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Ten‑gene signature reveals the significance 
of clinical prognosis and immuno‑correlation 
of osteosarcoma and study on novel skeleton 
inhibitors regarding MMP9
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Abstract 

Objectives:  This study aimed to identify novel targets in the carcinogenesis, therapy and prognosis of osteosarcoma 
from genomic level, together with screening ideal lead compounds with potential inhibition regarding MMP-9.

Methods:  Gene expression profiles from GSE12865, GSE14359, GSE33382, GSE36001 and GSE99671 were obtained 
respectively from GEO database. Differentially expressed genes were identified, and functional enrichment analysis, 
such as GO, KEGG, GSEA, PPI were performed to make a comprehensive understanding of the hub genes. Next, a 
series of high-precision computational techniques were conducted to screen potential lead compounds targeting 
MMP9, including virtual screening, ADME, toxicity prediction, and accurate docking analysis.

Results:  10 genes, MMP9, CD74, SPP1, CXCL12, TYROBP, FCER1G, HCLS1, ARHGDIB, LAPTM5 and IGF1R were identi-
fied as hub genes in the initiation of osteosarcoma. Machine learning, multivariate Cox analysis, ssGSEA and survival 
analysis demonstrated that these genes had values in prognosis, immune-correlation and targeted treatment. Tow 
novel compounds, ZINC000072131515 and ZINC000004228235, were screened as potential inhibitor regarding 
MMP9, and they could bind to MMP9 with favorable interaction energy and high binding affinity. Meanwhile, they 
were precited to be efficient and safe drugs with low-ames mutagenicity, none weight evidence of carcinogenicity, as 
well as non-toxic with liver.

Conclusions:  This study revealed the significance of 10-gene signature in the development of osteosarcoma. 
Besides, drug candidates identified in this study provided a solid basis on MMP9 inhibitors’ development.
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Introduction
Osteosarcoma (OS), one of the most common malig-
nant neoplasm, accounts for 20–40% of all bone can-
cers, which is characterized by the direct formation of 
osteoid tissue, osteoid- and spindle-shaped matrix cell 
in immature bones [1]. The main clinical manifesta-
tion of OS patients frequently suffers from swelling and 
bone pain, while systematic symptoms, such as weight 
loss, pallor, night sweats, fever and anorexia are seldomly 
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seen [2]. Osteosarcoma appears mainly in childhood and 
adolescents, together with an overall incidence of 0.3–
0.4/100000 individuals per year [3, 4].

Currently, the main clinical treatment for patients with 
OS included surgery, radiotherapy, and chemotherapy. 
Since the 1970s, with the introduction and invention of 
neoadjuvant chemotherapy and limb salvage surgery for 
OS, the overall survival rate had improved significantly. 
Despite advances in surgical technique and targeted 
chemotherapy, optimal treatment outcomes in OS are 
still negatively impacted by infection, tumor immunity, 
complications [5–8]. The overall prognosis of patients 
with OS is only 20%, especially in patients with metas-
tasis disease or tumor recurrence [9]. Overall expres-
sion as well as imbalance of MMP9 are associated with a 
variety of diseases, regulating and inhibiting MMP9 is an 
essential therapeutic approach to treat various diseases 
including cancer. Therefore, MMP9 inhibitors could be 
regarded as anticancer drugs [10]. JNJ0966, GS-5745, two 
chemotherapy drugs, were selective inhibitors regarding 
matrix metalloproteinase-9 (MMP-9), had shown pro-
spective view in treatment of encephalomyelitis, ulcera-
tive colitis and gastric cancer [11, 12]. However, only few 
inhibitors had a relatively promising function in inhib-
iting MMP9. Meanwhile, researches based on MMP9 
inhibitors regarding osteosarcoma had hardly been 
reported before, which could make significance in tar-
geted chemotherapy regarding osteosarcoma. Therefore, 
based on the fact that poor prognosis and lack of effective 
targeted therapies as well as tumor-related biomarkers in 
OS, there is an urgent need to explore novel predictive 
and prognostic biomarkers as well as discover lead com-
pound inhibitors regarding OS, in order to make a com-
prehensive understanding of oncogene and eventually 
improve the prognosis of patients.

Recent decades, with the rapid development of high-
throughput technology, large-scale RNA sequence 
transcriptome data as well as gene microarray chips, 
bioinformatics analysis have displayed a promising view 
to identify prognostic genes, elucidate the oncogenic 
mechanism for plenty of neoplasms and finally improve 
the treatment of cancers [13, 14]. It helps us study the 
initiation, progression and metastasis of different neo-
plasms under transcriptome level, which makes it pos-
sible to explore the molecular mechanisms and discover 
disease-specific biomarkers of OS in this study. Natural 
compounds and their derivatives play an essential role in 
today’s pharmacologic market [15, 16]. Due to their mal-
leable, convertibility and readily available property, they 
have made a great contribution to medication design and 
improvement in treating cancers [17–19]. To the best 
knowledge by consulting amount of literatures, current 
researches of OS using bioinformatics mainly focused 

on studying the hub genes among metastasis and non-
metastasis osteosarcoma, that is to say, current research 
samples were mostly osteosarcoma samples whereas 
normal bone tissues were not included in study, while 
another extremely vital research about hub genes among 
osteosarcoma and normal bone tissue, had hardly been 
reported. Consequently, the combination of bioinformat-
ics and structural biology study were performed in this 
study to accelerate the understanding of hub genes and 
discovery of inhibitors regarding OS.

The accurate differential diagnosis is the key to con-
duct precise prognosis as well as target-therapy [20]. This 
study firstly aimed to identify hub genes using differential 
expression method in the occurrence of osteosarcoma. 
5 mRNA microarray datasets (GSE12865, GSE14359, 
GSE33382, GSE36001, GSE99671) involving osteosar-
coma and correspondent normal bone samples were 
downloaded from Gene Expression Omnibus (GEO). 
Next, the mutual differentially expressed genes (DEGs) 
were screened with Venn analysis. Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
methods were performed to discover molecular function 
changes and abnormal signaling pathways by displaying 
their molecular function, biological process and cellular 
component. Protein–protein interaction (PPI) analysis 
was conducted further to find the most-linked genes with 
OS. Subsequently, this study further performed machine 
learning and survival analysis in third party TCGA and 
GEPIA2 database to validate and confirm our results. 
Finally, this study conducted structural biology analysis 
including a series of structural and chemical methods 
to screen ideal lead compounds based on identified hub 
genes, which may have biological effects in the treatment 
of OS and provide new ideas for medication develop-
ment in pharmacologic market. This study provided a 
set of method flow to understand the cause and molec-
ular events of OS, then offered a list of drug candidates 
with pharmacological properties from ZINC15 database, 
which made a solid basis theory for gene products inhibi-
tors’ research. The whole diagram and workflow of this 
study was shown in Fig. 1.

Materials and methods
Datasets from GEO and TCGA database
Gene expression profiles of GSE12865, GSE14359, 
GSE33382, GSE36001 and GSE99671 were downloaded 
from Gene Expression Omnibus (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). Multiple sample sets were used in 
this study to avoid clinical and race bias among differ-
ent studies. The inclusion criteria were as follows: sam-
ples which were normal bone tissues or osteosarcoma 
tissues with non-metastasis were included for analysis. 
Altogether, this study included 2 normal samples and 

https://www.ncbi.nlm.nih.gov/geo/
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Fig. 1  The whole diagram and workflow of this study. MMP9: Matrix metalloproteinase-9; GO: Gene Otology; KEGG: Kyoto encyclopedia genes and 
genomes; GSEA: Gene set enrichment analysis; PPI: protein–protein interaction; SVM: Support vector machine
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12 osteosarcoma samples in GSE12865; 2 normal sam-
ples and 10 osteosarcoma samples in GSE14359; 3 nor-
mal samples and 84 osteosarcoma samples in GSE33382; 
6 normal samples and 8 osteosarcoma samples in 
GSE36001; 18 normal samples and 18 osteosarcoma 
samples in GSE99671. As for TCGA dataset (https://​
portal.​gdc.​cancer.​gov/), all data in osteosarcoma and 
corresponding clinical information were downloaded by 
“TCGAbiolinks” package in R [21]. It had 379 recorded 
clinical samples and totally 88 samples with gene expres-
sion profile, which was annotated to a reference tran-
script set of Human hg38 gene standard track.

