Skip to main content
. 2021 Jul 1;12:685002. doi: 10.3389/fphar.2021.685002

TABLE 2.

CMFs for anti-CRC and corresponding mechanisms.

CMF name Composition Cell lines/model Dose Detail Mechanism Ref
Fu Fang Yi Liu Yin formula Astragali Radix, Ganoderma lucidum, semen armeniacae amarum, H. diffusa Willd., Aconiti Lateralis Radix Praeparata, Glycyrrhiza glabra Linn., Radix Panacis Quinquefolii, and Platycodi Radix HCT 116 cells 3–15 mg/ml In vitro Inhibit cell proliferation and induce apoptosis and block cell at G0/G1 phase. In vivo, inhibit tumor growth Dong et al. (2020)
SW 480 cells 3–15 mg/ml In vitro
BALB/c mice 2.4 mg/g In vivo
Yi Fu Zi Bai Jiang San Semen coicis, monkshood, and Herba Patriniae HCT 116 cells 15.625–62.5 μg/ml In vitro Block tumor initiation and progression, increase immune function, regulate gut flora, alter cell growth, and reduce phosphorylation of β-catenin Sui et al. (2020)
MC 38 cells 15.625–62.5 μg/ml In vitro
C57BL/6 J mice 3.825–15.3 g/kg In vivo
Astragalus atractylodes mixture Astragalus membranaceus, Atractylodes macrocephala, Actinidia arguta, Curcuma aromatica, Benincasa hispida, and Ficus pumila. HCT 116 cells 0.5–16 mg/ml In vitro Inhibit hypoxia-induced ROS generation, migration and VM formation, as well as HIF-1 alpha and MMP2 expression Zong et al. (2020)
LoVo cells 0.5–16 mg/ml In vitro
Xiang Sha Liu Jun Zi decoction Radix Codonopsis, rhizoma Atractylodis macrocephalae, radix glycyrrhizae, Poria, Pericarpium citri reticulatae, Pinellia tuber, Radix Aucklandiae, and Fructus Amomi Patients with stage III or IV CRC Unknown In vivo Unknown Hong et al. (2020)
Wu Mei Wan Fructus Mume, rhizoma coptidis, Herba Asari Mandshurici, Ramulus Cinnamomi, Radix Ginseng, Radix Aconiti Lateralis Preparata, Pericarpium Zanthoxyli Bungeani, Rhizoma Zingiberis, Cortex Phellodendri Amurensis, and Radix Angelicae Sinensis C57BL/6 J mice 5.8 g/kg In vivo Improve the survival rate and attenuate symptoms, reduce proliferation of tumor cells, decrease the expression of p65, IL-6, and p-STAT3, decrease Bacteroidetes, and increase Firmicutes Jiang et al. (2020)
Zuo Jin Wan Coptis chinensis Franch. and Evodia ruticarpa HCT 116 cells 100–300 µM In vitro Induce apoptosis through the PI3K-Akt signaling pathway Huang et al. (2020b)
HT 29 cells 100–300 µM In vitro
Zuo Jin Wan Coptis chinensis Franch. and Evodia ruticarpa SW 403 cell 25–800 μg/ml In vitro Increase G1 arrest in cell cycle, induce apoptosis, suppress cell migration and invasion, and decrease the expression of 5-HTR1D and β-catenin Pan et al. (2017)
Compound sophorae decoction Sophora flavescens and Sanguisorba officinalis, Indigo naturalis, Bletilla striata, Panax notoginseng, and Glycyrrhiza uralensis C57BL/6 J mice 0.1614 g In vivo Execute UCRCC-inhibitory activity by counteracting inflammatory responses and rescuing detuning of apoptosis as well as neutralizing overactive mitophagy Deng et al. (2019)
Qing Jie Fu Zheng granules Scutellaria barbata, malt, Hedyotis diffusa, and Astragalus mongholicus HCT 8 cells 0.5–2 mg/ml In vitro Inhibit proliferation and induce apoptosis by suppressing the PI3K/AKT and ERK pathways Yang et al. (2019a)
HCT 116 cells 0.5–2 mg/ml In vitro
Si Jun Zi decoction Codonopsis pilosula, Poria cocos, Atractylodes macrocephala, and radix liquiritiae Balb/c mice 45 g/kg In vivo Increase survival rate and reduce liver metastasis, elevate plasma GM-CSF level, and increase the number of macrophages but not neutrophils in the spleen Zhou et al. (2019a)
