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Abstract

Antibiotic resistance is a critical public health problem. Each year ∼2.8 million resistant infections 

lead to more than 35,000 deaths in the U.S. alone. Antimicrobial peptides (AMPs) show promise 

in treating resistant infections. However, applications of known AMPs have encountered issues in 

development, production, and shelf-life. To drive the development of AMP-based treatments it is 

necessary to create design approaches with higher precision and selectivity towards resistant 

targets.

Previously we developed AMPGAN and obtained proof-of-concept evidence for the generative 

approach to design AMPs with experimental validation. Building on the success of AMPGAN, we 

present AMPGAN v2 a bidirectional conditional generative adversarial network (BiCGAN) based 

approach for rational AMP design. AMPGAN v2 uses generator-discriminator dynamics to learn 

data driven priors and controls generation using conditioning variables. The bidirectional 

component, implemented using a learned encoder to map data samples into the latent space of the 

generator, aids iterative manipulation of candidate peptides. These elements allow AMPGAN v2 

to generate of candidates that are novel, diverse, and tailored for specific applications—making it 

an efficient AMP design tool.
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Introduction

AMPs contribute to the natural immune response in all classes of life and are active against a 

broad spectrum of microbes.1,2 Some AMPs are less likely to induce bacterial resistance, 

relative to traditional small molecule antibiotics.3,4 Additionally, AMPs can have synergistic 

effects when used in combination with traditional antibiotics5–7 or other AMPs.8,9

Over 15,000 antimicrobial peptides (AMPs) have been identified,10 but few have been 

advanced to clinical trials despite their promise as treatments for antibiotic resistant 

pathogens. Many known AMPs have limitations that have prevented effective therapeutic 

application, such as relatively low half-lives,11,12 undesirable or unknown toxicity to human 

cells,13,14 and high production costs relative to traditional antibiotics.13,15,16

Designing AMP candidates that mitigate these shortcomings is a difficult problem. AMPs 

are made of amino acids arranged in a chain of arbitrary length, and feature a massive 

chemical search space. There are approximately 4.5 × 1041 unique peptides with 32 or fewer 

residues, if we consider only the 20 standard proteinogenic amino acids. Since the number 

of confirmed AMPs is low in comparison, it seems that the density of AMPs in the space of 

all peptides is also low.17 Efficient methods are required to effectively develop AMP-based 

therapeutics.

Machine learning has aided in the discovery and development of AMPs, with many recent 

approaches relying on predictive models.18–27 Such approaches are usually labelled as 

quantitative structure-activity relationship (QSAR) models. The basic QSAR recipe is to 

select a property of interest (e.g., antimicrobial activity), train a machine learning model to 

predict that property using relatively easily obtained features (e.g., primary peptide 

structure), then apply the trained model to unlabelled samples to estimate the property of 

interest. After training, QSAR models can be used to identify properties of peptides present 

in a database that have yet to be experimentally validated.

The predictive approach can be extended to a generative one by adding an uninformed 

candidate generator (e.g., select a random peptide with length no more than 32). The 

randomly generated candidates can then be sorted and selected based on the property 

predicted by the QSAR model. This approach often suffers from excessive sampling 

requirements that inhibit discovery and design applications, due to the sparsity of AMPs in 

the peptide space. Additionally, reliance on engineered features constructed with domain 
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expertise can further restrict the ability of these models to generate candidates that are 

qualitatively distinct from known AMPs. For example a commonly used feature is structure-

based, however, at the time of writing only approximately 2.5% of known AMPs have 

structures, severely hindering the use of structure as an AMP predicting metric. In fact 

analyzing the presence of amino acids for structures with either alpha or beta characteristics 

(table S1 demonstrates that half the amino acids show up with less prevalance than chance, 

and of the ones that do show up a few show up in equal probability for each implying utility 

beyond structure. Even if the statistical rules were stronger, it is quite possible that some 