Gene expression profiles’ preprocess
This study used raw data (“.CEL” file format: GSE12865, 
GSE14359) and “series_matrix_file” (“.txt” file format: 
GSE33382, GSE36001, GSE99671) from these 5 GSE 
datasets. The method of quality control was performed 
by R (“affy”, “affyPLM” package), we evaluated the sam-
ples quality of GSE12865 and GSE14359 datasets through 
calculating their normalized unscaled standard errors 
(NUSE). After that, we conducted robust multi-array 
average (RMA) algorithm using “rma” function in R to 
perform background correction and normalization of 
gene expression profile. Probes in these 5 GSE datasets 
and TCGA database were converted into corresponding 
gene symbols based on manufacture-provided annota-
tion files, probe sets without corresponding genes were 
removed, as for different probes targeting the same gene, 
the highest expression value of all its corresponding 
probes were retained. Lastly, “batch effects” generated in 
these 5 GSE datasets were detected and removed using 
“combat” function in R (“sva”, “pamr” package).

Identification of DEGs
The differentially expressed genes between osteosarcoma 
and normal samples were screened using R (“limma” 
package). “limma” package is one of the most widely used 
packages in Bioconductor repository to identify DEGs, 
which allows researchers to compare two or more data-
sets in GEO in order to discover DEGs through experi-
mental conditions. The adjusted P-values and false 
discovery rate (Benjamini–Hochberg algorithm) were 
applied to provide a balance guideline between discovery 
of statistically significant genes and limitations of false-
positives. Each time we compared two groups to identify 
DEGs between osteosarcoma samples and normal sam-
ples in each GSE datasets. The DEGs were calculated and 
screened by filtering adjusted P-value < 0.05 and |logFC| 
(fold change) > 1, which was considered as statistically 
significant definition. Subsequently, Venn plot analysis 
among DEGs in these 5 datasets was conducted further 

to obtain a more precise result (“VennDiagram” package 
in R).

GO and KEGG analysis on DEGs
Functional annotation and interpretation were per-
formed in DAVID database (Database for visualization, 
annotation and integrated discovery, http://​david.​abcc.​
ncifc​rf.​gov/) to discover biological meaning of genes [22]. 
Gene Ontology (GO) is a powerful method to analyze 
biological process, cellular component and molecular 
function among different genes. Kyoto Encyclopedia of 
Genes and Genomes (KEGG), a basis for gene function 
and genomic information links, is used to analyze infor-
mation about signaling pathway relationships. GO and 
KEGG were performed for identified DEGs in DAVID 
database, P < 0.05 was set as threshold for statistically sig-
nificant definition.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA, http://​softw​are.​
broad​insti​tute.​org/​gsea/​index.​jsp [23]) was conducted 
from overall genes to further determine other essential 
biological functions or signaling pathways which may be 
ignored by differential analysis, the annotated gene set 
c2.cp.kegg.v7.1. symbol was selected as a reference. Gene 
size ≥ 20, P < 0.05, and |enrichment score (ES)|> 0.40 were 
set as the cutoff criteria.

Construction of PPI network and screening of hub genes
This study used STRING database (Search Tool for the 
Retrieval of Interacting Genes, https://​string-​db.​org/ 
[24]), which is an online repository designed for predict-
ing protein–protein interactions (PPI), to construct a PPI 
network of total DEGs. Then, Cytoscape software (ver-
sion 3.8.0, an open source bioinformatics software plat-
form for visualizing interaction networks) was performed 
to load the PPI network generated in STRING database. 
“Cytohubba” and “MCODE” plug-in in Cytoscape was 
conducted to screen hub genes and modules among total 
DEGs, respectively. Within a co-expression network, 
Maximal Clique Centrality (MCC) algorithm in “cyto-
hubba” plug-in was reported to be the most effective 
method in finding hub genes, which aims to identify key 
targets and sub-network in a complexity network [25]. 
Finally, the genes with top 10 MCC values were consid-
ered as hub genes.

Establishment of SVM to validate the reliability of hub 
genes
In order to confirm the predictive reliability of these 
hub genes, the dataset GSE33382 was set as training set 
to make a Support Vector Machine (SVM) classifier. 10 
hub genes were used to train the SVM classifier, “e1071” 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://string-db.org/
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package in R was conducted for training. To test the 
stability and transferability of trained SVM, the gener-
ated SVM classifier was verified by using independent 
testing datasets: GSE12865, GSE14359, GSE36001 and 
GSE99671. The classification effect of SVM was deter-
mined according to sensitivity (Se), specificity (Sp), 
receiver operating characteristic curve (ROC) and area 
under curve (auc) (“pROC” package in R). Five-fold cross 
validation was utilized when machine learning in order to 
obtain the most fitting equation as well as the most accu-
rate results of the testing set.

Gene signature robustness verification
To validate the 10-gene signature robustness, the 
“RiskScore” was calculated for each sample based on 
the gene expression levels in TCGA database through 
weighting Cox regression coefficients. The “timeROC” 
package in R was performed to depict the ROC of the 
“RiskScore” for prognostic classification. Patients were 
categorized as low-risk and high-risk group according 
median value of RiskScore. Survival analysis between two 
risk groups was conducted with “survival” package in R.

Gene signature model evaluation
To further assess the relationship between the RiskScore 
of the gene signature model and the 29 immune gene 
set level, the single-sample gene-set enrichment analysis 
(ssGSEA) [26] (“estimate”, “GSVA” package in R) was car-
ried to calculate the immune scores (immune cell infil-
tration level), stromal scores (stromal content), estimate 
scores as well as tumor purity for each sample. Simulta-
neously, expression of HLA-genes and immune check 
point genes were compared between high- and low-risk 
groups by ANOVA test to figure out the relationship 
between HLA genes, immune check point genes and dif-
ferent risk groups.

Evaluation of prognostic values of hub genes in third‑party 
database
Kaplan–Meier univariate survival analysis was per-
formed in R (“survival”, “survminer” package) to explore 
the relationship between overall survival and hub genes 
in patients with osteosarcoma in TCGA database. In this 
study, only patients with completed follow-up times were 
selected for survival analysis and patients were divided 
into two groups (group-high and group-low) based on 
the median expression value of hub genes. Moreover, the 
association between disease-free survival (DFS) and hub 
genes was analyzed using the online tool GEPIA2 (http://​
gepia.​cancer-​pku.​cn/) [27]. The survival-related hub 
genes with log-rank P < 0.05 were regarded as statistically 
significant.

Prediction of overall survival in clinical application
The independent prognostic ability of the gene signature 
was evaluated by univariate and multivariate Cox analy-
sis. An innovative nomogram plot was depicted based on 
the result of multivariate Cox analysis (“rms” package in 
R). Next, calibration plots of observed vs. predicted prob-
abilities of 3-, 5-, 10- year’s overall survival of osteosar-
coma patients was conducted to determine the accuracy 
of the predictive ability of these gene signature. The con-
cordance index (C-index) was used to depict the discrim-
ination of the model.

Validation of MMP9 gene expression patterns in different 
cancers
In order to confirm the value of MMP9 identified in this 
study as well as provide a solid practical and theoretical 
basis for the subsequent screening of targeted inhibi-
tors. This study analyzed the MMP9 expression value 
in different cancers, including SARC (sarcoma), GBM 
(glioblastoma multiforme), KIRC (kidney renal clear 
cell carcinoma), LUSC (lung squamous cell carcinoma), 
COAD (colon adenocarcinoma) and BLCA (bladder 
urothelial carcinoma). The expression level of MMP9 
between normal and tumor samples in each cancer were 
plotted as box plot graph. P-value cutoff was set as 0.01 
and jitter size was set as 0.4.

