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Abstract

Background: Advancements in sequencing capabilities have enhanced the study of the human 

microbiome. There are limited studies focused on the gastro-intestinal (gut) microbiome of infants, 

particularly the impact of diet between breast-fed (BF) versus formula-fed (FF). It is unclear what 

effect, if any, early feeding has on short-term or long-term composition and function of the gut 

microbiome.

Results: Using a shotgun metagenomics approach, differences in the gut microbiome between 

BF (n = 10) and FF (n = 5) infants were detected. A Jaccard distance principle coordinate analysis 

was able to cluster BF versus FF infants based on the presence or absence of species identified in 

their gut microbiome. Thirty-two genera were identified as statistically different in the gut 

microbiome sequenced between BF and FF infants. Furthermore, the computational workflow 
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identified 371 bacterial genes that were statistically different between the BF and FF cohorts in 

abundance. Only seven genes were lower in abundance (or absent) in the FF cohort compared to 

the BF cohort, including CRISPR/Cas9; whereas, the remaining candidates, including 

autotransporter adhesins, were higher in abundance in the FF cohort compared to BF cohort.

Conclusions: These studies demonstrated that FF infants have, at an early age, a significantly 

different gut microbiome with potential implications for function of the fecal microbiota. 

Interactions between the fecal microbiota and host hinted at here have been linked to numerous 

diseases. Determining whether these non-abundant or more abundant genes have biological 

consequence related to infant feeding may aid in understanding the adult gut microbiome, and the 

pathogenesis of obesity.
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1. Background

Obesity is a national epidemic, with one in three adolescents overweight, [1] and one in five 

considered clinically obese. Adolescents with obesity are at high risk for “adult” morbidities 

in their youth: cardiovascular disease, type-2 diabetes, joint injury, sleep apnea, and non-

alcoholic fatty liver disease (NAFLD) [2]. Early dietary content is critical to the long-term 

development of obesity in children and adolescents [3]. Infants who are breast-fed have 

lower risk for childhood and adult obesity compared to formula-fed infants [4]. Different 

feeding regimens in infancy have been shown to contribute to differences in weight gain [5] 

and to alter the gastrointestinal microbial environment [6]. The multitude of organisms that 

live in the human digestive tract, the fecal microbiota, and their genomes, the gut 

microbiome, in turn influence gastrointestinal satiety hormone secretion and signaling, 

primarily through short-chain fatty acids [7]. Formula-feeding increases the bacterial phyla 

Firmicutes and Proteobacteria and decreases Actinobacteria as compared to breast-feeding 

[8,9]. While the fecal microbiota differences between breast- and formula-fed infants 

typically converge by the end of the second or third year of life [10], there is evidence that 

the effect of the fecal microbiota’s divergence early in the first year of life on metabolic, 

immunologic, and cardiovascular diseases is significant in the long term [11]. Very early 

disruptions in the gut microbiome of infants by antibiotics, delivery mode, or altered 

environments seem to play a lasting effect on its population and function [4,12].

Two studies have demonstrated differences in the fecal microbiota of infants who are breast-

fed versus those who are formula-fed [8,9]. These groups used fecal collection from infants 

to assess the metagenomics (genomes of genetic material isolated from environmental 

samples) of the two populations of infants. The sample sizes were small, but key differences 

were noted. As stated, it is unknown whether the differences in early fecal microbiota, and 

its corresponding gut microbiome, change the gut environment irrevocably and confer 

altered satiety regulation to children based on their different initial nutrition. The study 

hypothesizes that a protective or an ameliorative effect of breastfeeding on later risk for 
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obesity occurs via fecal microbiota modulation of satiety hormone expression and 

regulation.

