Fu Fang Yi Liu Yin formula |
Astragali Radix, Ganoderma lucidum, semen armeniacae amarum, H. diffusa Willd., Aconiti Lateralis Radix Praeparata, Glycyrrhiza glabra Linn., Radix Panacis Quinquefolii, and Platycodi Radix |
HCT 116 cells |
3–15 mg/ml |
In vitro
|
Inhibit cell proliferation and induce apoptosis and block cell at G0/G1 phase. In vivo, inhibit tumor growth |
Dong et al. (2020)
|
SW 480 cells |
3–15 mg/ml |
In vitro
|
BALB/c mice |
2.4 mg/g |
In vivo
|
Yi Fu Zi Bai Jiang San |
Semen coicis, monkshood, and Herba Patriniae |
HCT 116 cells |
15.625–62.5 μg/ml |
In vitro
|
Block tumor initiation and progression, increase immune function, regulate gut flora, alter cell growth, and reduce phosphorylation of β-catenin |
Sui et al. (2020)
|
MC 38 cells |
15.625–62.5 μg/ml |
In vitro
|
C57BL/6 J mice |
3.825–15.3 g/kg |
In vivo
|
Astragalus atractylodes mixture |
Astragalus membranaceus, Atractylodes macrocephala, Actinidia arguta, Curcuma aromatica, Benincasa hispida, and Ficus pumila. |
HCT 116 cells |
0.5–16 mg/ml |
In vitro
|
Inhibit hypoxia-induced ROS generation, migration and VM formation, as well as HIF-1 alpha and MMP2 expression |
Zong et al. (2020)
|
LoVo cells |
0.5–16 mg/ml |
In vitro
|
Xiang Sha Liu Jun Zi decoction |
Radix Codonopsis, rhizoma Atractylodis macrocephalae, radix glycyrrhizae, Poria, Pericarpium citri reticulatae, Pinellia tuber, Radix Aucklandiae, and Fructus Amomi |
Patients with stage III or IV CRC |
Unknown |
In vivo
|
Unknown |
Hong et al. (2020)
|
Wu Mei Wan |
Fructus Mume, rhizoma coptidis, Herba Asari Mandshurici, Ramulus Cinnamomi, Radix Ginseng, Radix Aconiti Lateralis Preparata, Pericarpium Zanthoxyli Bungeani, Rhizoma Zingiberis, Cortex Phellodendri Amurensis, and Radix Angelicae Sinensis |
C57BL/6 J mice |
5.8 g/kg |
In vivo
|
Improve the survival rate and attenuate symptoms, reduce proliferation of tumor cells, decrease the expression of p65, IL-6, and p-STAT3, decrease Bacteroidetes, and increase Firmicutes
|
Jiang et al. (2020)
|
Zuo Jin Wan |
Coptis chinensis Franch. and Evodia ruticarpa |
HCT 116 cells |
100–300 µM |
In vitro
|
Induce apoptosis through the PI3K-Akt signaling pathway |
Huang et al. (2020b)
|
HT 29 cells |
100–300 µM |
In vitro
|
Zuo Jin Wan |
Coptis chinensis Franch. and Evodia ruticarpa |
SW 403 cell |
25–800 μg/ml |
In vitro
|
Increase G1 arrest in cell cycle, induce apoptosis, suppress cell migration and invasion, and decrease the expression of 5-HTR1D and β-catenin |
Pan et al. (2017)
|
Compound sophorae decoction |
Sophora flavescens and Sanguisorba officinalis, Indigo naturalis, Bletilla striata, Panax notoginseng, and Glycyrrhiza uralensis
|
C57BL/6 J mice |
0.1614 g |
In vivo
|
Execute UCRCC-inhibitory activity by counteracting inflammatory responses and rescuing detuning of apoptosis as well as neutralizing overactive mitophagy |
Deng et al. (2019)
|
Qing Jie Fu Zheng granules |
Scutellaria barbata, malt, Hedyotis diffusa, and Astragalus mongholicus
|
HCT 8 cells |
0.5–2 mg/ml |
In vitro
|
Inhibit proliferation and induce apoptosis by suppressing the PI3K/AKT and ERK pathways |
Yang et al. (2019a)
|
HCT 116 cells |
0.5–2 mg/ml |
In vitro
|
Si Jun Zi decoction |
Codonopsis pilosula, Poria cocos, Atractylodes macrocephala, and radix liquiritiae |
Balb/c mice |
45 g/kg |
In vivo
|
Increase survival rate and reduce liver metastasis, elevate plasma GM-CSF level, and increase the number of macrophages but not neutrophils in the spleen |
Zhou et al. (2019a)
|
Chang Wei Qing |