Docking software and ligand repository
This study used Discovery Studio software (version 4.5) 
for structural biology research, which is a suite of soft-
ware for simulating small molecules and macromolecules 
system. It is a new generation of molecular modeling and 
environmental simulation software for the life science 
field [17]. Discovery Studio (DS) is developed as a reliable 
software aiming to provide protein modeling, optimiza-
tion and medication design tools by applying structural 
chemical and structural biology computation. Large 
amount of lead compounds as well as drug candidates 
were screened through this method. Natural lead com-
pounds used in this study were arose from ZINC15 data-
base, which was a powerful natural product repository 
for screening, development and research of ligands. It 
was also a free database of commercially available com-
pounds offered by the Irwin and Shoichet Laboratories 
among department of Pharmaceutical Chemistry, Uni-
versity of California, San Francisco (San Francisco, Cali-
fornia, USA).

Structurally virtual screening using libdock
The 1.80  Å crystal structure of human MMP9 (PDB 
ID: 5UE4 [12]) was downloaded from RCSB Protein 
Data Bank and then imported into systematic working 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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circumstance of DS. The crystal structure of MMP9 was 
shown in Additional file  1: Figure S1. Ligand-binding 
pocket region of MMP9 was selected as the binding site 
to screen compounds which could potentially inhibit 
MMP9. Virtual screening was carried out through lib-
dock module in DS4.5. Libdock is a rigid-based docking 
program, which calculates hotspots for the protein using 
a grid placed into the binding site with polar and apolar 
probes (San Diego, CA, USA). Next, the hotspots are fur-
ther employed to align the ligands to form favorable inter-
actions. The Smart Minister algorithm and CHARMm 
forcefield (Cambridge, MA, USA) were performed for 
ligands minimization [28]. After that, all the ligand pos-
tures were ranked based on ligands score. The MMP9 
protein was prepared for docking program by removing 
crystal water and other hetero atoms around it, followed 
by addition of hydrogen, ionization, protonation and 
energy minimization. The binding site of prepared pro-
tein MMP9 was defined from “edit binding site” option 
on the receptor-ligand interaction tool bar. Through the 
initial ligand docked with MMP9, the active binding site 
for docking could be generated. Virtual screening was 
then carried out by docking all the prepared ligands from 
ZINC15 repository at the defined active binding site. All 
the docked postures were ranked and grouped by com-
pounds’ name based on libdock score.

ADME and toxicity predictions
ADME (absorption, distribution, metabolism and excre-
tion) module in DS4.5 was conducted to calculate com-
pounds’ ADME pharmacological properties, including 
aqueous solubility, blood–brain barrier penetration, 
human intestinal absorption, cytochrome P4502D6 
(CYP2D6) inhibition, hepatotoxicity and plasma pro-
tein binding level. TOPKAT (Toxicity Prediction by 
Komputer Assisted Technology) module of DS4.5 was 
also carried out to calculate the toxicity as well as pre-
dict other properties of these compounds, such as Ames 
mutagenicity, FDA carcinogenicity level (male rat, female 
rat, male mouse, female mouse), and weight of evidence 
carcinogenicity. These pharmaceutical properties of com-
pounds were comprehensively assessed when selecting 
drug candidates for MMP9.

Highly precise docking and visualization
CDOCKER module in DS4.5 was employed for molecu-
lar docking study. CDOCKER is a highly precise dock-
ing strategy for ligands and proteins based on CHARMm 
forcefield, which could calculate and provide accurate 
energy results for analysis. Receptor was held rigid while 
ligands were allowed to be flexible during the dock-
ing process. For each complex posture, the interaction 
energy in CHARMm forcefield, which indicated ligand 

binding affinity, was calculated. The crystal structure of 
MMP9 obtained from PDB was prepared by removing 
water molecules during rigid and semi-flexible docking 
process in case that the fixed molecule water might affect 
the formation of receptor-ligand complex [29]. To testify 
the reliability of docking system used in this study, the 
initial ligand in MMP9 was extracted from the binding 
site and then re-docked into MMP9 through CDOCKER 
process, root mean squared deviation (RMSD) between 
these two conformations was calculated to prove the 
reliability. The active binding site sphere of MMP9 was 
defined as the regions which came within 5  Å radius 
from the geometric centroid of the ligand JNJ0966 in 
MMP9 (PDB ID: 5UE4). The candidate ligands from 
ZINC15 repository were docked into the binding site of 
MMP9. The docking poses value was set as 10 and pose 
cluster radius was set as 0.5 in order to ensure that the 
ligands conformation was as diverse as possible. Differ-
ent postures of each MMP9-ligand complex were gener-
ated, analyzed and visualized on the basis of CDOCKER 
interaction energy. The clusters ranking was performed 
based on the lowest energy representative for each clus-
ter as well as the most appropriate orientation. According 
to visualization and calculation, ligands with the lowest 
energy together with appropriate posture were selected 
for further investigation.

Cell lines and reagents
Human osteosarcoma cell lines (HOS: CL-0360 and 
MG-63: CL-0157) were obtained from Procell Life Sci-
ence & Technology Co., Ltd. These cell lines were 
cultured in high-glucose DMEM (Procell, Cat.no.), con-
taining 10% fetal bovine serum (FBS, Gemini, USA) and 
100 units/mL penicillin and 100  mg/mL streptomycin, 
under normal cell culture conditions (37 ℃ and 5% CO2). 
ZINC000072131515 was provided by Selleck Chemical 
Co. (Cat.no. S5082). ZINC000072131515 was dissolved 
in DMSO to obtain the stock solution, then appropri-
ate culture medium was respectively added into the 
stock solution to configure different concentrations of 
ZINC000072131515 cell culture medium.

In vitro scratch assay
HOS and MG-63 were seeded and cultured in 6-well 
plate, when the degree of fusion reached 90%, a 1  mL 
pipette tip was used to make a consistent cell-free area. 
Then PBS was used to rinse the cell debris, and serum-
free medium were changed to culture and 10  μmol/L 
of ZINC000072131515 were used to treat the cells at 0, 
12, 24 h. After corresponding time, we captured images 
of the scraped area with phase contrast microscopy and 
measured the wounds and scratch width.
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CCK‑8 assay
The cells viability of human osteosarcoma cell lines (HOS 
and MG-63) was assessed by Cell Counting Kit-8 (CCK-
8) (ApexBio, USA). Cell lines were plated into 96-well 
culture plates with a density of 5000 cells/well for over-
night, then different doses of ZINC000072131515 were 
treated with cells for 48  h. The concentration gradients 
of each treatment were 0  μmol/L, 1  μmol/L, 2  μmol/L, 
4 μmol/L, 8 μmol/L, 16 μmol/L, 32 μmol/L, 64 μmol/L, 
respectively. Cells were cultured for 3  h after addition 
of 10  μL/well CCK-8, and then wavelength of 450  nm 
was applied to measure the OD value of each well on 
the microplate reader (BioTek instrument, Synergy H1, 
USA).

Colony formation assay
HOS and MG-63 cell lines were inoculated into 6-well 
culture plate with the density of 600 cells per well. After 
24 h in culture, the concentration of DMSO was config-
ured with 10  μmol/L and 20  μmol/L, respectively, and 
concentration of DMSO was less than 0.1%. Based on this 
dilution ratio, the influence of DMSO on cells could be 
neglected. After 2 weeks of cultivation, the formed colo-
nies were rinsed with phosphate-buffered saline and fixed 
in 4% paraformaldehyde, then 0.5% crystal violet solution 
was used to stain the developed colonies for half an hour. 
Lastly, microscopic examination was used to count col-
ony with more than 50 cells.

Results
Gene expression profiles’ detection
Normalized unscaled standard errors (NUSE) of 
GSE12865 and GSE14359 were calculated and plotted 
for each sample in Additional file  2: Figure S2, results 
illustrated that the raw data used in this study was highly 
reliable in chip quality. After background correction, 
normalization, and gene symbols correspondence, box-
plot or violin plot of these 5 GSE series were displayed to 
detect the expression value of these data. Results showed 
that the median expression value of each dataset were on 
a straight line, and gene expression value accorded with 
normal distribution, indicating that the data processed in 
this study could be analyzed for further investigation.