Prior work comparing the gut microbiome of breast-fed and formula-fed infants used a 

targeted approach (16S rRNA sequencing) [9] or metagenomic and metatranscriptomic 

sequencing [8] based on Roche (Nutley, NJ) 454 technology. The present study utilized a 

whole-genome approach coupled with Illumina HiSeq technology to assess taxa diversity 

between groups. Computational bioinformatics allowed characterization of key functional 

differences by way of relative fecal microbiota gene abundance comparisons. The study 

presented here aims to strictly and rigorously characterize differences in the very early gut 

microbiome of breast-fed vs. formula-fed infants; the primary goal is to determine if diet-

related changes in the gut microbiome early in infancy initiate long-term cascading 

consequences even if abundance or taxonomic population traits normalize with food 

introduction and with early childhood growth. This cross-sectional pilot study sets the 

groundwork for a longitudinal mapping of the gut microbiome trajectory in these infants in 

the first two years of life.

2. Results

2.1. Subjects

Fifteen subjects were enrolled, and duplicate fecal samples were processed for each subject. 

Table 1 details demographic information about subjects. Ten infants were exclusively breast-

fed (BF) and five were exclusively formula-fed (FF). Infants were of similar age at 

enrollment/collection of sample (BF, 45–95 days vs. FF 46–100 days), similar weight at 

birth (BF, mean 3.23 kg vs. FF, mean 3.37 kg) and enrollment (5.10 kg vs. 5.06 kg), with 

similar maternal age (33 years vs. 33 years), paternal age (35 years vs. 34 years), BMI (27.9 

kg/m2 vs. 26.7 kg/m2), and (maternal) pre-pregnancy BMI (26.5 kg/m2 vs. 24.7 kg/m2).

2.2. Metagenomic sequencing Beta-diversity

Each subject provided adequate duplicate fecal samples for shotgun metagenomics analysis 

(Fig. 1). Library sequencing via Illumina HiSeq technology resulted in over 376 million raw 

paired end reads with each library having an average of over 12.5 million read pairs. Even 

after adapter trimming and the decontamination of human and PhiX the average number of 

read pairs per library remained over 12 million (Supplementary Table 1). Taxonomic 

analysis was completed via the Sunbeam pipeline with Kraken1 and yielded successful 

classification of over 269 million reads with 253 million classified to at least the genus level, 

over 81% of which were attributable to a species. Results between biological replicates were 

consistent with R2 values ranging from 0.86 to 0.93 (Supplementary Fig. 1).

Breast-fed and formula-fed cohorts were examined using both Bray-Curtis dissimilarity and 

Jaccard distance principal coordinate analysis. Technical replicates at the individual level 

clustered together; however, there was no clear pattern of beta-diversity by abundance at the 

cohort level (Fig. 2A). On the other hand, presence or absence of species did demonstrate 

clustering at the cohort level (Fig. 2B). Based on these results, the difference in the fecal 

Di Guglielmo et al. Page 3

Hum Microb J. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiota between early infancy formula-fed and breast-fed infants at the species level is 

dependent on presence or absence, rather than abundance, of taxa.

2.3. Phylogenetic abundance

While principal coordinate analysis clustering by species demonstrated differences between 

the cohorts based on presence or absence, we also assessed phylogenetic abundance in each 

cohort at the genus level. The top twenty most abundant genera were determined and plotted 

via box-whisker plots to examine distribution differences between the cohorts (Fig. 3), and 

statistical testing via edgeR [13] with an FDR cutoff of 0.01 revealed five out of those 

twenty genera were statistically different between breast-fed and formula-fed infants (Fig. 3, 

asterisks). In total, there were thirty-two genera with statistically significant differences in 

abundance between breast-fed and formula-fed infants (Supplementary Table 2). Twelve 

genera were decreased in abundance in the formula-fed infants, including Haemophilus, 

Parabacteroides, Serratia, and Lactobacillus, while twenty genera were increased in the 

formula-fed infants, including Clostridioides, Enterococcus, Stenotrophomonas, and 

Akkermansia. Relative abundance of the top 20 genera in each sample is represented in 

Supplementary Fig. 3.