Astragalus membranaceus, Atractylodes macrocephala, Codonopsis pilosula, Akebia quinata, Polyporus umbellatus, Coix seed, Vitis quinquangularis Rehder, and Sargentodoxa cuneata
|
C57BL/6 J mice |
5, 10 mg/kg |
In vivo
|
Restore colon length, decrease tumor number and size, reduce colitis score, suppress expansion of F. prausnitzii population, and inhibit activity of beta-glucuronidase and leakage of d-lactose and endotoxin |
Wan et al. (2019)
|
Su Yang decoction |
Broccoli and green cabbage |
HT 29 cells |
10–200 μg/ml |
In vitro
|
Inhibit colon cancer cell proliferation and induce G1 phase arrest and induce the cleavage of poly (ADP-ribose) polymerase, tumor necrosis factor superfamily member 10, X-linked inhibitor of apoptosis |
Ge et al. (2019)
|
LS 174-T cells |
10–200 μg/ml |
In vitro
|
CRL-1790 cells |
10–200 μg/ml |
In vitro
|
Jian Pi Jie Du decoction |
Astragalus membranaceusceus, Panax quinquefolius, Atractylodes macrocephala, Poria cocos, Coix seed, Smilax china, Hedyotis diffusa, Sculellaria barbata, Paris polyphylla, Actinidia argut, and gGlycyrrhiza uralensis Fisch. |
HCT116 cells |
0.3125–2.5 mg/ml |
In vitro
|
Inhibit viability and proliferation, induce apoptosis, suppress migration, invasion, and angiogenesis by inhibiting the mTOR/HIF-1α/VEGF signaling pathway, decrease the CD34 and VEGF, and downregulate the mTOR/HIF-1α/VEGF pathway |
Peng et al. (2018)
|
HT29 cells |
0.3125–2.5 mg/ml |
In vitro
|
LoVo cells |
0.3125–2.5 mg/ |
In vitro
|
SW48 cells |
0.3125–2.5 mg/ml |
In vitro
|
Tian Xian liquid |
Radix Ginseng, Cordyceps, Radix Astragali, Radix Glycyrrhizae, rhizoma, margarita, Fructus lycii, Ganoderma lucidum, Fructus ligustri lucidi, and Herba Scutellariae barbatae |
HT29 cells |
0.625–5% (v/v |
In vitro
|
Inhibit proliferation, upregulate the p21 mRNA and protein, downregulate G1 phase cell cycle protein, cyclin D1 mRNA and protein, and reverse multidrug resistance |
Leigh et al. (2017)
|
Nude mice |
200 µl |
In vivo
|
Yi Ai Fang |
Astragalus membranaceus, Atractylis ovate, Actinidia arguta, Curcuma zedoaria, and Benincasa hispida
|
BABL/c mice HCT 116 cells |
8–32 mg/kg |
In vivo
|
Restrain the formation of vasculogenic mimicry through the HIF-1α/EMT pathway, inhibit growth of the xenografted tumors, enhance expression of E-cd and claudin-4, and decrease the expression of HIF-1α and VIM |
Hou et al. (2016)
|
25–200 μg/ml |
In vitro
|
Huang Qin decoction |
Scutellaria baicalensis Georgi., Paeonia lactiflora Pall., Glycyrrhiza uralensis Fisch., and Ziziphus jujuba Mill. |
C57BL/6 mice |
9.1 g/kg |
In vivo
|
Inhibit AOM/DSS-induced CRC and the production of inflammatory cytokines and increase antioxidant capacity both in chronic DSS- and AOM/DSS-treated mice |
Chen et al. (2016)
|
Shen Ling Bai Zhu San |
Radix et rRhizoma gGinseng, Poria, Rhizoma Atractylodis Macrocephalae, semen Lablab Album, Rhizoma Dioscoreae, Radix et Rhizoma Glycyrrhizae, Plumula nelumbinis, Fructus Amomi, semen coicis, and Radix Platycodonis |
C57BL/6 J mice |
3.64–14.56 g/kg |
In vivo
|
Supress colitis-associated CRC through the inhibition of EMT and myeloid-derived suppressor infiltration |
Lin et al. (2015)
|
SW480 cells |
6–16 mg/ml |
In vitro
|
HCT116 cells |
6–16 mg/ml |
In vitro
|
Jian Pi Hua Yu decoction |
Atractylodes macrocephala Koidz., Euphorbia humifusa Willd., Salvia miltiorrhiza Bunge., Paris polyphylla Sm., Curcuma phaeocaulis Val., Scutellaria barbata D. Don., and Artemisia capillaris Thunb. |
SW480 cells |
0.25–8 mg/ml |
In vitro
|