Chang Wei Qing Astragalus membranaceus, Atractylodes macrocephala, Codonopsis pilosula, Akebia quinata, Polyporus umbellatus, Coix seed, Vitis quinquangularis Rehder, and Sargentodoxa cuneata C57BL/6 J mice 5, 10 mg/kg In vivo Restore colon length, decrease tumor number and size, reduce colitis score, suppress expansion of F. prausnitzii population, and inhibit activity of beta-glucuronidase and leakage of d-lactose and endotoxin Wan et al. (2019)
Su Yang decoction Broccoli and green cabbage HT 29 cells 10–200 μg/ml In vitro Inhibit colon cancer cell proliferation and induce G1 phase arrest and induce the cleavage of poly (ADP-ribose) polymerase, tumor necrosis factor superfamily member 10, X-linked inhibitor of apoptosis Ge et al. (2019)
LS 174-T cells 10–200 μg/ml In vitro
CRL-1790 cells 10–200 μg/ml In vitro
Jian Pi Jie Du decoction Astragalus membranaceusceus, Panax quinquefolius, Atractylodes macrocephala, Poria cocos, Coix seed, Smilax china, Hedyotis diffusa, Sculellaria barbata, Paris polyphylla, Actinidia argut, and gGlycyrrhiza uralensis Fisch. HCT116 cells 0.3125–2.5 mg/ml In vitro Inhibit viability and proliferation, induce apoptosis, suppress migration, invasion, and angiogenesis by inhibiting the mTOR/HIF-1α/VEGF signaling pathway, decrease the CD34 and VEGF, and downregulate the mTOR/HIF-1α/VEGF pathway Peng et al. (2018)
HT29 cells 0.3125–2.5 mg/ml In vitro
LoVo cells 0.3125–2.5 mg/ In vitro
SW48 cells 0.3125–2.5 mg/ml In vitro
Tian Xian liquid Radix Ginseng, Cordyceps, Radix Astragali, Radix Glycyrrhizae, rhizoma, margarita, Fructus lycii, Ganoderma lucidum, Fructus ligustri lucidi, and Herba Scutellariae barbatae HT29 cells 0.625–5% (v/v In vitro Inhibit proliferation, upregulate the p21 mRNA and protein, downregulate G1 phase cell cycle protein, cyclin D1 mRNA and protein, and reverse multidrug resistance Leigh et al. (2017)
Nude mice 200 µl In vivo
Yi Ai Fang Astragalus membranaceus, Atractylis ovate, Actinidia arguta, Curcuma zedoaria, and Benincasa hispida BABL/c mice HCT 116 cells 8–32 mg/kg In vivo Restrain the formation of vasculogenic mimicry through the HIF-1α/EMT pathway, inhibit growth of the xenografted tumors, enhance expression of E-cd and claudin-4, and decrease the expression of HIF-1α and VIM Hou et al. (2016)
25–200 μg/ml In vitro
Huang Qin decoction Scutellaria baicalensis Georgi., Paeonia lactiflora Pall., Glycyrrhiza uralensis Fisch., and Ziziphus jujuba Mill. C57BL/6 mice 9.1 g/kg In vivo Inhibit AOM/DSS-induced CRC and the production of inflammatory cytokines and increase antioxidant capacity both in chronic DSS- and AOM/DSS-treated mice Chen et al. (2016)
Shen Ling Bai Zhu San Radix et rRhizoma gGinseng, Poria, Rhizoma Atractylodis Macrocephalae, semen Lablab Album, Rhizoma Dioscoreae, Radix et Rhizoma Glycyrrhizae, Plumula nelumbinis, Fructus Amomi, semen coicis, and Radix Platycodonis C57BL/6 J mice 3.64–14.56 g/kg In vivo Supress colitis-associated CRC through the inhibition of EMT and myeloid-derived suppressor infiltration Lin et al. (2015)
SW480 cells 6–16 mg/ml In vitro
HCT116 cells 6–16 mg/ml In vitro
Jian Pi Hua Yu decoction Atractylodes macrocephala Koidz., Euphorbia humifusa Willd., Salvia miltiorrhiza Bunge., Paris polyphylla Sm., Curcuma phaeocaulis Val., Scutellaria barbata D. Don., and Artemisia capillaris Thunb. SW480 cells 0.25–8 mg/ml In vitro Decrease viability, induce G0/g1-phase cell cycle arrest and induce apoptosis, enhance the expression of p27, cleaved PARP, cleaved caspase-3, and bax, and decrease the levels of PARP, caspase-3, Bcl-2, CDK2, CDK4, CDK6, cyclin D1, cyclin D2, cyclin D3, and cyclin E1 Xi et al. (2015)