Elimination of batch effects and principle component 
analysis in GSE series
Microarray experiments were expensive and time-con-
suming, lots of researches used multi arrays with experi-
ments at different time, different array chargers or even 
different microarray platforms, causing some problems 
when researcher analyzed multiple datasets. Non-biolog-
ical experimental variation or “batch effects” were com-
monly observed among multiple batches of microarray 

experiments [30]. Firstly, principle component analysis 
(PCA) was carried out in this study to reduce dimension 
of these 5 GSE series in order to observe whether batch 
effects existed among them (Additional file  3: Figure 
S3A). Results illustrated that they clustered separately, 
therefore, there was a significant biological difference 
among those 5 datasets. Then, this study performed 
“combat” function (“sva” and “pamr” package in R) to 
eliminate batch effects generated in these series. Next, 
PCA was performed again to validate the processed 
results (Additional file  3: Figure S3B), scatter diagram 
displayed non-difference in point distribution on image, 
they clustered together with each other. Meanwhile, QQ 
plot and density plot generated by eliminating batch 
effects were visualized in Additional file  3: Figure S3C. 
Subsequently, we made PCA on the processed matrix 
to observe the difference between different phenotypes 
(normal versus tumor), and results illustrated that nor-
mal samples could be distinguished from tumor samples 
on PCA1 axis (Additional file 3: Figure S3D).

Identification of DEGs in OS
After removing batch effects in these series, we ana-
lyzed gene expression of these 5 OS datasets, based on 
the cutoff criteria |logFC|> 1 and adjusted P-Value < 0.05. 
In summary, a total of 1632 DEGs were identified in 
GSE12865, of which 605 up-regulated and 1027 down-
regulated; 766 DEGs were in GSE14359, of which 245 
up-regulated and 521 down-regulated; 780 DEGs in 
GSE33382, of which 346 up-regulated and 434 down-
regulated; 358 DEGs in GSE36001, of which 203 up-regu-
lated and 155 down-regulated; 5840 DEGs in GSE99671, 
of which 3365 up-regulated and 2475 down-regulated. 
Altogether, 38 mutual DEGs were identified by conduct-
ing Venn plot analysis to make a more reliable conse-
quence, among them, 23 mutual DEGs were up-regulated 
and 15 mutual DEGs were down-regulated, together with 
a volcano plot to visualize the gene distribution (Fig. 2A 
and B).

Functional and pathway enrichment analysis on DEGs 
of OS
To gain further insight and knowledge into the potential 
functions of genes, the mutual up-regulated and down-
regulated genes in these 38 DEGs were uploaded into 
DAVID database to analyze the significance. The detailed 
information of GO and KEGG analysis were shown in 
Fig. 2C–E. GO analysis results revealed that mutual up-
regulated DEGs were mainly associated with several bio-
logical process (such as extracellular matrix disassembly, 
endochondral ossification, osteoblast differentiation and 
collagen catabolic process); cellular components (such as 
transport vesicle membrane, proteinaceous extracellular 
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matrix, extracellular region) and molecular functions 
(such as collagen binding and protein binding), while 
down-regulated DEGs were mainly enriched in cell 
adhesion, organ regeneration, negative regulation of cell 
migration and extracellular exosome. KEGG analysis 
indicated that up-regulated genes were involved in JAK-
STAT signaling pathway as well as pathways in proteogly-
cans of cancer and bladder cancer, while down-regulated 
DEGs were mostly associated with steroid hormone bio-
synthesis and metabolism of cytochrome P450. As for the 
gene set enrichment analysis (GSEA), results indicated 
that in normal tissues, signaling pathways were primarily 
associated with apoptosis and metabolism of xenobiotics; 
while in tumor tissues, pathways were mostly enriched 
in basal cell carcinoma, cell cycle, DNA replication and 
notch signaling pathways.

PPI network construction and hub genes identification
The protein–protein interaction network of previous 
38 mutual DEGs among those 5 series were established 
by using the STRING database base on P-value cut-
off < 0.05, and then the PPI network was imported into 
Cytoscape for further analysis. Altogether, 36 nodes and 
153 edges were generated with PPI network (Fig.  3A). 
Hub genes were screened by using “cytohubba” plug-
in which contained 11 different topological algorithm 
methods, of which Maximal Clique Centrality (MCC) 
algorithm was reported to be the most effective method 
of finding key targets and sub-module from a complex-
ity network. According to the MCC scores of this net-
work, the top ten highest-scored genes, including MMP9, 
CD74, SPP1, CXCL12, TYROBP, FCER1G, LAPTM5, 
HCLS1, ARHGDIB, and IGF1R were ultimately identi-
fied as hub genes, as listed in Additional file 4: Table S1. 
Among them, MMP9 ranked highest, suggesting that 
MMP9 was the most related gene in the development of 
Osteosarcoma, then this study further focused on MMP9 
to find potential inhibitors in structural biology part. 
Hierarchical clustering analysis in each gene expression 
profiles demonstrated that these 10 hub genes could sig-
nificantly distinguish normal samples from tumor sam-
ples (Fig. 3B–F).

The robustness assessment of SVM in gene signatures
To validate the robustness of these 10 genes signature, 
GSE12865, GSE14359, GSE36001 and GSE99671 were 

utilized as testing sets to verify the SVM generated by the 
selected optimized hub genes, five-fold cross validation 
was conducted during machine learning to obtain the 
most fitting equation as well as the most accurate results 
of the testing sets. After training, ROC curve for each 
testing set was plotted. As shown in Additional file  5: 
Figure S4, the area under curve (auc) in GSE12865 was 
91.67%, auc in GSE14359 was 97.05%, auc in GSE36001 
was 77.08% and auc in GSE99671 was 83.33%.

Validation of gene signature robustness
To validate the robustness of the 10 genes signature, we 
calculated the RiskScore of the expression level for each 
sample. The RiskScore value distribution was shown in 
Additional file 6: Figure S5A, which was statistically sig-
nificant (P < 0.01). From Additional file  6: Figure S5B, 
the overall survival time decreased with the risk value 
increasing. ROC analysis of the prognostic RiskScore 
classification was then performed based on multivariate 
Cox analysis, as shown in Additional file  1: Figure S5C, 
the model had a high AUC value in 3-year prediction 
(0.776), 5-year prediction (0.759) and 10-year prediction 
(0.736), respectively. They could make a good prognostic 
prediction in survival time. Survival analysis of high- and 
low-risk groups suggested that according to classification 
of clinical set, 43 patients were scored as low-risk and 43 
patients were rated as high-risk. There was significant 
difference between different risk groups in clinical out-
comes, low-risk group had a better survival prognosis 
compared to high-risk group (log-rank P < 0.0001) (Addi-
tional file  6: Figure S5D). Based on the results above, 
these 10 genes signature could be regarded as risk factors.

Gene signature model evaluation
After verification of these 10 genes signature’s predictive 
ability, these 10 genes were regarded as risk factors, so 
the relationship between RiskScore of the gene signature 
model and the 29 immune gene sets attracted our inter-
est. Through the ssGSEA method, ssGSEA score [26] 
was applied to measure the activity or enrichment lev-
els, functions as well as pathways of diverse immune cells 
in each osteosarcoma samples. According to ssGSEA 
results, the immune cells, functions and pathways in 
29 immune gene sets were mainly enriched in low-risk 
group (Fig.  4A). Besides, the immune score, stromal 
score, estimate score and tumor purity were calculated 

(See figure on next page.)
Fig. 2  A Venn plot of differentially expressed genes among 5 series. B Volcano plot to visualize the gene distribution. Red dots represented 
up-regulated DEGs, green dots represented down-regulated DEGs and black dots represented normal genes. C Bubble chart of functional and 
pathway enrichment analysis of up-regulated genes. D Bubble chart of functional and pathway enrichment analysis of down-regulated genes. E 
Gene set enrichment analysis of the whole DEGs
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Fig. 2  (See legend on previous page.)
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Fig. 3  A Visualization of the protein–protein interaction (PPI) network as well as the hub genes module calculated by MCC algorithm. B Heatmap 
of hub genes expression in GSE12865. C Heatmap of hub genes expression in GSE14359. D Heatmap of hub genes expression in GSE33382. E 
Heatmap of hub genes expression in GSE36001. F Heatmap of hub genes expression in GSE99671
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separately for each sample (ESTIMATE method). The 
result of ESTIMATE depicted that there was significant 
difference between high and low risk group in terms of 
immune score, stromal score, estimate score as well as 
tumor purity. Low-risk group had higher immune score 
(P < 0.01), stromal score (P < 0.01) and estimate score 
(P < 0.01) compared to high-risk group, while tumor 
purity in low-risk group were significantly lower than 
high-risk group (P < 0.01) (Fig. 4B). In summary, low-risk 
group contained the most immune cells as well as stro-
mal cells whereas tumor cells were mainly enriched in 
high-risk group. In addition, we analyzed the expression 
of HLA genes and immune check point genes between 
different risk groups, as shown in Fig. 4C, most immune 
check point genes showed significantly higher expres-
sion levels in low-risk group (P < 0.01) except IDO-1 and 
ICOS. As shown in Fig.  4D, results illustrated that the 
HLA genes expression in low-risk group was significantly 
higher than in high-risk group (P < 0.05) except HLA-
DRB5, HLA-DOB, HLA-DQB2 and HLA-DPB2.