2.4. Differential gene counts and annotation

A co-assembly of all sequencing reads across all subjects was created and had a total length 

of 435,829,348 base pairs (bp) and 305,432 total contigs. The N50 was 3,422 bp and the 

mean was 1,426 bp. Maximum contig length was 378,421 bp. Over 32,000 contigs were 

greater than 2,500 bp in length and were used for gene prediction. Reads from individual 

samples were then mapped back to the combined metagenome, gene abundances were 

calculated, and statistical testing was performed using edgeR. The computational workflow 

identified 371 genes that statistically different abundances between breast-fed and formula-

fed infant samples using an FDR cutoff of 0.01. Of note, only seven of these genes had low 

abundance in formula-fed compared to breast-fed while the remaining 364 had high 

abundance (Table 2).

2.5. Validation of Cas9 identity and abundance

The aforementioned bioinformatic analysis identified a Cas9 gene as being completely 

absent in all formula-fed samples. While there are multiple Cas9 genes originating from 

various bacteria, the potential impact of this finding made its validation paramount. To 

confirm that the gene in question was a Cas9, the Arg rich region was identified in the 

peptide sequence manually and the canonical HNH and RuvC domains [14] were identified 

via InterPro (Fig. 4A). A number of other Cas9 specific domains were also found, a few of 

which, such as the Cas9 topo homology domain, are specific to Actinobacteria.

Since the shotgun sequencing and subsequent bioinformatic analysis indicated that this Cas9 

gene was completely absent from formula-fed samples, non-quantitative PCR was used to 

validate these results in 6 samples. A PCR product for Cas9 was observed in all breast-fed 

but none of the formula-fed samples (Fig. 4B). A carboxypeptidase was also examined and 

yielded PCR products in all formula-fed, but only one breast-fed sample. The presence or 
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absence of PCR products for both genes correlated perfectly with the presence or absence of 

raw read counts which mapped to these genes in the bioinformatic analysis.

3. Discussion

Improved understanding of the gut microbiome and its components in the context of the gut-

brain-adipose axis [15], create opportunities to develop novel therapeutic interventions for 

myriad medical conditions [16], including obesity [17]. The intestinal milieu is comprised of 

both intrinsic (host origin) and extrinsic (non-host origin) factors including epithelial 

enterocytes, cytokines, paracrine hormones, microbes, and inflammatory mediators, directly 

impact human health.

Recognizing the debate about the effect of breast-feeding vs. formula feeding on long-term 

gut health (including the health and function of the microenvironment) [18], this study 

sought to explore the role of exclusive single-source feeding in the gut microbiome early in 

life. Ongoing studies will collect feeding logs, additional anthropo-metric data, and fecal 

samples; this paper summarizes the results of the baseline gut microbiome analysis.

The hypothesis was that the fecal microbiota would differ in formula-fed and breast-fed 

infants, with specific increases in microbial diversity and relative microbial gene abundance 

as early as the first 2 months. These changes early in life would impact long-term cellular 

processes locally and throughout the host by way of interaction with the gut epithelium in an 

entero-endocrine manner [7]. A recent study demonstrated the susceptibility of specialized 

epithelial cells in the gut to metabolically active compounds generated by the fecal 

microbiota and these cells’ importance in neural pathways [19]. Future longitudinal studies 

will help determine if the changes are permanent or not.