AMPs simply have no well defined structure.28

Explicitly generative models that are better informed by data can reduce the amount of 

sampling required to identify promising candidates. Proving this point, several studies have 

successfully applied recurrent neural networks (RNNs)2930 and variational autoencoders 

(VAEs)31 to AMP design and discovery.32–36 If we expand our scope to the more general 

case of molecular design, we find several more applications of VAEs,37,38 some of 

adversarial autoencoders (AAEs),39,40 and even the use of a generative adversarial network 

(GAN).41

Despite fairly broad adoption of machine learning techniques in this domain and growing 

interest in generative models, there is relatively little work investigating the use of generative 

adversarial networks (GANs) for AMP design and discovery.42 GANs are generative models 

that learn to produce samples from arbitrary data distributions by pitting a pair of artificial 

neural networks, dubbed the generator and discriminator, against each other in a zero-sum 

game.43–45 This family of models has seen great success in learning to generate images 

following an explosion of research interest in 2014.45–50 GANs can also generate text,51–53 a 

task that is qualitatively similar to AMP sequence generation and may indicate the potential 

for a new application.

Recently, we provided a proof-of-concept for such an application with AMPGAN and tested 

its ability to design antibacterial peptides.54 For 12 generated peptides that are cationic and 

likely helical, we assessed the membrane binding propensity via extensive molecular 

simulations. The top six peptides were promoted for synthesis, chemical characterizations, 

and antibacterial assays. Three of the six candidate peptides were validated with broad-

spectrum antibacterial activity.

GANs have served as core components in several creative image manipulation tools,55–57 

allowing for the generation of realistic looking images that satisfy user imposed constraints. 

Inspired by the iterative and controllable development process afforded by these creative 

image manipulation tools, we seek to apply similar models to AMP design. In particular, 

bidirectional conditional GANs (BiCGANs)58,59 are ideal for the AMP design task, since 

they provide a data driven generative process, designer control over some features of 

generated samples, and iterative development.

The data driven priors are learned via the zero-sum game between the generator and 

discriminator. In this game, the generator maps samples from a latent distribution (e.g., a 

multivariate normal distribution) to samples that appear to be drawn from the real data 
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distribution, while the discriminator (or critic) is given samples and must identify if they 

were drawn from an authentic data distribution or produced by the generator. During training 

the discriminator minimizes a classification error, while the generator maximizes the error of 

the discriminator.

GANs can create realistic looking samples, but each sample will contain arbitrary features. 

In BiCGANs the control that we seek is created through the use of conditioning variables,46 

where the generator and discriminator are provided an additional input that contains 

metadata for the current sample. By allowing the discriminator to learn associations between 

features and conditioning variables, the generator is encouraged to account for the same 

associations, which then allows a designer to control the output of the generator. The 

conditioning variables are often constructed as binary vectors that indicate the presence or 

absence of the features of interest. For example, in an image generation context, a 

conditioning vector could indicate whether the generated image should contain certain 

objects.

The iterative development process that we want to enable is made possible by the 

bidirectional component of the BiCGAN. The bidirectional component is driven by a third 

network, the encoder, which maps data samples (e.g., AMP sequences) into the latent space 

of the generator. This allows real data samples to be projected into the latent space, which 

can be used to create landmarks in the latent space, facilitate latent space interpolations, and 

incrementally manipulate a particular sample.

In the following sections we discuss our training data, data pre-processing, and details of 

AMPGAN v2—our BiCGAN-based model for AMP design. We show that AMPGAN v2 

can generate novel AMP candidates with similar physio-chemical properties to the training 

data, while also incorporating designer constraints.