Verification of prognostic values of gene signatures 
by survival analysis
After validating the robustness of hub genes in differ-
ent GSE datasets by machine learning, this study further 
verified the prognostic values of hub genes in patients 
with osteosarcoma in third-party TCGA and GEPIA2 
database. Survival curve analysis of overall survival was 
carried out by Kaplan–Meier plotter using R (“survival” 
and “survminer” package) in TCGA database. With over-
all survival as the prognostic outcomes of patients with 
osteosarcoma, Kaplan–Meier analysis suggested that 
low-expressed patients showed significantly higher sur-
vival time compared to patients with high-expressed hub 
genes (P < 0.05), except SPP1, LAPTM5 and IGF1R, as 

shown in Additional file 7: Figure S6. While in GEPIA2 
database for analysis with disease free survival (DFS), 
DFS displayed no significant difference observed in sar-
coma patients whether with the high and low expression 
level of hub genes (Additional file 8: Figure S7). Namely, 
as for overall survival, patients with low-expression of 
hub genes showed a significantly favorable prognosis 
except SPP1, LAPTM5 and IGF1R (P < 0.05), accompa-
nied with a higher percent survival, while saying disease 
free survival, illustration results could not distinguish 
the difference of disease-free time between high and low 
expression level of these hub genes.

Prediction of overall survival in clinical application
After demonstrating that these 10 genes signature was 
highly associated with overall survival by multivari-
ate Cox analysis and survival analysis (Additional file  6: 
Figures S5C, Additional file 7: Figure S6 and Additional 
file  8: Figure S7). We established the gene signature-
based nomogram model (Fig.  5A), the concordance 
index (C-index: 0.74) showed preferable discrimina-
tion ability of the nomogram model. Next, calibration 
plots of observed vs. predicted probabilities of 3-, 5- and 
10-years’ overall survival demonstrated a high concord-
ance, indicating that the model established in this study 
was highly reliable (Fig. 5B).

Gene expression patterns of MMP9 in different cancers
In order to provide a solid practical and theoretical basis 
for the subsequent research of targeted inhibitors, the 
expression levels of MMP9 in different cancers from 
GEPIA2 database were observed and analyzed to gain 
a comprehensive understanding in expression pattern, 
including SARC (sarcoma), GBM (glioblastoma multi-
forme), KIRC (kidney renal clear cell carcinoma), LUSC 
(lung squamous cell carcinoma), COAD (colon adeno-
carcinoma) and BLCA (bladder urothelial carcinoma). 

(See figure on next page.)
Fig. 4  Immunogenomic analysis between high- and low-risk group. A The enrichment levels of the 29-immune gene sets by ssGSEA score in each 
osteosarcoma sample. ESTIMATE method was performed to evaluate tumor purity, stromal score as well as immune score. B Comparison of 10-gene 
signature between high-risk and low-risk group in stromal score, immune score, estimate score and tumor purity. C Comparison of immune check 
point genes expression levels between high-risk and low-risk group. D Comparison of expression levels of HLA genes between high-risk and 
low-risk group. *P < 0.05, **P < 0.01, ***P < 0.0001, ns: no significant difference
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Fig. 4  (See legend on previous page.)
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As shown in Additional file 9: Figure S8, results demon-
strated that MMP9 expression in GBM, KIRC, LUSC, 
COAD and BLCA were significantly higher than normal 
samples, indicating the expression of MMP9 in tumor 
samples could be differentiated significantly from nor-
mal samples (P < 0.01). As for SARC, there was no differ-
ence in expression of MMP9 between normal and tumor 
tissues.

Virtual screening of natural compounds regarding matrix 
metallopeptidase 9 (MMP9)
The area of ligand-binding pocket was an essential reg-
ulatory site of MMP9, since small molecules binding 
to this active site could inhibit the function of MMP9 
protein and thus prevent MMP9 and its downstream 
signaling pathways. Consequently, this pocket region 
was chosen as the docking and reference site. Totally 
17,799 purchasable, named and biogenic natural prod-
ucts were obtained from ZINC15 repository, crystal 
structure of MMP9 was selected as the receptor protein 

Fig. 5  Construction of the nomogram model based on 10-gene signature. A Nomogram model for predicting the probability of 3-, 5- and 10-years 
overall survival in osteosarcoma patients. B Calibration plots of the nomogram for predicting the probability of overall survival at 3-, 5- and 10-years
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to screen optimal compounds, one effective MMP9 
inhibitor JNJ0966 was chosen as the reference ligand 
to compare pharmacologic properties and binding 
ability with other compounds. After screening, 10,021 
natural compounds were found to be eligible to bind 
with MMP9 by libdock algorithm. Among those, 2976 
compounds had higher libdock scores than the refer-
ence ligand JNJ0966 (libdock score: 116.113). The top 
20 compounds ranked by libdock scores and the refer-
ence ligand JNJ0966 were listed in Additional file  10: 
Table S2.

Assessment of pharmacologic and safety properties 
of compounds
Pharmacologic properties of all the 20 screened ligands 
as well as reference ligand JNJ0966 were firstly assessed 
by ADME module of DS4.5, including properties of 
aqueous solubility, blood–brain barrier penetration, 
human intestinal absorption level, cytochrome P4502D6 
(CYP2D6) inhibition, hepatotoxicity and plasma protein 
binding level. As shown in Additional file  11: Table  S3, 
the aqueous solubility level showed that 10 compounds 
had a good solubility in water (defined as scores ≥ 3, 
and water at 25 ℃), which had a better solubility than 
JNJ0966 (solubility level: 2); all compounds were pre-
dicted with high permeability with blood–brain barrier; 
17 compounds had a better intestinal absorption level 
(score: 3) than JNJ0966 did (score: 2). All compounds 
but ZINC000004654845 were found to be non-inhibition 
with CYP2D6, which was an important enzyme in drug 
metabolism. For hepatotoxicity, 14 compounds were pre-
dicted with non-toxicity regarding liver whereas JNJ0966 
was predicted to be liver-toxicity drug. Finally, plasma 
protein binding properties indicated that 7 compounds 
had stronger binding force than JNJ0966 did.

Safety should be also fully assessed when selecting drug 
candidates. To assess the safety of the 20 compounds, 
different kinds of indicators among natural compounds 
were carried out using a computational method in TOP-
KAT module of DS4.5, such as ames mutagenicity, FDA 
carcinogenicity level (male rat, female rat, male mouse, 
female mouse), as well as weight of evidence carcino-
genicity. The detailed information parameters of these 
compounds were shown in Additional file  12: Table  S4. 
For the reference ligand JNJ0966, it was calculated to 
have high probability in ames mutagenicity and FDA 
carcinogenicity whether in rat or mouse, except one 
parameter that in male mouse it was calculated with 
non-carcinogenicity. In addition, the weight of evidence 
carcinogenicity in JNJ0966 was predicted with high prob-
ability, together with a high probability of developmental 
toxicity potential. Considering all the results mentioned 
above, ZINC000072131515, ZINC000085810532, 

ZINC000014233122, ZINC000030731360 and 
ZINC000004228235 were further selected as safe drug 
candidates with low ames mutagenicity and probability 
of FDA carcinogenicity, non-weight evidence probability 
of carcinogenicity. Moreover, these candidate drugs had 
pretty pharmacologic properties such as high solubility 
level in water, good intestinal absorption, non-hepato-
toxicity and non-CYP2D6 inhibition. As a result, these 5 
drug candidates were selected at this time and pooled for 
subsequent research.