In this study, the BF and FF cohorts demonstrated clustering / similarity based on the 

presence/absence of species (Fig. 2B). The global abundance of bacteria is similar between 

the two groups. Greater variation in species diversity implied an early divergence in infants 

who varied by feeding source. Bacteroides genus predominated in BF, as expected, while the 

prevalence of Bifidobacterium genus was comparable in the two groups. Notably, the 

potentially beneficial genus Lactobacillus [20] was more than four-fold lower in the FF 

group perhaps related to the mode of delivery. A more striking difference in the presence, 

absence, and abundance of Klebsiella, Escherichia, and Veillonella between BF and FF is 

observed (Fig. 3) implying early divergence. On average, Escherichia genus was more 

abundant in FF samples; in other studies have noted associations with patient disease later in 

life [21]. Overall, the abundance of 12 genera decreased significantly in FF and 20 genera 

increased significantly in FF as compared to BF (Supplementary Table 2). These 

observations show that formula feeding dramatically influences the diversity of the gut 

microbiome early in infancy. Over time, feeding sources typically converge with 

introduction of solids and transition to table foods. The presence, absence, and relative 

abundance of fecal microbiota species stabilize and become more “adult-like” beginning at 

age three years [22]. Individual differences may persist. It is not known whether the early 

differences in species/genera presence or absence fundamentally alters the function of the 

gut microenvironment long-term.
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The count differences of the bacterial genes detected in the cohorts revealed that FF infants, 

compared to BF infants, had seven genes that were significantly lower in relative abundance 

including a CRISPR associated protein 9 (Cas9), Magnesium-transporting ATPase 

(MgATPase), DNA-directed RNA polymerase (DNA-RNAPol), Chromosome segregation 

ATPase (ChromATPase), Uncharacterized membrane protein YhgE (YhgE), Phage infection 

protein family (PIP), and an Alanine racemase (AlaRace). In contrast, nine genes had higher 

relative abundance in the FF infants (Table 2B). Of note, Autotransporter adhesin (ATAdhes) 

was the greatest increased abundance gene for bacteria in FF infants. ATAdhes is a family of 

molecules involved in microbe adherence to cellular structures and in forming biofilms [23]. 

Biofilms can both contribute to disease and form barriers important for immune function 

[24]. In the cohort analyzed, 3 out of 5 FF infants had a high abundance of ATAdhes, 2 out 

of 5 had no or nominal abundance, and all 10 BF infants had no or nominal abundance. Cas9 

was the greatest decreased abundance gene for bacteria in FF infants. The lack of 

CRISPR/Cas or altered alleles of the gene is associated with pathogenic strains and drug-

resistance in Escherichia [25]. In the cohort analyzed, this gene was not detected in any of 

the five FF samples. The foothold for more pathogenic-potential bacteria created in the FF 

environment merits further examination in light of the absent Cas9 gene abundance. 

Whether the lack of Cas9 gene changes over time, or persists, may help to explain the 

divergence in non-BF infants’ gut microbiome. If more association with a shift to 

Escherichia or Veillonella in FF infants becomes clear with subsequent temporal sampling, 

Cas9 gene absence is one plausible explanation.

This study is limited by the size of the cohort and the cross-sectional examination of the gut 

microbiome under the selection criteria. While the small size limits generalizability, it 

mirrors other studies on infant feeding and fecal microbiota make-up [8,9]. Notably, fecal 

samples from an additional four formula-fed infants, collected in an earlier study under the 

same ethics approval and consent, were processed in a different manner but included in a 

principal coordinate analysis (Supplementary Fig. 2, Supplementary Table 3). Clustering 

seen with the original 15 subject cohort was again noted when the four additional samples 

were added to the analysis, supporting the conclusions reached. The whole genome 

metagenomics and the bioinformatics computational pipeline in this study yields a detailed 

examination of the two groups. More data is needed to obtain a longitudinal picture of the 

gut microenvironment and will help to determine if observed trends do indeed persist 

beyond early infancy. The present study did not account for any concomitant urinary 

microbiome [26].

4. Methods

4.1. Aim, design, and setting

The study intended to confirm differences in the gut microbiome resulting from early infant 

nutrition as determined by whole genome untargeted (shotgun) metagenomic sequencing of 

fecal samples from breast-fed and formula-fed infants to determine β-diversity, relative 

abundance, and functional profiles. Study design is described graphically in Fig. 1. The 

setting was a tertiary children’s academic hospital center serving a population of infants 

from four surrounding states. The Nemours Institutional Review Board approved the study. 
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The study was registered at ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/

NCT03751137.