Yi Qi Fu Sheng formula Codonopsis pilosula, Atractylodes macrocephala, Poria cocos, Radix liquiritiae, Myristica fragrans, and Fructus Akebiae HCT-116 cells 50–250 mg/ml 200–800 mg/kg In vitro Inhibit migration/invasion of CRC by inhibiting the activation of ERK/MAPK signaling pathways Deng et al. (2013b)
Athymic mice In vivo
Jian Pi Jie Du recipe Radix Astragal, Rhizoma Atractylodis macrocephala, wild grapevines, Fructus Akebia, Salvia chinensis Benth., and Evodia rutaecarpa LoVo cells 12.5–400 μg/ml In vitro Inhibit invasive and migratory and reduce the transcriptional activities of EMT-associated factors snail and E-cadherin. In vivo, inhibit liver and lung metastasis of orthotopic CRC, prolonging the survival time Liu et al. (2017b)
Nude mice 250–1,000 mg/kg In vivo
Huang Lian Jie Du decoction Coptis chinensis Franch., Phellodendron amurense Rupr., Gardenia jasminoides J. Ellis, and Scutellaria baicalensis Georgi. Athymic mice 50–200 mg/kg In vivo Promote renewal of the intestinal cell wall, induce presentation of CD44-postive cells, initiate the expression of stemness-associated genes, elevate transcriptional products of the downstream Wnt signaling of CD44, and reduce diarrhea and intestinal damage Chan et al. (2020)
Xiao Ai Jie Du decoction Hedyotis diffusa and Codonopsis pilosa, Sophora flavescens, and Zingiber officinale Patients who fulfill the criteria Unknown In vivo Unknown Zhou et al. (2019c)
BP10A Descurainiae sophia semen and Peucedani praeruptorum radix HCT-116 cells KM12SM cells 6.25–25 μg/ml 25–200 μg/ml In vitro Delay tumor growth and enhance the antitumor activity of each anticancer drug and delay tumor growth Kim et al. (2019b)
In vitro
Ge Gen Qin Lian decoction Radix Puerariae, Scutellariae radix, Coptidis Rhizoma, and liquorice BALB/c mice 300–7500 mg/kg In vivo Enrich related intestinal microorganisms, increase the proportion of CD8+ T cells in peripheral blood and tumor tissues, increase the expression of IFN-γ, downregulate PD-1, and increase IL-2 levels Lv et al. (2019)
Zhi Zhen Fang formula Radix Astragali, fFructus ligustri lucidi, semen coicis, Salvia chinensis, Vitis quinquangularis Rehd., Actinidia arguta, and Cyperus rotundus L. HCT-116 cells HCT-8 cells 25–1,600 μg/ml In vitro Enhance the sensitivity of chemotherapeutic drugs and induce apoptosis, inhibit the hedgehog pathway, inhibit tumor growth, and reduce Gli1 levels Sui et al. (2017)
Athymic mice 25–1,600 μg/ml In vitro
13.27–53.08 g/kg In vivo
Teng Long Bu Zhong Tang Actinidia chinensis, Solanum nigrum, Duchesnea indica, Atractylodes macrocephala Koidz., Poria cocos, Coix seed, mistletoe, and Scutellaria barbata BALB/c mice 22.5, 30 mg/kg In vivo Inhibit cancer cell growth, elicite apoptosis, and downregulate XIAP and survivin, induce cell senescence, and enhance anticancer effects of 5-Fu Deng et al. (2013a)
Wei Chang An Pseudostellaria heterophylla Pax., Atractylodes macrocephala Koidz., Poria cocos Wolf., Glycyrrhiza uralensis Fisch., Sargentodoxa cuneata, and Prunella vulgaris L. HCT-116 cells 3–9% In vitro Reduce the rate of metastasis, decrease the expression of β-catenin and MMP-7, and reduce nuclear translocation of β-catenin Tao et al. (2015)