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With the rapid advancement in many multimedia applications, such as video gaming, computer vision applications, and video
streaming and surveillance, video quality remains an open challenge. Despite the existence of the standardized video quality as
well as high definition (HD) and ultrahigh definition (UHD), enhancing the quality for the video compression standard will
improve the video streaming resolution and satisfy end user’s quality of service (QoS). Versatile video coding (VVC) is the latest
video coding standard that achieves significant coding efficiency. VVC will help spread high-quality video services and emerging
applications, such as high dynamic range (HDR), high frame rate (HFR), and omnidirectional 360-degree multimedia compared
to its predecessor high efficiency video coding (HEVC). Given its valuable results, the emerging field of deep learning is attracting
the attention of scientists and prompts them to solve many contributions. In this study, we investigate the deep learning efficiency
to the new VVC standard in order to improve video quality. However, in this work, we propose a wide-activated squeeze-and-
excitation deep convolutional neural network (WSE-DCNN) technique-based video quality enhancement for VVC. )us, the
VVC conventional in-loop filtering will be replaced by the suggested WSE-DCNN technique that is expected to eliminate the
compression artifacts in order to improve visual quality. Numerical results demonstrate the efficacy of the proposed model
achieving approximately −2.85%, −8.89%, and −10.05% BD-rate reduction of the luma (Y) and both chroma (U, V) components,
respectively, under random access profile.

1. Introduction

With emerging technologies that have rapidly evolved,
multimedia services and video applications have signifi-
cantly increased. )erefore, higher resolution (4K and 8K),
especially for video games, e-learning, video conferencing,
and surveillance tasks, is required to meet end-users viewing
quality specifications. A next generation video encoding,
established by the Joint Video Experts Team (JVET) in July
2020 [1], was the successor of high efficiency video coding
(HEVC) [2]; it is the versatile video coding (VVC), which
was also called H.266. VVC achieves a BD-rate savings up to
30% at the same quality as HEVC, which is the best standard
adopted to offer an appropriate level of performance for new

multimedia services. Although VVC aims to keep high-
quality compressed video with additional encoding features,
it still inevitably suffers from compression artifacts, which
can lead to a decrease in the video quality. )erefore, VVC’s
quality compressed video and images need to be improved.
In this case, loop filters play a crucial role in video and image
quality optimization before they are used for interprediction
as reference images.

In the same way, as for HEVC, in order to remove video
compression artifacts and improve reconstructed video
quality, VVC standard adopts the loop filtering technique,
including the deblocking filter (DBF), sample adaptive offset
(SAO), and adaptive loop filter (ALF).)e DBF is designed to
eliminate artifacts along block borders using discontinuity-
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based smoothing filters [3, 4]. )en, SAO is the second filter
applied after DBF in HEVC and VVC [5], for compensating
the reconstructed samples with different offset values in order
to remove ringing effects.

ALF is a modern VVC function that removes distortions
between restored and original images that are the most
current loop filters [6]. Although traditional in-loop filters
can alleviate those artifacts, the dynamic distortion pro-
duced by video compression is hard to resolve. Deep
learning progress is known to be a strong technology to
overcome this task, by using the convolutional neural net-
work (CNN) as the most versatile and effective computa-
tional method for images and videos detection and analysis
[7].

In order to increase the video quality, many CNN fil-
tering methods have been suggested for HEVC and VVC
standards [8–12]. )ese existing methods are proposed to
minimize visual artifacts and to achieve great efficiency
through CNN-based in-loop filtering and postprocessing.
For example, Jia et al. in [8] proposed a HEVC post-
processing residue-guided loop filter. A deep network based
on progressive rethinking and collaborative learning
mechanisms was developed by Wang et al. in [9] to enhance
the quality of the reconstructed frame for intra and inter-
prediction. Inspired by emerging technology challenges, as
well as high speed rate and high video and image resolution
quality, the original in-loop filtering has become inadequate
to satisfy the services demanded by the end users. In this
study, we propose a powerful deep CNN-based filtering
technique, called the wide-activated squeeze-and-excitation
deep convolutional neural network (WSE-DCNN). )e
proposed technique provides powerful new loop filtering
using typical VVC standards (DBF, SAO, and ALF).)e goal
is to effectively eliminate compression artifacts and improve
the reconstructed video quality and then meet the end-users
services. )e purpose of this article is to propose a WSE-
DCNN technique-based quality enhancement and then to
implement the scheme proposed in the VVC standard,
which provides coding gains accordingly for the random
access configuration.

