneration would enhance or reduce extracellular 

diffusion, and whether that trend would be consistent across various injuries and disorders. It 
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likely depends on both proximity to the core of an injury, such as in stroke or traumatic brain 

injury and, in the case of neurodegeneration, timing following the onset of pathological 

processes. Initial work suggests an increase in diffusive ability, however. In an oxygen–

glucose deprivation model of ischemic injury, Joseph and Liao et al. found that extracellular 

nanoparticle diffusion in both the cortex and striatum was enhanced following injury.85 

Similarly, in an α-synuclein-induced model of neurodegeneration, Soria et al. observed an 

increase in extracellular diffusivity when compared to that of control animals.34 However, 

these represent the results of only two studies; more work is needed before any definitive 

conclusions can be drawn on the impact of neurodegeneration on diffusion and MPT 

analysis of brain ECM structure.

An added bonus of the particle tracking technique is that multiple types of probes and 

particle dynamics can be studied. This allows researchers to identify key design parameters 

for specific injuries or disorders, such as the max hydrodynamic diameter of the therapeutic 

vehicle, for example. There is also potential to leverage an enhanced understanding of the 

barriers to extracellular diffusion to engineer ways to overcome diffusional barriers. One 

such option is to include or co-administer an ECM-altering substance along with a 

therapeutic payload.99–101 The ECM-altering substance can specifically alter the diseased 

brain microenvironment in a way that enhances tissue penetration and achieves greater 

distribution of the therapeutic throughout the injured region, resulting in more efficacious 

outcomes.

CONCLUSION

MPT is capable of detecting changes in brain ECM that occur during neurodevelopment and 

in response to enzymatic digestion of the ECM. When paired with machine learning 

algorithms such as XGBoost, we can generate models capable of predicting associated 

biological factors such as age with high accuracy, and these predications are made based 

solely on features associated with a given trajectory. By using decision-tree-based classifiers, 

the influence of individual features can be quantified and ranked. Local-averaged features 

were the most influential when predicting brain age, but further work is necessary to 

understand what the magnitude of certain features elucidates about the underlying biology. 

In addition to neurodevelopment, the ECM plays many critical roles in maintaining 

homeostasis and is thought to be involved in the pathophysiology of many neurological 

diseases and brain injuries. The application of MPT in studying ECM structure could 

explicitly define mechanisms involved in neurological disease progression and reveal 

additional targets for therapeutic intervention. Additionally, MPT can enhance our baseline 

understanding of the structure–function relationships of the brain under normal 

physiological conditions and has the potential to become used as one marker of neurological 

disease severity.

MATERIALS AND METHODS

Organotypic Hemispheric Brain Slice Preparation.

Brain slices were prepared from male SD rat pups at varying ages, depending on the specific 

study. This study was performed in strict accordance with the recommendations in the Guide 
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for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH). All 

of the animals were handled according to approved institutional animal care and use 

committee (IACUC) protocols (#4383-02) of the University of Washington. The University 

of Washington has an approved Animal Welfare Assurance (#A3464-01) on file with the 

NIH Office of Laboratory Animal Welfare (OLAW), is registered with the United States 

Department of Agriculture (USDA, certificate #91-R-0001), and is accredited by AAALAC 

International. Every effort was made to minimize suffering. Following euthanasia, brains 

were extracted, immersed in room temperature (22 °C) dissection media, and cut into 

hemispheres with a razor blade. Coronal slices (300 μm thick) were prepared from each 

hemisphere using a Mcllwain tissue chopper (Ted Pella, Redding, CA).47 Individual slices 

were plated on 30 mm cell culture inserts (MilliporeSigma, Burlington, MA) in nontreated 

6-well plates (USA Scientific, Ocala, FL). Prior to plating, 6-well plates were filled with 1 

mL of SCM. Slices were incubated in sterile conditions at 37 °C and 5% CO2. For a more 

detailed, step-by-step procedure of slice preparation, and buffer recipes, refer to SI 

Appendix, SI Experimental Procedures.

Nanoparticle Preparation and Characterization.