Methods and Models

Training Data

We constructed our training set by combining the Database of Antimicrobial Activity and 

Structure of Peptides (DBAASP10,60), Antiviral Peptide database (AVPdb61), and UniProt62 

databases. We extracted the FASTA formatted sequence information, microbe targets (e.g., 

Gram-positive bacteria, Gram-negative bacteria, viruses), mechanism targets (e.g., cell 

membrane, cytoplasmic protein, cell replication), and activity measures (primarily MIC50 

measured in μg/ml) from each database as available. Sequences containing non-FASTA 

symbols (e.g., tail modifications, lower case characters, etc.) or more than 32 amino acid 

residues were filtered. We chose MIC50 as our primary activity measure since it was one of 

the most prevalent measurements present in DBAASP. We did not consider other activity 

measures, such as MBC, due to difficulty in correctly combining such measurements with 

MIC50.

After removing duplicated sequences between DBAASP and AVPdb, as well as “false 

negative” sequences from UniProt that also appear in DBAASP or AVPdb, we obtained 

6238 sequences from DBAASP, 312 sequences from AVPdb, and 490341 sequences from 
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UniProt. If a particular sequence has measured effectiveness against multiple microbe targets 

or mechanism targets, then we considered the superset of these. For sequences that have 

multiple activity measurements against one or more microbes, all measurements with 

compatible units are converted to μg/ml and the arithmetic mean was used to represent the 

general antimicrobial activity of the sequence.

Conditioning Data

We constructed conditioning vectors for our model using indicators for the target microbes, 

target mechanisms, MIC50 level, and sequence length (Figure 1). The target microbe classes 

are cancer, fungus, Gram-positive bacteria, Gram-negative bacteria, insect, mammalian, 

mollicute, nematode, parasite, protista, and virus. The target mechanisms are lipid bilayer, 

replication, virus entry, DNA/RNA, cytoplasmic protein, assembly, virucidal, membrane 

protein, surface glycoprotein, release, and unknown.

The conditioning vector is then constructed as a 64 bit binary vector. The target microbes are 

encoded with 11 bits indicating activity, or lack thereof, against each microbe group. 

Likewise, the target mechanisms are encoded with 11 bits indicating interaction with a 

particular cell process or element. The MIC50 values are discretized into deciles using the 

following bin edges: 3.7 × 10−6, 5.7557 × 100, 1.1 × 101, 1.79869×101, 2.7×101, 

3.88498×101, 5.75996× 101, 8.53173 × 101, 1.28 × 102, 2.324687 × 102, and 1.1240 × 104 

μg/ml. Finally, the length of the sequence is represented using 32 digits, each indicating the 

presence or absence of a FASTA character.

We assumed that the sequences from UniProt did not have antimicrobial activity, since 

arbitrary peptides are unlikely to feature antimicrobial properties, and we already removed 

known AMPs. Thus, when we constructed conditioning vectors for these sequences the only 

non-zero elements were the length component, which was set appropriately, and the MIC50 

component, which was set to the highest bin (lowest activity).

Figures S1 and S2 show the distributions of values across the conditioning vector elements 

(i.e. target microbes, target mechanisms, MIC50, and sequence length).

AMPGAN v2 Design and Training

AMPGAN v2 is a BiCGAN constructed with three neural networks: the generator, 

discriminator, and encoder (Figure 2A).

The generator is composed of a dense layer that mixes the latent representation and 

conditioning vector, followed by a stack of exponentially dilated convolutions, and 

terminated by a single convolution that combines the multiscale features extracted by the 

prior convolution stack (Figure 2B). Global position information is added to the features as 

they enter the convolution stack to improve global sequence structure.63

The discriminator architecture contains a stack of strided convolutions, followed by several 

dense layers (Figure 2C). We apply spatial dropout before each convolution and dropout 

before each dense layer, excluding the output layer. Strided convolutions are used to quickly 
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downsample the feature maps, while dropout increases the variance of the signal provided 

by the discriminator and can stabilize training.50

The AMPGAN v2 encoder shares the same architecture as the discriminator, with the only 

difference being a larger final layer with a linear activation function.

We trained AMPGAN v2 for 2000 epochs, where AMPGAN v2 was shown all 6550 AMP 

sequences along with a random sample of the 490341 Non-AMP sequences in each epoch. 