)e remainder of this study is organized as follows:
Section 2 presents the related work overview. )e proposed
deep CNN-based in-loop filtering for VVC standard is
defined in Section 3. )en, in Section 4, the proposed
method is evaluated. Finally, Section 5 concludes the study.

2. Related Work Overview

In recent years, artificial intelligence has seen tremendous
progress in computer vision topics, in particular in image
and video compression [13–15]. Deep learning networks
have been applied to enhance coding tools for HEVC and
VVC standards, including intra and interprediction,
transformation, quantization, and loop filtering [16, 17].
With regards to the HEVC, Bouaafia et al. in [14] proposed a
reduction of HEVC complexity based on machine learning
in the process of interprediction, which saves a good per-
formance in terms of RD cost and computational com-
plexity. Furthermore, a fast CNN-based algorithm is

developed by Yeh et al. in [18] to improve the efficiency of
HEVC intracoding. Pan et al. in [19] suggested an improved
ED-CNN-based in-loop filtering to replace HEVC DBF and
SAO in order to remove artifacts. )e results prove that the
proposed algorithm achieves BD-rate savings of 6.45% and
PSNR gains of 0.238 dB. A novel technique for DBF and
SAO in HEVC intracoding was proposed based on the
Variable-filter-size Residue learning convolutional neural
network (VRCNN) [20]. )e obtained results show that the
suggested technique achieves 4.6% BD-rate savings.

In order to enhance loop filtering and postprocessing,
Ma et al. in [10] have developed a new CNN model, known
as MFRNet for the VVC standard. )e proposed model was
implemented into the VVC test model to alleviate visual
errors and increase video quality. In addition, a dense re-
sidual convolutional neural network (DRN) for the VVC
filtering method proposed was applied after DBF and before
SAO and ALF [12]. )e H.265/VVC fast-intra-CU coding
technique is based on the improved DAG-SVM classifier to
minimize CU partition complexity [21]. Achieved results
reveal that the proposed method achieves a 54.74% time
saving. Moreover, Park et al. in [22] proposed to use a
lightweight neural network (LNN) for the fast decision al-
gorithm to remove redundant VVC block partitioning.

)e suggested model provides a compromise between
the compression and encoding complexity. In this study, we
propose a wide-activated squeeze-and-excitation deep
CNN- (WSE-DCNN-) based in-loop filtering approach for
VVC video quality enhancement and achieve coding gains.

3. Proposed Method

3.1. Proposed WSE-DCNN-Based In-Loop Filtering for VVC.
)e VVC standard [1] still employs the block-based hybrid
video coding architecture used in all video compression
standards, since H. 261. It includes intraframe prediction,
interframe prediction, transformation, quantization, loop
filtering (DBF, SAO, and ALF), and entropy coding. Figure 1
depicts the block diagram of a hybrid video encoder. )e
VVC architecture is made up of two processes, such as
encoder and decoder processing. Each picture is split into
block-shaped regions, with the exact block partitioning,
called coding tree unit (CTU), which is the basic block
partition of the HEVC and VVC standards. )e first picture
of a video sequence is coded using only intrapicture pre-
diction. For all remaining pictures of a sequence or between
random access points, interpicture temporally predictive
coding modes are typically used for most blocks. )e
encoding process for interpicture prediction consists of
choosing motion data comprising, the selected reference
picture, and motion vector to be applied for predicting the
samples of each block. )e residual signal of the intra or
interpicture prediction, which is the difference between the
original block and its prediction, is transformed by a linear
spatial transform.)e transform coefficients are then scaled,
quantized, entropy-coded, and transmitted together with the
prediction information. )e encoder duplicates the decoder
processing loop, such that both will generate identical
predictions for subsequent data. )erefore, the quantized
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transform coefficients are constructed by inverse scaling and
are then inverse transformed to duplicate the decoded ap-
proximation of the residual signal.)e residual is then added
to the prediction, and the result of that addition may then be
fed into the loop filters (including, DBF, SAO, and ALF) to
smooth out artifacts induced by block-wise processing and
quantization. )e final picture representation (the output of
the decoder) is stored in a decoded picture buffer to be used
for the prediction of subsequent pictures.

In our study, the proposed WSE-CNN model replaces
the original VVC loop filtering module (including, DBF,
SAO, and ALF), as shown in Figure 1. )e principal goal of
this strategy is to improve the visual quality of the recon-
structed frame while maintaining coding gains. )e rate
distortion optimization (RDO) technique is used to deter-
mine whether to apply to each coding unit (CU) the pro-
posed WSE-DCNN in-loop filter. Equation (1) is given for
the RDO metric.