4.2. Recruitment

Fifteen healthy, term infants between 6 weeks 0 days and 14 weeks 6 days of age who were 

exclusively breast-fed (BF) or formula-fed (FF) were recruited. Infants were excluded if they 

had any other sources of nutrition, dietary restrictions (e.g. hypoallergenic formula), 

consumed higher density formula (greater than20 calories/ounce), had exposure to 

antibiotics, or had any gastrointestinal infection or disease that affected the integrity of the 

intestinal mucosa. Fecal samples and clinical data on infants were collected, including 

demographic information, maternal and paternal age (years) at infant’s birth, maternal and 

paternal height and weight, delivery method, maternal antibiotic use (breast-feeding mothers 

only), and maternal over-the-counter or prescription medications taken during pregnancy.

4.3. Sample collection

Soiled diapers were sampled within 6 h of defecation for 10 subjects; the remainder of 

subjects’ fecal samples were collected within 12 to 24 h. Stool was collected by application 

of two duplicate swabs (Copan Diagnostics, Murrieta, CA) for metagenomics sequencing. 

The containers were placed immediately into a dry ice ethanol bath and then transferred to a 

−80° C freezer until processing. Processing was completed at the Microbiome Center at the 

Children’s Hospital of Philadelphia within 6 months of freezing.

4.4. DNA Extraction and sequencing

DNA was extracted from samples using the DNeasy PowerSoil kit using the manufacturer’s 

instructions (Qiagen, Germantown, MD). Libraries were generated from 1 ng of DNA using 

the NexteraXT kit (Illumina, San Diego, CA, USA) and sequenced on the Illumina HiSeq 

2500 using 2×125bp chemistry in High Output mode. Extraction controls (no template) and 

DNA free water were included to empirically assess environmental and reagent 

contamination. Laboratory-generated mock communities consisting of DNA from Vibrio 
campbellii, Cryptococcus diffluens, and Lambda phage were included as positive controls.

4.5. Bioinformatics analysis

FASTQ files were analyzed using the “QC” and “Classify” portions of the Sunbeam pipeline 

(https://github.com/sunbeam-labs/sunbeam). Trimmomatic [27] was configured for adapter 

removal and quality trimming using “leading” and “trailing” settings of 3 with a sliding 

window size of 4 bp and a required quality of 15. The resulting cleaned FASTQ files were 

mapped to the GRCh38 assembly of the human genome and the PhiX genome using BWA 

MEM (Li H. 2013, https://arxiv.org/abs/1303.3997) with default settings; unmapped reads 

were compiled into “decontaminated” FASTQ files for downstream analysis. Kraken1 [28] 

was used to classify the decontaminated reads via a full Kraken database built on 

2018.10.23. Raw read counts, which were classified down to the genus level, were analyzed 

using edgeR with TMM normalization [29] to calculate statistical significance.
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4.6. Contig Assembly, Annotation, and functional analysis

Decontaminated FASTQ files from all samples in the previously discussed analysis were 

concatenated together and contig assembly was performed using MEGAHIT [30]. Contigs 

which were ≥ 1,500 bp in length were kept for further analysis. Gene prediction was 

performed using Prodigal [31], and functional annotations were added using NCBI COGs 

[32]. The decontaminated reads for each sample were then mapped to the annotated contigs 

using STAR [33] and ENCODE’s standard settings. RSEM [34] was used to produce gene 

counts which were analyzed using edgeR with TMM normalization to calculate statistical 

significance. Only those genes with an FDR less than or equal to 0.01 as well as an average 

of 150 TMM normalized counts in either group were considered statistically significant.