Training proceeded with a batch size of 128 samples, where half were drawn from the AMP 

set and half from the Non-AMP set. The training signal for the generator and discriminator 

is provided by the binary crossentropy loss, while the mean squared error is used for the 

encoder. The discriminator is regularized using a gradient penalty, which has been shown to 

improve training stability and generalization.64,65 In this configuration it takes roughly 30 

seconds per epoch, adding up to 16 GPU hours for 2000 epochs using a Nvidia Tesla V100.

AMPGAN v2 builds on our previous experience with AMPGAN v1,54 though there are 

several differences in the implementation and evaluation procedure that make direct 

comparison of the two difficult. Full implementation details for AMPGAN v2 can be found 

in our GitLab repository.66

Results and Discussion

Training Stability

GANs can be difficult to train depending on properties of their architecture and training data. 

Poor training stability can involve generator mode collapse,67–69 cyclic generator-

discriminator dynamics,64,65,67 and vanishing gradients caused by discriminator failures.
70,71

To investigate the training stability of AMPGAN v2 we trained 30 replicates from scratch 

using different random initializations. We used a heuristic criteria with two conditions to 

determine if a trial is successful. First, the model must generate sequences with a character-

level entropy that falls between 2 and 4. This removes models that tend to generate 

sequences with unrealistically low or high FASTA character diversity. For reference, the 

average character-level entropy across our training AMPs, non-AMPs, and their combination 

was ∼2.6, ∼3.43, and ∼3.42 respectively. Second, the model must generate sequences whose 

length closely matches the value dictated by the conditioning vector. We quantified this by 

computing the R2 score over batches of generated sequences, and consider values greater 

than 0.5 to be successful.

These conditions were selected after observing two common failure modes in the training of 

AMPGAN v1. The first type were models that correctly handled the dictated sequence 

length, but only generated sequences composed of one or two amino acids. This resulted in a 

low character-level entropy, usually close to zero, and these models were clearly ineffective 

for generating true AMP candidates. The second failure mode resulted in models that 

produced sequences with more realistic character-level entropy, but completely failed to 

respond to the dictated sequence length. By not correctly responding to the elements of the 
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conditioning vector, this type of model no longer provides human domain experts with a 

reliable method for directing the generative process, thus losing one of the primary benefits 

of the BiCGAN architecture that we have chosen.

We observed three successful trials that led to models with realistic sequence entropy and 

high correlation between the dictated sequence length and the length of the generated 

sequence. The other 27 trials failed to produce acceptable models, resulting in a ∼10% 

training success rate. Figure S3 summarizes the variance observed during this experiment 

across several training metrics.

Our training success criterion requires that a successful generator account for the sequence 

length provided in the conditioning vector, but there is room for variation between the 

requirement of R2 = 0.5 and the ideal value of R2 = 1.0. Despite the allowed variance, all 

three successful trials resulted in models with high R2 scores–specifically 0.9852, 0.9986, 

and 0.9975. Qualitatively, this means that almost all of the generated sequences have a 

sequence length that is within ±3 of the dictated sequence length, which is visualized in 

Figure S4.

The observed ∼10% training success rate increases the amount of resources required to train 

new iterations of AMPGAN, relative to a more stable model. Based on the estimate provided 

in the Design and Training section it will take an average of 160 GPU hours, a little less than 

a week, to obtain a quality model. However, this can be naively parallelized to reduce the 

wall clock time to only the 16 hours that it takes to train a single model.

Though it is inconvenient, the low training stability is not a dire issue, since an arbitrary 

number of AMP candidates can be generated once a quality model has been obtained. Also, 

It is likely that the training duration can be shortened from 2000 epochs to 1000 epochs, 

since Figure S3 indicates that all successful models had passed the criteria by that point.