J � D + λR, (1)

where the distortion between the original and the recon-
structed frame is denoted by D, the coding bits needed
represents by R and the Lagrange multiplier controlling the
trade-off between D and R is λ. )e coding tree unit (CTU)
level on/off control is adopted to avoid a reduction in RDO
performance. )e frame-level filtering would be shut off to
prevent oversignal, if the enhancement quality is not worth
to cost the signaled bits. Specifically, the control flags at the
CTU-level and frame-level are designed as follows. For each
CTU, if the RD performance of the filtered CTU achieves
better quality, the corresponding CTU control flag is en-
abled; otherwise, the flag is disabled. After all the CTUs in
one frame are determined, the frame-level RD cost before
and after filtering are calculated in equation (1) indicated by
J1 and J2, respectively. If J1 > J2, the frame-level flag will be

enabled. Hence, the corresponding frame-level flag can be
encoded in the slice header and CTU-level control flags can
be signaled into each corresponding CTU syntax. Otherwise,
the frame-level flag is disabled and CTU-level flags will not
be encoded for transmission anymore.

3.2. WSE-DCNNArchitecture. Figure 2 shows the proposed
framework. )e suggested technique, divided into two
chromas (U and V) and luma (Y), would filter out the three
components simultaneously. )e WSE-DCNN model pro-
posed consists of six inputs; three are YUV reconstructed
and the other three include the QP quantization parameter
and the luma and chroma coding unit. )ese inputs are first
normalized to provide better convergence in the training
process and then fed to the proposed model. Hence, the
three (Y/U/V) reconstructions are normalized to [0, 1]
based on the highest bit depth value. )is means that the
normalized values (P′(x, y)) are achieved by the following
equation.

P″(x, y) �
P′(x, y)

1≪B − 1
, x � 1, . . . , W, y � 1, . . . , H, (2)

where B denotes the bit depth, P″(x, y) is the normalized
value in normalized Y/U/V at (x,y), and W and H are the
width and the height of the reconstructed frame,
respectively.

Various quantization parameters (QPs) contribute to a
variety of reconstructed video quality. )is makes it easier to
use a single set of parameters to fit reconstructions with
different qualities. QP should be normalized to QPmap (3).

QPmap(x, y) �
QP
63

, x � 1, . . . , W, y � 1, . . . , H. (3)

Input frame

Intraprediction

Interprediction

Residual Transform/
quantization Entropy coding

Inv. transform and
quantization

WSE-DCNN-based 
in-loop filtering

Bitstreams

Reconstructed frame

Figure 1: Proposed WSE-DCNN-based in-loop filtering in VVC standard.
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)e CU partition of the luma (Y) and chroma (U, V)

components also represents the inputs. Since the blocking
artifacts are mainly caused by CU block partition, the di-
vision information of CU is converted into coding unit maps
(CUmaps) and normalized. For example, for each CU in
each frame, the boundary position is filled with two and the
other positions are filled with one. However, the normali-
zation factor is two, and two CUmaps can be obtained, one
as Y − CUmap and the other denoted by UV − CUmap.

)e WSE-DCNN process has three levels, as shown in
Figure 2. )e three Y, U, V components are processed via
WSE blocks at the first level, and each component is fused
with its own CUmap. Moreover, before it is concatenated to
feature maps, CUmap would be multiplied by its own
channel. Since U’ and V’ size is just the half of Y, the above
needs to be used for size alignment. In the second level, the
feature maps of different channels are connected together
and then processed by several WSE blocks. At this level, the
QPmap is also concatenated. At the last level, in order to
produce the output residual image, the three channels are
processed separately again.)e WSE is the principal module
for the proposed WSE-DCNN-based in-loop filtering
technique, as shown in Figure 3. Furthermore, the wide-
activated convolution [23] and the squeeze-and-excitation
(SE) operation [24] compose this simple module. )e wide-
activated convolution performs very well in super-resolution
and noise reduction tasks. It composed of 3 × 3 wide con-
volution followed by the rectified linear unit (ReLU) [25]
activation function and a convolution layer with kernel size
1 × 1. Next comes the SE operation, the most used operation
to weigh each convolutional layer. It can use the complex
relationship between different channels and generate a
weighting factor for each channel.

)e WSE module includes the following steps as shown
in Figure 3, given a feature map X with shape H × W × C,
where C means the channel amounts. First, given Y1 and Y2
are the outputs of the wide-activated convolution, as shown
in the following equations.

Y1 � ReLU W1X + b1( 􏼁, (4)

Y2 � W2Y1 + b2. (5)

In the second step, each channel obtains a value
according to the squeeze operation using global average
pooling (GAP) Y3(k).