Highly precise docking analysis and visualization
In order to study the ligand binding mechanisms of 
these selected compounds and JNJ0966 with recep-
tor MMP9, these 5 compounds and JNJ0966 were 
docked into the ligand-binding pocket of MMP9 by 
CDOCKER module, which was a high-precision dock-
ing program to study the chemical bonds generated 
between ligands and MMP9. The RMSD between the 
docked ligand-MMP9 poses and initial crystal struc-
ture was 0.4593 Å, proving that the CDOCKER module 
conducted in this study was highly reliable for repro-
ducing the experiment results. CDOCKER interaction 
energy between ligands and MMP9 were calculated 
and displayed in Additional file  13: Table  S5. Among 
them, ZINC000014233122, ZINC000030731360 were 
failed to generate conformations with MMP9. As for 
the rest compounds, the CDOCKER interaction energy 
of ZINC000072131515-MMP9 complex (-55.6816  kcal/
mol), ZINC000004228235-MMP9 complex 
(− 56.348  kcal/mol) and ZINC000085810532-MMP9 
complex (− 62.1737  kcal/mol) were much lower than 
the reference JNJ0966-MMP9 complex (− 37.6049  kcal/
mol). Chemical bonds analysis such as hydrogen bonds 
and others generated between ligands and MMP9 were 
performed through computational method to visualize 
the inter-molecule interactions between them (Fig.  6, 
Additional file 14: Figure S9 and Additional file 15: Figure 
S10). Results illustrated that ZINC000072131515 formed 
1 pair of carbon hydrogen bond, 1 pair of Pi-Cation bond, 
6 pairs of alkyl bonds, 5 pairs of Pi-Alkyl bonds, 1 pair 
of pi–pi interaction and several van der Waals force with 
MMP9; ZINC000004228235 totally formed 11 pairs of 
chemical bonds, including 6 pairs of hydrogen bonds, 
2 pairs of carbon hydrogen bonds, 2 pairs of Pi-alkyl 
bonds and 1 pair of Pi-cation bond. ZINC000085810532 
only formed 2 pairs of carbon hydrogen bonds, 1 pair of 
hydrogen bond and 1 pair of Pi-alkyl bond. As for the ref-
erence ligand JNJ0966-MMP9 conformation, it formed 
12 bonds including 1 Pi-cation bond, 1 Pi-sigma bond, 
1 Amide-Pi stacked bond, 5 pairs of Pi-alkyl bonds, 2 
pairs of alkyl bonds, together with 2 pairs of unfavorable 
acceptor-acceptor bonds. The detailed chemical bonds 
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information of ligand-MMP9 complexes was shown in 
Additional file 16: Table S6.

ZINC000072131515 inhibited migration and suppressed 
proliferation of OS cells
In the scratch assay, the width of scratched areas were 
measured after 0, 12 and 24 h of scratch, to analyze the 
ability of drugs to influence migration of OS cells. As 
shown in Fig.  7A, B, the scratch width represented the 
migration capacity of OS cells, results indicated that the 

widths in drug group were significantly broader than in 
control group at 12, 24 h (P < 0.05).

To evaluate the sensitivity of OS cells to drug 
ZINC000072131515, the survival cells after different 
doses of drug treatment were calculated by CCK-8, and 
growing ability was assessed by colony formation assay. 
OS cell lines were treated with different doses of drug 
for 48 h (0, 1, 2, 4, 8, 16, 32, 64 μmol/L). As Fig. 7C, D 
showed, the cellular viability of HOS and MG-63 cells 

Fig. 6  A The Ramachandran diagram of MMP9 protein. B Chemical structure of novel compound ZINC000072131515 selected from virtual 
screening. C Schematic drawing of inter-molecular interactions of the computed binding modes of ZINC000072131515 with MMP9 based 
on highly precise docking method. D Visualization of chemical interactions between the ligand and MMP9 after highly precise docking 
(ZINC000072131515-MMP9 complex). The surface of binding area as well as the active binding region were added. Blue represented positive 
charge, red represented negative charge and active binding region was shown with red sphere. Inhibitors was displayed with sticks, with the 
structures around ligand-receptor junction shown in thinner sticks
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were declined slowly with the increase of drug concentra-
tion, when the drug concentration came to 4 μmol/L, the 
cellular viability were decreased significantly. Results of 
colony formation assay also suggested that after 2 weeks 
cultivation, both HOS and MG-63 cell lines showed 
fewer and smaller clonogenicities in petri dishes with 
drug compared to the control group (Fig.  7E), and the 
numbers of clone formation in drug groups was lower 
than that in control group significantly (Fig. 7F).

Discussion
Osteosarcoma (OS) is the most common primary 
malignant tumor in orthopaedics, which mainly occurs 
in teenagers as well as young adults [9, 31]. Although 
the treatment of OS including surgical technique and 
chemotherapy has improved, the overall prognosis of 
OS has still remained poor [4]. The reason caused this 
situation may be blamed for lack of precise molecu-
lar targets. To the best knowledge, current researches 
mainly focused on the mechanisms causing metastasis 
of OS, while the study on molecular targets causing the 

Fig. 7  A Scratch assay in control and drug group. B Wound width in control and drug group. C, D Cellular viability of osteosarcoma cell lines treat 
with different doses of drug ZINC000072131515. E Clonogenicities in Petri dishes with different doses of drug. F Numbers of clone formation in HOS 
and MG-63 cell lines
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initiation and progression of OS as well as chemother-
apy on targeted genes had not been fully investigated. 
Therefore, more knowledge about the mechanism in 
carcinogenicity of OS is imperative for early diagnosis 
as well as the treatment.

Recent years, microarray technology combined with 
bioinformatics method have been widely conducted to 
identify genetic changes at the genome level [18, 32], 
making it possible for us to identify real hub genes as 
well as function and pathway alterations responsible for 
the initiation and development of OS. In addition, struc-
tural biology method such as virtual screening, molecular 
docking, had been commonly applied in drug screen-
ing and pharmaceutical chemistry. Structural biology 
study had made remarkable contribution to medication 
screening and improvement in treatment of different dis-
ease [33–36]. As a result, bioinformatics combined with 
structural biology analysis were carried out in this study, 
to make a comprehensive understanding from the pro-
gression to the treatment of OS, and assessed properties 
of the existed inhibitor JNJ0966 regarding MMP9 in the 
meantime.

In this study, totally 31 normal samples and 132 tumor 
samples of OS were extracted from 5 different microar-
ray chips in GEO database, aiming to avoid clinical and 
race bias among different studies and make a convinci-
ble result of our research. “Batch effects” existed in those 
gene expression profiles were firstly eliminated. Here, the 
terminology “batch” referred to microarrays processed 
at one location over a short period of time using the 
same platform, while the cumulative error introduced by 
these time and place-dependent experimental variations 
was referred to as “batch effects”, which could affect the 
results of different experiments and finally confound or 
mask the real biological meaning among different data-
sets [37, 38]. Meanwhile, it could be much complicated to 
the unified preprocessing and analysis of different data. 
In order to prove the existence of batch effects in this 
study as well as outcome after removing batch effects, 
principle component analysis (PCA) was conducted and 
results were plotted to visualize. Illustrations showed 
that before eliminating batch effects, different series were 
clustered at different place, which meant these 5 series 
had different expression pattern due to batch effects. 
After eliminating, the points which represented different 
series were clustered with each other, with non-difference 
in point distribution on image. PCA provided a solid evi-
dence for both existence and elimination of batch effects. 
Subsequently, PCA was applied again to reduce dimen-
sion among these 5 series based on processed matrix 
(normal versus tumor), results demonstrated these two 
phenotypes could be significantly differentiated from 
each other, elucidating that there was a real biological 

difference, and thus offered a solid basis for our following 
research.