4.7. Data upload to NIH sequence read archive

Data files used for the study are available via the National Institutes of Health Sequence 

Read Archive, accession # PRJNA542703.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Lisa Mattei, CHOP Microbiome Center; Kyle Bittenger, CHOP Bioinformatics; Rachel Marine, CDC; Adebowale 
Adeyemi, Nemours Gastroenterology; Alan Robbins, Nemours Biomedical Research.

Funding

This work was supported by an Institutional Development Award (IDeA) from the National Institute of General 
Medical Sciences of the National Institutes of Health under grant number U54-GM104941.

Abbreviations:

BF Breast-fed

FF Formula-fed

BMI Body-mass index

N50 The minimum contig length needed to cover 50% of the 

metagenome.

ENCODE Encyclopedia of DNA Elements

FDR False Discovery Rate

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

PCoA Principal Coordinates Analysis

TMM Trimmed Mean of M-values

Di Guglielmo et al. Page 8

Hum Microb J. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

[1]. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the 
United States, 2011–2012. JAMA - J Am Med Assoc 2014;311:806–14. 10.1001/jama.2014.732.

[2]. McCrindle BW. Cardiovascular Consequences of Childhood Obesity. Can J Cardiol 2015;31:124–
30. 10.1016/j.cjca.2014.08.017. [PubMed: 25661547] 

[3]. Singhal A, Lanigan J. Breastfeeding, early growth and later obesity. Obes Rev 2007;8:51–4. 
10.1111/j.1467-789X.2007.00318.x. [PubMed: 17316302] 

[4]. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal 
microbiota during a critical developmental window has lasting metabolic consequences. Cell 
2014;158:705–21. 10.1016/j.cell.2014.05.052. [PubMed: 25126780] 

[5]. Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of 
overweight: a meta-analysis. Am J Epidemiol 2005;162:397–403. 10.1093/aje/kwi222. [PubMed: 
16076830] 

[6]. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet 
in shaping gut microbiota revealed by a comparative study in children from Europe and rural 
Africa. Proc Natl Acad Sci 2010;107:14691–6. 10.1073/pnas.1005963107. [PubMed: 20679230] 

[7]. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr 
Opin Pharmacol 2013;13:935–40. 10.1016/j.coph.2013.09.008. [PubMed: 24075718] 

[8]. Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, et al. A metagenomic 
study of diet-dependent interaction between gut microbiota and host in infants reveals differences 
in immune response. Genome Biol 2012;13.. 10.1186/gb-2012-13-4-r32.

[9]. Lee SA, Lim JY, Kim BS, Cho SJ, Kim NY, Bin Kim O, et al. Comparison of the gut microbiota 
profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr Res Pract 
2015;9:242–8. 10.4162/nrp.2015.9.3.242. [PubMed: 26060535] 

[10]. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human 
gut microbiome viewed across age and geography. Nature 2012;486:222–7. 10.1038/
nature11053. [PubMed: 22699611] 

[11]. Ross MC, Lernmark A, Hagopian W, Gibbs RA, Xavier RJ, Hutchinson DS, et al. Temporal 
development of the gut microbiome in early childhood from the TEDDY study. Nature 
2018;562:583–8. 10.1038/s41586-018-0617-x. [PubMed: 30356187] 

[12]. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015;11:182–90. 
[PubMed: 25488483] 

[13]. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 2009;26:139–40. 10.1093/
bioinformatics/btp616. [PubMed: 19910308] 

[14]. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 
endonucleases reveal RNA-mediated conformational activation. Science 2014;343:1247997. 
10.1126/science.1247997. [PubMed: 24505130] 

[15]. Beumer J, Clevers H. How the Gut Feels, Smells, and Talks. Cell 2017;170:10–1. 10.1016/
j.cell.2017.06.023. [PubMed: 28666112] 

[16]. Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med 
2016;375:2369–79. 10.1056/NEJMra1600266. [PubMed: 27974040] 