We briefly investigated the training stability of our model on MNIST, an alternative dataset 

composed of handwritten digits. The digits were presented as a sequence of pixels, and the 

conditioning vectors were constructed using the classification labels. Under these conditions 

we found that our model trains quickly and reliably. This indicates that qualities of the 

training dataset may be the primary cause, rather than elements of the GAN architecture. We 

hypothesize that the lower quantity of labelled data and larger conditioning space of our 

training set (relative to MNIST) may contribute to the training instability.

Physio-chemical Similarity

To be applicable to AMP design and discovery, we need to evaluate the quality of the 

generator and the properties of the generated candidates. However, it is prohibitively 

expensive to experimentally validate the ability of the generator to create sequences that 

follow the target microbe, target mechanism, and MIC50 values provided in the conditioning 

vector—so instead we focus on comparisons between easily measurable physio-chemical 

properties of generated and authentic peptide sequences.

We observe a high similarity between the amino acid distribution of the training and 

generated AMP sequences, which differ by less than 1% for most of the 20 natural amino 
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acids (Figure S7). The most significant discrepancies come from Arginine (R) and Lysine 

(K), which are more prevalent in the generated sequences by 6.3% and 2.2% respectively. In 

contrast, three non-polar amino acids, Alanine (A) and Leucine (L) are 1.1% and 1.3% more 

common in the real AMP sequences respectively. Generally, these small differences suggest 

a consistency between the generated peptides and known AMPs. Figures S5 and S6 show 

additional amino acid distribution comparisons between various groups of peptides.

Figures 3 only investigates the appearance frequency of single amino acids, but there is a 

large body of research72–76 that suggests peptides feature complex grammatical structure. 

We investigated this higher-order organization using generalized word shifts,77 which extend 

the simple analysis done at the character level to sub-sequences of arbitrary length. Word 

shifts measure the contributions of distinct sub-sequences to a divergence measure between 

two groups of sequences and highlight the largest contributors.

In Figure 4, we provide word shifts between generated AMPs and real AMPs for sub-

sequences of length 2 and 3. The sub-sequences that were more common in generated 

peptides mostly involve one or more instances of K or R. Likewise the sub-sequences that 

were more common in real peptides tended to involve A or L. These two observations 

reinforce the results of the character level analysis. Many of the sub-sequences present in 

both plots feature positive charge or are hydrophobic, which corresponds well with known 

properties of alpha-helical AMPs. In the length 2 sub-sequence shift, the GP and PG motifs 

are of particular interest since they are often part of hinge-like structures near bends or kinks 

in proteins. Figures S7 and S8 provide baseline analysis that compares two uniformly 

randomly constructed samples of sequences using the same tools, which gives additional 

context for interpreting Figures 3 and 4 respectively.

Sequence Diversity

When proposing candidate AMPs it is important that the generated candidates are diverse as 

a population and novel relative to known AMPs. If the generator produces sequences with 

low diversity, it can run into the same sampling problems as the extended predictive models 

discussed earlier. A generative model will be less useful for discovering new AMPs if it does 

not produce sequences that are novel relative to known AMPs. We applied the Gotoh global 

alignment algorithm78,79 to quantify the relative similarity of two bags of sequences. The 

distribution of alignment scores obtained between a pair of bags indicates the relative 

similarity of the bags, with more similar bags receiving higher scores.

Figure 5 contains letter-value plots80 that summarize the scores obtained by comparing the 

training AMPs, generated sequences, generated AMPs, and generated non-AMPs to 

themselves (i.e. a measure of diversity). Additionally, the final letter-value plot shows the 

distribution of global scores obtained by comparing the generated and training AMP 

sequences.

The training AMP score distribution features much higher median and upper percentile 

scores than any other distribution under consideration, indicating that there is relatively low 

sequence diversity in the training AMP set. The median score of 16.55 and mean score of 

16.49 indicate a low diversity, especially relative to the generated AMP sequences that 
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feature a median score of 7.83 and a mean score of 7.95. The generated non-AMP sequences 

feature a similar level of diversity to the AMP sequences, reaching a median score of 7.8 and 

a mean score of 7.92. The combined set of generated sequences obtains slightly higher 

scores than either the AMPs or non-AMPs separately, with a median of 8.0 and a mean of 

8.17, which may indicate a slight chemical overlap between the two groups or may be due to 

chance. Comparing the generated AMPs with the training AMPs results in the lowest scores 

observed, with a median of 5.24 and a mean of 5.54, indicating that the generated AMPs are 

novel relative to the training AMPs. Figure S9 provides additional context for interpreting 

the global alignment scores shown in Figure 5.