A total of 1632 DEGs, 766 DEGs, 780 DEGs, 358 DEGs 
and 5840 DEGs were identified, respectively from those 5 
series, with the cutoff criteria of |logFC|> 1 and adjusted 
P-value < 0.05. Venn plot analysis was performed fur-
ther to obtain precise results, and 38 mutual DEGs were 
generated. After GO analysis of these mutual DEGs, 
we detected that those up-regulated genes were mainly 
associated with collagen catabolic process, extracellular 
matrix disassembly, osteoblast differentiation, extracel-
lular region and protein binding, which explained why 
the fast multiplication and invasion of tumor cells, these 
findings agreed with previous studies that extracellular 
matrix (ECM) played a pivotal role in tumor metastasis 
and invasion [39, 40]. Down-regulated genes were pri-
marily involved in cell adhesion, organ regeneration and 
negative regulation of cell migration, which could slow 
the tumor invasion as well as promote the growth of 
normal tissues. Furthermore, the analysis of KEGG dis-
played that these mutual up-regulated DEGs were mainly 
enriched in JAK-STAT signaling pathway as well as pro-
teoglycans in cancer. Extracellular matrix (ECM) and 
substrate constitute the first barrier of tumor metastasis, 
the major component of the ECM are fibrous proteins 
(such as collagens, elastins) and proteoglycans, which 
was activated aberrantly in the development of cancer 
[41]. In addition, GSEA results showed that cell cycle, 
DNA replication and notch signaling pathways were 
aberrantly activated in osteosarcoma patients. Advanced 
studies have reported that dysregulation of cell cycle pro-
cess played an pivotal role in the carcinogenesis of tumor 
[42–44]; DNA replication was the most vulnerable cel-
lular process which could lead to cancer [45]; and notch 
signaling pathway was reported to play a critical role in 
skeletal development as well as homeostasis, and seri-
ous skeletal disorders could be blamed for alterations in 
notch signaling [46].

With the aim of further screening hub genes from 
DEGs identified in our previous work, the mutual 38 
DEGs were analyzed with the construction of PPI net-
work based on STRING database. MCC algorithm from 
“cytohubba” plug-in in Cytoscape was applied to cal-
culate MCC scores from different mutual genes, and 
the top 10 related-OS genes were screened out (namely 
MMP9, CD74, SPP1, CXCL12, TYROBP, FCER1G, 
LAPTM5, HCLS1, ARHGDIB, and IGF1R). Among 
them, MMP9 ranked highest in MCC algorithm, which 
was reported to be the most effective method to iden-
tify key targets and sub-network in a complexity net-
work, suggesting that MMP9 was the most related gene 
in the development of Osteosarcoma, so this study fur-
ther focused on MMP9 to find potential inhibitors in 



Page 18 of 22Li et al. Cancer Cell Int          (2021) 21:377 

structural biology part. Hierarchical clustering in each 
expression profiles validated that these hub genes could 
significantly distinguish normal samples from tumor 
samples, in the meantime, their expression patterns were 
found to be up-regulated in tumor tissues of OS com-
pared with normal tissues.

In order to prove the robustness of these 10 hub genes 
signature, one of the machine learning methods Support 
Vector Machine (SVM), was conducted to train the pre-
dictions with GSE33382 setting as training set, together 
with five-fold cross validation. This 10 genes signature 
was validated by robustness as well as estimation worth, 
by comparing SVM model to other independent datasets. 
ROC curve of each testing set was plotted, which was 
used to reflect the relationship between sensitivity and 
specificity and judge whether a certain factor had diag-
nostic value for a disease. The area under curve (auc) in 
GSE12865, GSE14359, GSE36001, GSE99671 was 91.67%, 
97.05%, 77.08% and 83.33%, respectively, elucidating that 
these hub genes could make accurate predictions on the 
phenotype of unknown tissue, which could be applied 
in clinical diagnosis. Subsequently, RiskScore was calcu-
lated for each sample through multivariate Cox analysis 
to further confirm the reliability of these genes signa-
ture, ROC curve illustrated that high- and low-risk group 
categorized by these genes signature could make a pref-
erable prognostic classification for 3-, 5- and 10-years 
overall survival, high-risk group had less survival time 
compared to low-risk group, Kaplan–Meier analysis also 
demonstrated that low-risk group patients had a better 
prognosis than high-risk group. The results mentioned 
above implied that these 10 genes signature could be 
regarded as risk factors, consequently, the significance of 
these genes were confirmed again in the development of 
osteosarcoma.

After validating the robustness of these genes signa-
ture, we wonder whether RiskScore of genes signature 
model had relationship with immune system microen-
vironment. It’s worth mentioning that through ssGSEA 
method, immune cells and functions were mainly 
enriched in low-risk group, and tumor purity were 
mostly in high-risk group. This study further analyzed 
the HLA-genes activity in different risk groups, results 
showed that HLA genes (except HLA-DRB5, HLA-DOB, 
HLA-DQB2 and HLA-DPB2) mainly participated immu-
noregulation in low-risk group. These findings elucidated 
the high correlations between risk groups and immune 
microenvironment, immune check point inhibitors may 
be more effective for patients with high immune check 
point expression. More detailed mechanisms between 
these genes signature and immunoregulation need to be 
analyzed in further study.

Then, survival analysis about overall survival and 
disease-free survival (DFS) were carried out to further 
verify the clinical significance and prognostic values of 
these hub genes in third-party database. Kaplan–Meier 
analysis illustrated that OS patients with low expres-
sion of these genes showed a better prognosis in overall 
survival (P < 0.05) except SPP1, LAPTM5 and IGF1R, 
which may be blamed for the relatively low accuracy of 
SVM classifier in GSE36001 (77.08%). As for disease-free 
survival, DFS displayed no difference observed in sar-
coma patients between high and low expression value of 
these genes. These findings implied that the overall sur-
vival prognosis of patients with OS could be predicted 
in clinical by detecting the expression level of those hub 
genes. While in the aspect of DFS, the expression value of 
these genes could not prolong or shorten the disease-free 
time of patients, elucidating that this disease was easy to 
relapse and dangerous, hub genes identified in this study 
were much essential, diagnosis and treatment should be 
performed at early stage in order to make a good progno-
sis. Based on our previous findings, this study established 
the 10-gene signature-based nomogram model, thus 
the approximate survival rate in 1-, 3-, 5- and 10-years 
of osteosarcoma patients could be predicted by detect-
ing these 10 genes’ expression in clinical, calibration 
plots and C-index (0.74) could confirm the reliability of 
this nomogram model. Therefore, this nomogram model 
could allow surgeons to make a comprehensive assess-
ment of patients’ prognosis and thus make appropriate 
treatment in clinical application.

Based on the results of MCC algorithm scores in 
Cytoscape, MMP9 ranked highest among those hub 
genes, suggesting that MMP9 may be the most related 
gene that caused the progression of osteosarcoma, and 
it was meaningful to focused on MMP9 for subsequent 
research. To further assess the significance as well as 
importance of MMP9 to make a comprehensive under-
standing, we evaluated the expression pattern of MMP9 
in different cancers from GEPIA2 database, such as 
SARC, GBM, KIRC, LUSC, COAD and BLCA. Results 
showed that the median expression value of these tumors 
were much higher than normal tissues (P < 0.01), which 
suggested that MMP9 was an essential biomarker that 
could also be diagnosed in many other cancer types, so 
it provided a solid practical and theoretical basis on the 
subsequent research of targeted chemotherapy regard-
ing MMP9 in this study. The median expression level of 
MMP9 in SARC showed no difference between normal 
and tumor tissues, which may be blamed for small sam-
ple size of normal tissues in GEPIA2, however, this study 
filled up the gap of MMP9 research in SARC, MMP9 was 
highly expressed in osteosarcoma patients. It is notewor-
thy that not only MMP9 could be served as therapeutic 
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target, but other related hub genes identified in this study 
have these potentials for inhibitors design to prevent the 
development of Osteosarcoma.

MMP9, located on chromosome 20q11.1 ~ 13.1, has 13 
exons and 9 introns, which belongs to matrix metallopro-
teinases family (MMPs). MMPs are the main enzymes for 
degradation of ECM, these enzymes have low activity in 
normal conditions, but their activities are increased aber-
rantly in pathological conditions such as tumors [40]. The 
MMP family could degrade ECM proteins, ECM deg-
radation is a characteristic of tumors in tumor progres-
sion [47, 48]. Consequently, on the basis that MMP9 was 
the most related gene in OS, as well as its significance 
in other cancer types, screening of inhibitors target-
ing MMP9 was urgent and conducted in the following 
research.