[17]. Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the Gut Microbiome in the 
Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 
2017;152:1671–8. 10.1053/j.gastro.2016.12.048. [PubMed: 28192102] 

[18]. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk 
bacterial communities and establishment and development of the infant gut microbiome. JAMA 
Pediatr 2017;171:647–54. 10.1001/jamapediatrics.2017.0378. [PubMed: 28492938] 

[19]. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, et al. Enterochromaffin 
Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017;170(185–
198):e1610.1016/j.cell.2017.05.034. [PubMed: 28648659] 

[20]. Montoya-Williams D, Lemas DJ, Spiryda L, Patel K, Carney OO, Neu J, et al. The Neonatal 
Microbiome and Its Partial Role in Mediating the Association between Birth by Cesarean Section 

Di Guglielmo et al. Page 9

Hum Microb J. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Adverse Pediatric Outcomes. Neonatology 2018;114:103–11. 10.1159/000487102. 
[PubMed: 29788027] 

[21]. Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, et al. Intestinal microbial 
communities associated with acute enteric infections and disease recovery. Microbiome 
2015;3:45. 10.1186/s40168-015-0109-2. [PubMed: 26395244] 

[22]. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the 
gut microbiota throughout life, with an emphasis on early life. Microb Ecol Heal Dis 2015;26.. 
10.3402/mehd.v26.26050.

[23]. Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S, Paxman JJ, et al. 
Autotransporter Adhesins in Escherichia coli Pathogenesis. Proteomics 2017;17.. 10.1002/
pmic.201600431. [PubMed: 29275045] 

[24]. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial 
adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science (80- 
2018;)(359):592–7. 10.1126/science.aah3648. [PubMed: 29420293] 

[25]. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas 
systems. Curr Opin Microbiol 2017;37:67–78. 10.1016/j.mib.2017.05.008. [PubMed: 28605718] 

[26]. Morand A, Cornu F, Dufour J-C, Tsimaratos M, Lagier J-C, Human Raoult D. Bacterial 
Repertoire of the Urinary Tract: a Potential Paradigm. Shift. J Clin Microbiol 2019;57.. 10.1128/
JCM.00675-18.

[27]. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. 
Bioinformatics 2014;30:2114–20. 10.1093/bioinformatics/btu170. [PubMed: 24695404] 

[28]. Wood DE, Kraken Salzberg SL. Ultrafast metagenomic sequence classification using exact 
alignments. Genome Biol 2014;15.. 10.1186/gb-2014-15-3-r46.

[29]. Pereira MB, Wallroth M, Jonsson V, Kristiansson E. Comparison of normalization methods for 
the analysis of metagenomic gene abundance data. BMC Genomics 2018;19:1–17. [PubMed: 
29291715] 

[30]. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for 
large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 
2015;31:1674–6. 10.1093/bioinformatics/btv033. [PubMed: 25609793] 

[31]. Hyatt D, Locascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction 
in metagenomic sequences. Bioinformatics 2012;28:2223–30. 10.1093/bioinformatics/bts429. 
[PubMed: 22796954] 

[32]. Tatusov RL, Koonin EV, Lipman DJ. A RTICLES A Genomic Perspective on Protein Families. 
Science 2012;631:631–7. 10.1126/science.278.5338.631.

[33]. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal 
RNA-seq aligner. Bioinformatics 2013;29:15–21. 10.1093/bioinformatics/bts635. [PubMed: 
23104886] 

[34]. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-seq data with or without a 
reference genome. Bioinforma Impact Accurate Quantif Proteomic Genet Anal Res 2014:41–74. 
10.1201/b16589.