Estimated Antimicrobial Activity

We applied the predictive models developed by Waghu et al. to estimate the probability that 

sequences generated by AMPGAN will feature antimicrobial activity. This allows us to 

evaluate the quality of AMPGAN v2 in a absolute sense, ideally all AMP candidates 

generated by AMPGAN v2 would feature antimicrobial properties, and in a relative sense, 

by comparing it with AMPGAN v1.

We generated 5000 AMP candidates from AMPGAN v1 and 5000 from AMPGAN v2, then 

evaluated them using each of the four predictive machine learning models available on the 

CAMPR3 web page. From these predictions we calculated the percentage of sequences that 

were predicted to have antimicrobial properties, relative to the total number of sequences. 

Additionally, we estimated a 95% confidence interval for each percentage using 

bootstrapping. The results of this evaluation are summarized in Table 1, which shows that 

AMPGAN v2 strongly outperforms AMPGAN v1 which successfully predicted 

experimentally validated AMPs.

Conclusion

In this work, we introduced AMPGAN v2, a BiCGAN that allows for the controlled 

generation of peptides with varying degrees of antimicrobial properties. We demonstrate that 

AMPGAN v2 can be trained successfully using a combination of AMP and non-AMP data. 

Notably, our data, from extensive comparison between known AMPs and generated 

peptides, indicates the capacity of AMPGAN v2 to generate sequences that are diverse and 

novel relative to the training data, but still maintain key AMP features. Additionally, 

AMPGAN v2 is responsive to changes in the conditioning vector, allowing for effective 

control of the generative process.

Based on the experimental validation of AMPGAN v154 and the conditional VAE presented 

by Das et al., we expect the true success rate of AMPGAN v2 to be between 10% and 50%. 

If that proves to be the case, then AMPGAN v2 represents a fair improvement over the less 

than 1% success rate of more traditional design methods.82 Supporting this estimate, 

sequences generated by AMPGAN v2 were much more likely to be labeled as having 

antimicrobial properties than sequences generated by AMPGAN v1, when evaluated by a 

suite of predictive machine learning models.
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AMPGAN v2 has many valuable features, though there are limitations that should be 

addressed in future work. Specifically, the low training stability of the current system should 

be improved to reduce training costs. Furthermore, additional validation is needed to ensure 

that AMPGAN v2 is responsive to manipulations of the target microbe and target 

mechanism conditioning elements. Greater responsiveness to manipulation of conditioning 

variables in combination with better training stability will improve designer confidence 

when developing new AMPs. Finally, additional quantitative methods for evaluating the 

quality of generative AMP models are needed to aid in development and performance 

comparisons. We believe that an extension of Fréchet Inception Distance83 to this domain 

and the use of Adversarial Accuracy84 are promising directions to investigate. Along with 

these faster evaluation methods, we plan to experimentally validate the antimicrobial 

properties of several AMPGAN v2 designed peptides.

AMPGAN v2 contributes a GAN-based model to an area where non-generative models or 

VAEs are more prevalent. Additionally, we open source AMPGAN v2,66 allowing the 

community to interact with and deploy our tool to design and discover AMPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A visual summary of the contents and dimensions of a conditioning vector. All elements are 

binary encoded. For the target microbes and target mechanisms each element of the binary 

vector indicates activity against a particular microbe class or cellular mechanism. A one-hot 

encoding is used for the MIC 50 element, indicating membership in single MIC 50 decile. 