At present, the chemotherapeutics to treat osteosar-
coma had been less marked, survival rates continued to 
be unsatisfactory [4]. The purpose of the treatment is to 
alleviate disease progression, improve life quality, pro-
long the survival time in a way which does the least harm 
to patients. Several decades of intensive investigation 
have not yielded therapeutically viable MMP inhibitors, 
which has been attributed to the generally poor specific-
ity of active site of MMP inhibitors, causing dose-limi-
tation toxicities as well as adverse side effects [12]. Only 
several studies have reported the reliability in discovery 
of MMP9 inhibitors, and made a significant advance in 
the field of MMP9 inhibition [11, 12]. Thus, more poten-
tial lead compounds regarding MMP9 were imperative 
for research, to provide more novel skeleton of candi-
dates in pharmaceutical market. Meanwhile, this study 
also assessed the properties of the discovered inhibitor 
JNJ0966.

In subsequent study of structural biology, 17,799 pur-
chasable, named and biogenic natural products were 
obtained from ZINC15 repository to screen targeted 
inhibitors of MMP9. This study combined with ADME, 
TOPKAT, CDOCKER, and other computational meth-
ods in DS4.5, to make a fully screening and assessment 
of these natural compounds as well as the existed inhibi-
tor JNJ0966. Virtual screening using Libdock module was 
firstly conducted in order to screen appropriate com-
pounds docked with MMP9 from huge amount of ligands 
repository, which allowed us to narrow the range of can-
didate drugs in a short time. Libdock scores represented 
the energy optimization and stability of the conforma-
tion. Compounds with higher libdock scores illustrated a 
better energy optimization as well as a more stable con-
formation. After calculated by virtual screening, totally 
10,021 products could dock at ligand-binding pocket of 
MMP9, among those, 2976 products’ libdock scores were 
found higher than the reference ligand JNJ0966 (score: 

116.113), indicating that these 2976 products had a more 
stable conformation together with a better energy opti-
mization with receptor MMP9 compared to JNJ0966. On 
the basis of libdock scores, the top 20 highest compounds 
were selected and pooled into further study.

Pharmacological properties including ADME (absorp-
tion, distribution, metabolism and excretion) and toxic-
ity predictions for those obtained candidate drugs were 
conducted to select drugs which had good pharma-
ceutic properties. Outcomes indicated that after over-
all assessment of their properties as well as safeties, 5 
compounds: ZINC000072131515, ZINC000085810532, 
ZINC000014233122, ZINC000030731360 and 
ZINC000004228235 were selected as efficient drugs 
with good water solubility, good intestinal absorption 
level and strong plasma protein binding. Moreover, they 
were predicted with non-hepatotoxicity and non-inhibi-
tion of CYP2D6, which could reduce the damage to liver 
whereas JNJ0966 was predicted to be toxic drug to liver. 
Cytochrome p450 (CYP450) was a principal enzyme 
involved in drug metabolism, drugs behaved as inhibi-
tors of CYP450 could weaken the activity of drug enzymes 
and thus slow down the drug metabolism. In most cases, 
it leaded into enhancement of pharmacological activity of 
targeted drugs or even toxic side effects, which was shown 
to be frequent and dangerous one [49, 50]. CYP2D6 is one 
of the enzymes in CYP450, thus the result of non-inhi-
bition of CYP2D6 of these compounds proved that they 
were safe and metabolizable drug candidates, the same as 
JNJ0966. Additionally, they were assessed with low ames 
mutagenicity, low probability of FDA carcinogenicity and 
non-weight evidence probability of carcinogenicity com-
pared to JNJ0966, which strongly suggested their perspec-
tive application in drug development. Consequently, these 
5 compounds were further selected as candidate drugs 
and conducted in subsequent research.

Docking mechanisms and chemical bonds interactions 
of these compounds with MMP9 were then analyzed and 
visualized using precisely docking method. Of which, 
ZINC000014233122, ZINC000030731360 were failed 
to dock at the ligand-binding pocket of MMP9, which 
indicated that these two ligands could not be able to 
form stable chemical bonds with MMP9, more stronger 
bonds were needed in CDOCKER module. CDOCKER 
interaction energy of the rest of three compounds with 
MMP9 had a significant lower energy compared to the 
reference ligand JNJ0966 (− 37.6.49  kcal/mol), which 
demonstrated that they had a better binding affinity with 
MMP9. Analysis of chemical bonds interactions showed 
that ZINC000085810532 did not form as many bonds as 
ZINC000072131515, ZINC000004228235 and JNJ0966 
did. Taking all the evaluation indexes into considera-
tion, ZINC000072131515 and ZINC000004228235 were 
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ultimately chosen as efficient lead compounds regard-
ing MMP9. The overall detailed chemical parameters 
between these two compounds and MMP9 were con-
ducted with an intuitive visualization (Fig.  6 and Addi-
tional file 14: Figure S9).

In order to prove the effects of our newly found com-
pounds against osteosarcoma, this study further per-
formed a series of experiments in  vitro regarding 
ZINC000072131515. Scratch assay revealed that the 
wounds in control group decreased more sharply than 
drug group with time went, which implied that the 
migration ability of osteosarcoma cells was restrained 
by ZINC000072131515. Moreover, CCK-8 and colony 
formation assay pointed that the cellular viability in 
HOS and MG-63 cell lines displayed dose-dependent 
decreased when treated with different concentration 
of drug ZINC000072131515. In comparison to con-
trol group, clonogenicities of drug group were less and 
smaller significantly, which were consistent with CCK-8 
assay, these results elucidated that ZINC000072131515 
inhibit the proliferation of osteosarcoma cells.

Last but not least, this study tried to find novel natu-
ral inhibitors through an effective and rigorous way, it’s 
worth noting that no single drug, could be marketed 
directly unless through thousands of refinements and 
modifications of the candidate drugs, together with 
countless animal and cell experiments. The two com-
pounds identified in this study provided a basis and 
skeleton for inhibitors of MMP9, further research could 
focus on refinement and improvement of them by add-
ing or deleting different groups of atoms or pharma-
cophores in order to further reduce toxicity, promote 
pharmacologic properties. These two candidate com-
pounds offered a valuable resource for the development 
of MMP9-related inhibitors.

At the present time, identifying hub genes from dif-
ferent cancer types under genomic level and develop-
ment of oncology drugs are the hot research attracting 
worldwide attention [13, 14, 51, 52]. This study eluci-
dated the procedure from identification of hub genes 
in osteosarcoma, to the study of inhibitors target-
ing MMP9 in detail, each step was clearly explained. 
Meanwhile, this study made an overall evaluation of 
expression pattern of MMP9 in different cancer, and 
filled up the gap in research of MMP9 in osteosar-
coma. Different pharmacophores could be added to 
improve the properties of these compounds in the fol-
lowing research, after modification, these compounds 
could be more perfect as potential inhibitors. Besides, 
the application of MMP9 inhibitor regarding osteosar-
coma had not been reported so far, so further research 
in this field could make a remarkable significance in 
the chemotherapy of osteosarcoma.

Conclusions
In conclusion, 10 main hub DEGs were identified from 
5 GSE series, namely MMP9, CD74, SPP1, CXCL12, 
TYROBP, FCER1G, LAPTM5, HCLS1, ARHGDIB, 
and IGF1R. The robustness, prognostic values as 
well as immuno-correlation of these genes were vali-
dated with machine learning, multivariate Cox analy-
sis, ssGSEA and survival analysis. This study found 
MMP9 was the most related hub gene in the progres-
sion of osteosarcoma. Meanwhile, this study filled the 
gap in research of MMP9 in osteosarcoma. Structural 
biology study including a series of computation-aided 
methods demonstrated that ZINC000072131515 and 
ZINC000004228235 had the effective potential inhibi-
tion targeting MMP9, which were selected as candidate 
and promising drugs. Ultimately, it may have great sig-
nificance in MMP9 inhibitors’ development.
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