Fluorescent carboxylate (COOH)-modified polystyrene latex (PS) nanoparticles (PS-COOH) 

(40 nm) (Fisher Scientific, Hampton, NH) were covalently modified with methoxy (MeO)-

poly(ethylene glycol) (PEG)-amine (NH2) (5 kDa MW, Creative PEG Works, Winston-

Salem, NC) by carboxyl amine reaction.63 The hydrodynamic diameter and polydispersity 

index of the resulting PEG-conjugated fluorescent nanoparticles were measured via dynamic 

light scattering and the ζ-potential by laser Doppler anemometry. Refer to SI Appendix, SI 

Experimental Procedures for more detailed reaction conditions and characterization.

Multiple Particle Tracking in Organotypic Brain Slices Ex Vivo.

All MPT studies were performed between 20 and 24 h postslice preparation. Slices were 

imaged in a temperature-controlled incubation chamber maintained at 37 °C, 5% CO2, and 

80% humidity. Thirty minutes prior to video acquisition, injections of 40 nm PS–PEG 

nanoparticles diluted in 1× phosphate-buffered saline (PBS) were carried out in each slice 

using a 10 μL glass syringe (model 701, cemented needle, 26-gauge, Hamilton Company, 

Reno, NV). A total of five 0.5 μL injections were made in the cortex of each slice. For the 

study involving the degradation of PNNs ex vivo, particle injections were made 90 min after 

treatment was applied, and videos were collected following a 30 min incubation. In total, 

MPT was performed 120 min after treatment with either HYase, ChABC, or SCM.

A total of five videos were collected from the motor and somatosensory cortex of each slice. 

Videos were collected at 33 fps with a 100× magnification objective (oil immersion, 1.45 

numerical aperture, Nikon Instruments, Melville, NY) for 651 frames via fluorescent 

microscopy using a cMOS camera (Hamamatsu Photonics, Bridgewater, NJ) mounted on a 

confocal microscope. Nanoparticle trajectories, trajectory MSDs, and Db,eff were calculated 

via diff_classifier (https://github.com/ccurtis7/diff_classifier), a Python package developed 

within our group.54
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For enzyme-induced PNN breakdown experiments, three brain slices for each treatment 

group (ChABC, HYase, and NT) were taken from each of the four animals used. Collecting 

five videos from each slice resulted in a total of 60 videos and >60,000 total trajectories per 

treatment group. For age-dependent MPT, a total of 15 videos were taken from three slices at 

each age. This resulted in >4900 total trajectories per group.

XGBoost Predictive Model for Age-Related Data Classification.

XGBoost is a type of boosted decision tree in which the algorithm sequentially builds itself 

using multiple weak prediction models. Every tree produced in the series is fit to a modified 

weighted version of the original data set. This sequential method continues until a set 

number of learners has been created or until the model converges within the exponential loss 

function. Prediction is then made by calculating the weighted average of all produced 

learners.102 XGBoost specifically incorporates regularization into its algorithm to control 

overfitting the data during training. It incorporates a distinct objective function that 

encourages simple models and decreases variance.103

A total of 64,452 samples were rebalanced using under-sampling into five even sets of 6194 

data points for each age classification. Training and testing data sets were randomly sampled 

from the age data with a training/testing split percentage of 90 to 10%. Features were chosen 

and calculated based on the geometry of the trajectory using feature calculation algorithms 

on diff_classifier. This includes asymmetry, anomalous exponent, aspect ratio, elongation, 

boundedness, fractal dimension, efficiency, straightness, kurtosis, and MSD ratio. Extra 

features were created based on the immediate surrounding data. Mean values of each 

calculated feature were calculated and used in prediction. In total, 39 different features were 

used. A comprehensive list and description of every feature used can be found in the 

Supporting Information (Table S2). The XGBoost model was trained using a max depth of 6, 

an eta of 0.005, a gamma of 5, a subsample of 0.6, and a colsample_bytree of 0.6.