The sequence length is encoded as a bit mask, where 1 indicates the presence of a character 

and 0 indicates an empty slot.
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Figure 2: 
A) AMPGAN v2 Macro-architecture. AMPGAN v2 is a BiCGAN that consists of three 

networks: the generator, discriminator, and encoder. The discriminator predicts whether a 

sample is generated or not, and is updated using the log loss. The generator synthesizes 

samples, and is updated to maximize the loss of the discriminator. The encoder maps 

sequences into the latent space of the generator, and is trained using the mean squared error 

(MSE). B) Generator architecture details. We use 6 convolution layers in the central stack, 

each with a kernel size of 3 and an exponential dilation rate. All dense and convolution 

layers are followed by a leaky ReLU activation, except the final convolution layer, which has 

a hyperbolic tangent activation. The final convolution has a kernel size of 1. C) 
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Discriminator architecture details. The convolutions use a filter size of 4 and a stride of 2. 

All applications of Dropout and Spatial Dropout use a drop rate of 25%. All dense and 

convolution layers are followed by a leaky ReLU activation, except the final dense layer, 

which has a sigmoid activation. The condition vectors are tiled and concatenated with the 

sequences along the features/channels dimension. The encoder uses the same architecture 

with a different output dimension on the final layer corresponding to the selected latent 

space dimension and a linear activation function.
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Figure 3: 
Distributions of amino acids present in generated vs non-generated AMP sequences. The 

distributions are layered in the left panel and the difference is shown in the right panel, 

facilitating different comparison perspectives. The generated distribution was created using 

4855 sequences with conditioning vectors drawn at random from the training set. 50% of the 

conditioning vectors were taken from AMP sequences and 50% from non-AMP sequences. 

The model used to generate these sequences was arbitrarily selected from the set of 

successfully trained models. The non-generated distribution was created using a sample of 

5120 sequences that were randomly drawn from the training set with a 50%/50% split 

between AMP and non-AMP sequences. In all comparisons K is the largest outlier, 

appearing 4–6% more often in generated sequences than real sequences.

Van Oort et al. Page 18

J Chem Inf Model. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Shannon’s entropy divergence between the distributions of length 2 (left) and length 3 

(right) sub-sequences of FASTA characters in AMPs from the training set (real) or AMPs 

created by the generator (generated). Purple bars indicate a greater prevalence of a particular 

sub-sequence in real AMPs, while gold bars indicate a greater prevalence in generated 

AMPs. The two values in the title of each panel indicate the average entropy of each group. 

For reference, the distribution of sub-sequences drawn from uniformly random sequences 

results in a maximum entropy of ∼8.64 for length 2 sub-sequences and ∼12.97 for length 3 
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sub-sequences. Both groups in both plots feature a lower entropy than the maximum, thus 

we should expect to see meaningful structures in each group. The CDF plot in the lower left 

corner of each panel indicates that the top 50 contributors to the divergence only account for 

∼50% (left) and ∼10% (right) of the total divergence, thus both distributions are extremely 

flat.
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Figure 5: 
Letter-value plots showing distributions of match scores obtained from comparisons between 

different groups of sequences. The central horizontal line in each column denotes the median 

value. Each box extending from the median line indicates a percentile that is a half step 

between the starting percentile and the terminal percentile in that direction. For example, 

starting from the median line, the first box above is terminated at the 75th percentile, 

halfway between the 50th percentile and the 100th percentile. The diamonds in the tails 

indicate outliers, which in this case are approximately 5 to 8 of the most extreme values in 

each tail. The first distribution shows the match scores obtained when comparing the set of 

training AMPs with itself. The distribution of match scores for training AMPs has a median 

value that is approximately double that of the distribution for generated AMPs. This 

indicates that the set of generated AMPs is more diverse than the set of training AMPs. If we 

compare the generated AMPs directly with the training AMPs, which is shown in the final 

distribution, we find the lowest median match score observed so far. A low median match 

score here shows that the generated AMPs are novel relative to the training AMPs.
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