Table 2.
Classification performance of future (IA) growth prediction models.
Model | Test data | AUC | accuracy | sensitivity | specificity |
---|---|---|---|---|---|
NSI | all | 0.62 | 0.63 | 0.89 | 0.29 |
HMAX | all | 0.52 | 0.54 | 0.36 | 0.80 |
AR | all | 0.52 | 0.56 | 0.88 | 0.15 |
V | all | 0.48 | 0.58 | 0.48 | 0.78 |
SA | all | 0.48 | 0.56 | 0.36 | 0.84 |
RF | all | 0.66 | 0.68 | 0.63 | 0.66 |
MLP | all | 0.62 | 0.64 | 0.71 | 0.55 |
PointNet++ (dome) | all | 0.72 | 0.77 | 0.80 | 0.63 |
PointNet++ | all | 0.795 | 0.82 | 0.96 | 0.63 |
RF | fold 1 | 0.56 | 0.55 | 0.33 | 0.80 |
RF | fold 2 | 0.81 | 0.81 | 0.83 | 0.8 |
RF | fold 3 | 0.63 | 0.64 | 0.66 | 0.6 |
RF | fold 4 | 0.63 | 0.72 | 1.0 | 0.4 |
MLP | fold 1 | 0.65 | 0.63 | 0.50 | 0.80 |
MLP | fold 2 | 0.61 | 0.63 | 0.83 | 0.4 |
MLP | fold 3 | 0.55 | 0.55 | 0.50 | 0.60 |
MLP | fold 4 | 0.67 | 0.72 | 1.00 | 0.4 |
PointNet++ | fold 1 | 0.81 | 0.82 | 0.83 | 0.80 |
PointNet++ | fold 2 | 0.70 | 0.73 | 1.0 | 0.4 |
PointNet++ | fold 3 | 0.70 | 0.91 | 1.0 | 0.4 |
PointNet++ | fold 4 | 0.75 | 0.82 | 1.0 | 0.5 |
The best result across all data is marked in bold.