To better understand the individual contribution to overall prediction, shapely additive 

explanations were calculated for every feature. SHAP is based on the theoretically optimal 

use of shapley values, which are a feature’s contribution to the prediction, f(x):

ϕj(f) = βjxj − E βjXj

in which E(βjXj) is the mean effect estimate for feature j. The contribution is the difference 

in the feature effect and the average effect. SHAP values were used to create summary and 

dependency plots of the top features in prediction of each age category. The summary plot 

shows the average impact of each feature on prediction output calculated by the mean 

absolute SHAP values:

Ij = ∑
i = 1

n
ϕj

(i)

This importance value differs from other importance calculations due to its basis on 

magnitude of feature attributions. Analysis for age-related data can be found on the ECM-
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MPT-Predictive_Age_Data repository (https://github.com/dash2927/ECM-MPT-

Predictive_Age_Data).

Characterizing the Timeline of Enzyme-Induced Perineuronal Net Breakdown in 
Organotypic Rat Brain Slices Ex Vivo.

All experiments were initiated between 20 and 24 h postslice preparation and used litter-

matched male rats to reduce biological variability. Slices were treated with either ChABC 

(0.4 U/mL), HYase (35 U/mL), or SCM (NT). At the initial time point, 200 μL of a given 

treatment was applied to each brain slice and returned to the incubator. One brain slice from 

each treatment group was removed and fixed at 15, 30, 45, and 120 min post-treatment, 

resulting in a total of four slices per treatment condition. Slices were stained with 500 μL of 

1× PBS containing 10 μg/mL fluorescein-labeled WFA lectin for 12 h at 4 °C. Cell nuclei 

were stained with 1 μg/mL DAPI for 30 min. All imaging was performed using a confocal 

microscope (Nikon Instruments). Three representative images were taken at 20× 

magnification from the cortex of each brain slice at each time point. For specific details on 

ChABC, HYase, and NT working solution preparation and staining buffers, see SI 

Appendix, SI Experimental Procedures.

Immunohistochemistry and Lectin Staining on Fixed Rat Brain Slices.

Following euthanasia, SD rats were perfused with sterile 1× PBS. Brains were immediately 

extracted and placed in 10% formalin phosphate buffer for 24 h at 4 °C. Brains went through 

a 30% sucrose gradient to be frozen and sectioned into 30 μm thick coronal sections using a 

Leica CM1950 cryostat (Leica Biosystems, Buffalo Grove, IL). Sections were first incubated 

with rabbit anti-parvalbumin (anti-PVA, Abcam ab11427, Cambridge, UK) at a 1:100 

dilution in 1× PBS containing 1% Triton X-100 (MilliporeSigma), 3% donkey serum 

(MilliporeSigma), and 10 μg/mL WFA for 6 h at room temperature (22 °C). Following a 

wash step, a 1:500 dilution of Alexa Fluor 568-labeled donkey anti-rabbit IgG 

(ThermoFisher) in 1× PBS containing 1% Triton X-100 and 10 μg/mL WFA was applied to 

sections for 2 h. Cellular nuclei were stained with a 1 μg/mL solution of DAPI in 1× PBS for 

15 min. Following a final wash, microscope slides were mounted with a glass coverslip 

using Wako antifade media (Vector Laboratories) and stored at −20 °C until imaged. 

Sections were imaged using a confocal microscope.

Statistical Analysis.

All statistical analyses were carried out in GraphPad Prism (GraphPad Software Inc., version 

8.2.0). For all tests run, differences were defined as statistically significant at p < 0.05. The 

D’Agostino–Pearson omnibus K2 test was used to test for normality. If we were unable to 

reject the null hypothesis that data were sampled from a population that follows a Gaussian 

distribution, we ran Brown–Forsythe and Welch ANOVA tests. We used Dunnett T3 to 

correct for multiple comparisons. If we were able to reject the null hypothesis that the data 

were taken from a normally distributed population, we used the Kruskal–Wallis test for 

significance. In these instances, we applied Dunn’s method to correct for multiple 

comparisons.
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Data and Code Availability.