Decrease viability, induce G0/g1-phase cell cycle arrest and induce apoptosis, enhance the expression of p27, cleaved PARP, cleaved caspase-3, and bax, and decrease the levels of PARP, caspase-3, Bcl-2, CDK2, CDK4, CDK6, cyclin D1, cyclin D2, cyclin D3, and cyclin E1 |
Xi et al. (2015)
|
Yi Qi Fu Sheng formula |
Codonopsis pilosula, Atractylodes macrocephala, Poria cocos, Radix liquiritiae, Myristica fragrans, and Fructus Akebiae |
HCT-116 cells |
50–250 mg/ml 200–800 mg/kg |
In vitro
|
Inhibit migration/invasion of CRC by inhibiting the activation of ERK/MAPK signaling pathways |
Deng et al. (2013b)
|
Athymic mice |
In vivo
|
Jian Pi Jie Du recipe |
Radix Astragal, Rhizoma Atractylodis macrocephala, wild grapevines, Fructus Akebia, Salvia chinensis Benth., and Evodia rutaecarpa
|
LoVo cells |
12.5–400 μg/ml |
In vitro
|
Inhibit invasive and migratory and reduce the transcriptional activities of EMT-associated factors snail and E-cadherin. In vivo, inhibit liver and lung metastasis of orthotopic CRC, prolonging the survival time |
Liu et al. (2017b)
|
Nude mice |
250–1,000 mg/kg |
In vivo
|
Huang Lian Jie Du decoction |
Coptis chinensis Franch., Phellodendron amurense Rupr., Gardenia jasminoides J. Ellis, and Scutellaria baicalensis Georgi. |
Athymic mice |
50–200 mg/kg |
In vivo
|
Promote renewal of the intestinal cell wall, induce presentation of CD44-postive cells, initiate the expression of stemness-associated genes, elevate transcriptional products of the downstream Wnt signaling of CD44, and reduce diarrhea and intestinal damage |
Chan et al. (2020)
|
Xiao Ai Jie Du decoction |
Hedyotis diffusa and Codonopsis pilosa, Sophora flavescens, and Zingiber officinale
|
Patients who fulfill the criteria |
Unknown |
In vivo
|
Unknown |
Zhou et al. (2019c)
|
BP10A |
Descurainiae sophia semen and Peucedani praeruptorum radix |
HCT-116 cells KM12SM cells |
6.25–25 μg/ml 25–200 μg/ml |
In vitro
|
Delay tumor growth and enhance the antitumor activity of each anticancer drug and delay tumor growth |
Kim et al. (2019b)
|
In vitro
|
Ge Gen Qin Lian decoction |
Radix Puerariae, Scutellariae radix, Coptidis Rhizoma, and liquorice |
BALB/c mice |
300–7500 mg/kg |
In vivo
|
Enrich related intestinal microorganisms, increase the proportion of CD8+ T cells in peripheral blood and tumor tissues, increase the expression of IFN-γ, downregulate PD-1, and increase IL-2 levels |
Lv et al. (2019)
|
Zhi Zhen Fang formula |
Radix Astragali, fFructus ligustri lucidi, semen coicis, Salvia chinensis, Vitis quinquangularis Rehd., Actinidia arguta, and Cyperus rotundus L. |
HCT-116 cells HCT-8 cells |
25–1,600 μg/ml |
In vitro
|
Enhance the sensitivity of chemotherapeutic drugs and induce apoptosis, inhibit the hedgehog pathway, inhibit tumor growth, and reduce Gli1 levels |
Sui et al. (2017)
|
Athymic mice |
25–1,600 μg/ml |
In vitro
|
13.27–53.08 g/kg |
In vivo
|
Teng Long Bu Zhong Tang |
Actinidia chinensis, Solanum nigrum, Duchesnea indica, Atractylodes macrocephala Koidz., Poria cocos, Coix seed, mistletoe, and Scutellaria barbata
|
BALB/c mice |
22.5, 30 mg/kg |
In vivo
|
Inhibit cancer cell growth, elicite apoptosis, and downregulate XIAP and survivin, induce cell senescence, and enhance anticancer effects of 5-Fu |
Deng et al. (2013a)
|
Wei Chang An |
Pseudostellaria heterophylla Pax., Atractylodes macrocephala Koidz., Poria cocos Wolf., Glycyrrhiza uralensis Fisch., Sargentodoxa cuneata, and Prunella vulgaris L. |
HCT-116 cells |
3–9% |
In vitro
|
Reduce the rate of metastasis, decrease the expression of β-catenin and MMP-7, and reduce nuclear translocation of β-catenin |
Tao et al. (2015)
|