Di Guglielmo et al. Page 10

Hum Microb J. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Metagenomic workflow for comparing breast-fed versus formula-fed infants. Bio specimen 
processing (top box): Subjects were enrolled into two groups; breast-fed (BF) and formula-

fed (FF) and demographics are summarized in Table 1. (1) A fresh fecal sample was 

collected and flash frozen per subject. (2) DNA was extracted from the fecal sample and (3) 

used to prepare shotgun metagenomic libraries for next generation sequencing (Illumina 

platform). Bioinformatics: Sunbeam (middle box): Raw reads (FASTQ) were (4) quality 

trimmed to remove adapter sequences and low-quality bases. The cleaned FASTQ files (5) 

were mapped to the human genome and PhiX to remove contaminating (un-specific) or 

control reads. The reads from the decontaminated FASTQ (6) were classified using the 

Kraken database. Bioinformatics: Publicly available algorithms, custom pipeline (bottom 
box): The Kraken classified reads were (7) analyzed via edgeR to determine differentially 

represented genera, summarized in Table 2 and Figs. 2–4. The decontaminated FASTQ files 

were pooled (8) to create one large library for de novo assembly (MEGAHIT) of a 

metagenome (9), annotated with prodigal and NCBI COGs. Reads from the individual 

FastQs were aligned, using STAR and RSEM, to the metagenome (10). Normalized gene 

counts were calculated via edgeR and results are displayed in Table 2.
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Fig. 2. 
Principle coordinates analysis based on species level data. (A) Bray-Curtis distance plot 

based on species abundance per subject. Each data point represents either a breast-fed (red) 

or formula-fed (blue) subject. The shape of the data points represents either technical 

replicate 1 (circle) or technical replicate 2 (triangle). Axis 1 has a variance of 17.25% and 

axis 2 has a variance of 12.04%. (B) Jaccard Distance plot based on presence or absence of 

species per subject. Each data point represents either a breast-fed (red) or formula-fed (blue) 

subject. The shape of the data points represents either technical replicate 1 (circle) or 

technical replicate 2 (triangle). Axis 1 has a variance of 7.62% and axis 2 has a variance of 

6.46%.
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Fig. 3. 
Distribution of genera identified in the gut microbiome of breast-fed and formula-fed 

infants. Left Panel: Box-plot of the top most abundant genera in breast-fed infants (red 

boxes). Right Panel: Box-plot of the top most abundant genera in formula-fed infants (blue 

boxes). The red asterisks represent the genera that were statistically different between the 

breast-fed and formula-fed cohorts. The y-axis represents phylogenetic abundance 

(percentage), and each genus is represented on the x-axis.
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Fig. 4. 
Cas9 Validations. InterPro was used to analyze the amino acid sequence coded for by the 

Cas9 gene to validate its identity (A). Non-quantitative PCR was used to validate the results 

of the bioinformatic analysis for Cas9 (B) as well as a Carboxypeptidase (C).
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Table 1

Subject Characteristics/Demographics.

Breast-fed (n = 10) Formula-fed (n = 5)

Sex, F 50% 0%

Age, days (mean, STD) 79, 15 65,22

(median, IQR) 82, 14 59,22

Race, Caucasian 80% 60%

Ethnicity, Hispanic 20% 20%

Delivery, SVD 90% 60%

Birth weight, g (mean, STD) 3.23, 0.46 3.37, 0.3

Enrollment weight, g (mean, STD) 5.10, 0.75 5.06, 0.40

Maternal age, years (mean, STD) 33, 4.0 33, 6.1

Paternal age, years (mean, STD) 35, 6.5 34, 6.6

Maternal BMI, kg/m2 (mean, STD) 27.9, 7.4 26.7, 3.4

Maternal pre-pregnancy BMI, kg/m2 (mean, STD) 26.5, 6.9 24.7, 4.2

Paternal BMI, kg/m2 (mean, STD) 29.8, 9.6 26.5, 2.2

Descriptive statistics for subject characteristics; two-tailed Student’s T-test for numerical values, Fisher’s exact test for categorical values. There 
were no statistically significant differences between the two cohorts for any characteristic measured except for maternal height (not shown), which 
was lower in the formula-fed cohort (63 in. vs. 66.3 in., p < 0.01).
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