All data presented herein can be provided upon request. All code is available on github, with 

links included in the methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multiple particle tracking in ex vivo hemispheric brain slices. (A) Following euthanasia, 

brains were extracted, split into hemispheres sagittally, and sectioned coronally before being 

plated on cell culture inserts and cultured at 37 °C and 5% CO2. Slices were allowed to rest 

overnight. (B) Forty nanometer PS–PEG nanoparticles were injected into the cortex and 

allowed to incubate for 30 min prior to video acquisition via high-speed fluorescence 

microscopy. Videos were acquired 20–24 h postslice preparation. (C) Videos were analyzed 

in ImageJ to track nanoparticle Brownian motions and quantify mean squared displacements 

and effective diffusion coefficients. Created with BioRender.com.
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Figure 2. 
Nanoparticle diffusivity and effective ECM mesh size in the cortex decrease with age in the 

developing rat brain. (A) Distribution of Db,eff values at a 0.33 s lag time for each postnatal 

age. Error bars provide the median Db,eff value and interquartile range. (B) Median Db,eff 

(μm2/s), ratio of diffusivity in artificial cerebral spinal fluid to diffusivity in cortical ECM 

(DACSF/Db,eff), and average effective ECM pore size (ζ) for each age. Asterisk (*) denotes 

significant differences, using a Dunn’s test, between groups after adjusting for multiple 

comparisons (p < 0.01). (C–G) Distributions of effective ECM pore sizes (ζ) for each age.
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Figure 3. 
PNN structures degrade within 2 h following treatment with either ChABC or HYase. (A) 

Schematic representation of PNN breakdown following treatment with HYase or ChABC. 

(B) Representative 20× magnification images taken from the cortex of P35 rat brain slices 

receiving one of three treatments (HYase, ChABC, or SCM). PNNs were stained with WFA 

(green) and cell nuclei stained with DAPI (blue). Rows represent treatment group. Columns 

represent treatment time. Scale bars: 100 μm.
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Figure 4. 
Nanoparticles survey a greater area of the brain microenvironment and diffuse faster 

following treatment with ECM-degrading enzymes. (A) Representative trajectory maps 

generated from MPT experiments carried out in nontreated (blue), ChABC-treated (gold), 

and HYase-treated (gray) P35 brain slices ex vivo. The total number of trajectories in each 

group is provided. Scale bar: 25 μm. (B) Distribution of Db,eff values at a 0.33 s lag time for 

each treatment group. Error bars provide the median Db,eff value and interquartile range. (C) 

Median Db,eff (μm2/s), ratio of diffusivity in artificial cerebral spinal fluid to diffusivity in 

cortical ECM (DACSF/Db,eff), and average effective ECM pore size (ζ) for each group. 

Asterisk (*) denotes significant differences (Dunn’s test) between groups after adjusting for 

multiple comparisons (p < 0.01).
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Figure 5. 
Boosted decision tree evaluation metrics, confusion matrix, and SHAP summary plot. (A) 

Precision, recall, f1-score, and support for each of the five classes along with overall model 

accuracy and weighted average precision, recall, and f1-score. (B) Confusion matrix for test 

data set comparing predicted age versus actual age. The colorbar reflects the number of 

trajectories in each bin. (C) SHAP summary plot for the 5-age classifier. Included are the top 

15 most influential features. Contributions from each age are provided by the bar color: P14 

= gray, P21 = gold, P28 = blue, P35 = purple, P70 = green.
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Figure 6. 
SHAP dependence plots for the four most influential features in the 5-age boosted decision 

tree classifier. SHAP dependence plots for (A) mean Deff, (B) mean Dfit, (C) mean 

trappedness, and (D) mean boundedness. Color scheme: P14 = gray, P21 = gold, P28 = blue, 

P35 = purple, P70 = green.
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Figure 7. 
SHAP summary plots for each age of the 5-age boosted decision tree classifier. SHAP 

summary plots of the five most influential features for predicting the (A) P14, (B) P21, (C) 

P28, (D) P35, and (E) P70 age groups. Colorbar provides feature magnitude from low (blue) 

to high (red).
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Figure 8. 
Reducing resolution to a 3-class prediction between P14, P35, and P70 increases model 

accuracy. (A) Precision, recall, f1-score, and support for each of the three classes along with 

overall model accuracy and weighted average precision, recall, and f1-score. (B) Confusion 

matrix for test data set comparing predicted age versus actual age. The colorbar reflects the 

number of trajectories in each bin.
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