Y3(k) �
1

H × W
􏽘

H

i�1
􏽐
W

j�1
Y2(i, j, k). (6)

)e excitation operation is described by two fully con-
nected layers followed by ReLU and sigmoid (σ) activation
functions, respectively. Y4 is the first fully connected layer
followed by ReLU, which is refined by a certain ratio r. )en,
the second fully connected layer followed by the sigmoid
activation function is denoted by Y5, and it gives each
channel a smoothing gating ratio in the range of [0, 1].

Y4 � ReLU W4Y3 + b4( 􏼁,

Y5 � σ W5Y4 + b5( 􏼁.
(7)

According to the WSE function, each Y2 channel is
multiplied by the gating ratio.

Y6(i, j, k) � Y2(i, j, k) × Y5(k)

∀i ∈ 1, . . . , H{ },∀j ∈ 1, . . . , W{ },∀k ∈ 1, . . . , C{ }.

(8)
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Figure 2: WSE-DCNN structure.
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Finally, when the number of input equals to the output
channels C, a skip connection will be added directly from
input to output to learn the residue. Otherwise, there is no
skipped connection.

4. Results and Discussion

)e efficiency of the proposed WSE-DCNN-based in-loop
filtering scheme under VVC standards is assessed in this
section. )en, a comparative performance with the existing
approaches is introduced.

4.1. Training Settings. In this contribution, the public video
dataset (BVI-DVC) is exploited to train the deep video
compression techniques [26]. )e BVI-DVC dataset con-
tains 800 video sequences with different resolutions between
270p and 2160p. In this case, we choose 80% video sequences
for the training process and 20% for the validation phase.
)ese sequences are compressed under random access
scenario by the VVC VTM-4.0 test model [27] with QP
values (22, 27, 32, and 37). For each QP, the reconstruction
video images, including luma and chroma components, and

its corresponding ground truth are divided into 64×64
patches, which were selected in a random order.

)e proposed deep learning framework is trained offline
in a supervised learning manner. )e deep framework used
during the training phase is the TensorFlow-GPU [28]. In
the experiments, the training parameters used are denoted
by the following: the batch size is set to 128, the training
epochs to 200, the learning rate is set to 0.001, and weight
decay of 0.1 for every 50 epochs. To train the proposed deep
model, we applied an optimizer, such as the Adam algorithm
[29]. Intel®core TM i7-3770 @3.4GHz CPU with 16GB
RAM and an NVIDIA GeForce RTX 2070 GPU are used as
the training platforms.

To train the proposed WSE-DCNN model, we assume
that the mean square error (MSE) [30] is applied as the loss
function between the reconstructed and the ground truth
image. )e MSE loss function is defined in the following
equation.

L(θ) �
1
N

􏽘

N

i�1
F Yi, θ( 􏼁 − Xi

����
����
2
2, (9)

Let Xi is the ground truth of the proposed model, where
i ∈ 1, . . . , N{ }. F(.) is the output of the WSE-DCNN model,
where Yi represents the compressed images, i ∈ 1, . . . , N{ },
and θ is the parameter set of the proposed framework.

)e loss function evaluation is the way to judge whether
the model is well trained or not. It indicates, as shown in
Figure 4, that the model converged reasonably quickly by
tending to zero the loss function. In addition, the loss
(defined in equation (9)) value remains the same from epoch
100 onwards, which means that no training problem arose
during the training process. )is proves that model’s weight
is well tuned.

)e proposed WSE-DCNN technique is implemented in
the VVC standard in order to replace the conventionally
applied filtering system during the testing process. All ex-
periments are evaluated using a random access configura-
tion at four QP values (22, 27, 32, and 37) under the VVC
JVET common test conditions (CTC) [31]. )e RD per-
formance analysis is performed based on Bjøntegaard-delta
bitrate (BD-rate) [32]. )e BD-rate represents the average
bitrate saving calculated between two RD curves for the same
video quality, where negative BD-rate values indicate actual
bitrate saving and positive values indicate how much the
bitrate is increased.

4.2. RD Performance Evaluation. Compared to the original
VVC standard, Table 1 provides the RD performance results
of the proposed technique. Columns Y, U, and V in the table
show the BD-rate of Y, U, and V components, respectively.

)e proposed technique achieves better mean coding
gains when integrated into VVC standard. It can achieve
2.85% BD-rate savings for luma Y component and 8.89%
and 10.05% for both chroma U and V components under
random access profile, as given in Table 1. )e proposed
system provides substantial efficiency of RD compression
primarily for all test sequences in U and V chrominance. It is
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Figure 3: WSE module.
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also apparent that, for some sequences, the compression
performance varies widely, such that video sequence content
affects the proposed model. In addition, the suggested model
performs better in terms of RD performance for highmotion
or rich texture video sequences, such as Campfire, CatRo-
bot1, Kimono2, RaceHorses, and BQSquare. Consequently,
the suggested CNN-based loop filtering outperforms VVC
with the conventional loop filtering algorithm in terms of
RD performance.

PSNR is also used as a quality metric to test the per-
formance of our proposed filtering technique integrated into
the VVC standard, which is defined by the following
equation [33].

PSNRYUV �
6 × PSNRY + PSNRU + PSNRV

8
. (10)

In order to show the subjective visual quality and to
further verify the effectiveness of the suggested model, the
RaceHorses video sequence for class D was encoded by QP
22 under random access profile. Figure 5 shows the visual
quality comparison. It is obvious that frame details are
blurry when compressed by the original VVC standard, but
become clearer after being filtered by the proposed tech-
nique. In contrast to the regular VVC with/without con-
ventional in-loop filtering, the proposed technique
effectively removes all blocking artifact, such as ringing and
blurring artifacts, which enhances video quality.

A comparative performance of the proposed approach
was made with other CNN-based filtering methods, as given
in Table 2. Based on VVC CTC, Table 2 provides the
comparison of the encoding performance in terms of re-
ducing RD performance with other approaches [12, 33]. In
this work [12], Chen et al. proposed to improve recon-
structed video quality through the in-loop filter of a dense
residual convolutional neural network (DRN). )is network
is placed after DF and before SAO and ALF into VVC VTM-
4.0 reference software, in which the DIV2K dataset [34] is
used in the training phase. In addition, for both inter and
intraimages, the CNN in-loop filter algorithm is proposed
[33], which is implemented in VVC VTM-4.0 before ALFs
with DBF and SAO are disabled.

Compared to other previous approaches, for all test
sequences from class A1 to class D, the proposed WSE-
DCNN system implemented in VVC better performed in
terms of compression performance for both luma and
chroma components, as given in Table 2. )is means that in
terms of objective and subjective visual quality, the model
proposed works well. As results of the proposed technique,
the effectiveness of the WSE-DCNN approach is shown in
comparison to other approaches in almost all test sequences.

We presented a RD performance curves for the sug-
gested model-based in-loop filtering, compared to other
approaches with QPs values under random access scenario
for class A1 to class D. )e RD performance curves com-
parisons are given in Figure 6. Comparing the corre-
sponding methods, we can see that the proposed filter model
considerably enhances the VVC compression performance.
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Figure 4: Training analysis “Loss curve.”

Table 1: VVC performance evaluation of the proposed model
under random access profile.

Class Sequences
BD-rate (%)

Y U V

Class A1 Tango2 −2.89 −10.02 −11.35
Campfire −1.22 −2.75 −10.28

Class A2 CatRobot1 −1.89 −10.76 −8.03
DaylightRoad2 −1.47 −12.36 −2.55

Class B

Kimono2 −0.51 −8.13 −20.63
ParkScene −4.18 −9.25 −12.94
Cactus −2.36 −12.27 −9.70

BasketballDrive −2.53 −4.83 −7.82
BQTerrace 0.11 −2.88 0.63

Class C

BasketballDrill −3.84 −7.01 −9.97
BQMall −3.89 −11.48 −10.92

PartyScene −4.65 −9.69 −9.63
RaceHorses −1.35 −10.70 −13.66

Class D

BasketballPass −3.40 −8.21 −7.79
BQSquare −5.27 −4.39 −11.44

BlowingBubbles −4.15 −8.52 −5.19
RaceHorses −5.08 −18.04 −19.74

Overall −2.85 −8.89 −10.05
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(a) (b)

(c) (d)

Figure 5: Visual quality comparison (the 26th frame of RaceHorses with QP� 22: (a) Original; (b) VVC without in-loop filtering
(PSNR�39.84 dB); (c) VVC (PSNR�39.96 dB); (d) VVC-based proposed model (PSNR�40.15 dB).

Table 2: Comparative RD performance with other approaches.

Class Approach [12] Approach [33] Proposed approach
BD-rate (%) Y U V Y U V Y U V
Class A1 −1.27 −3.38 −5.10 0.87 0.12 0.22 −2.05 −6.38 −10.81
Class A2 −2.21 −5.74 −2.88 −1.12 −0.52 −2.11 −1.68 −11.56 −5.29
Class B −1.13 −4.73 −4.55 −0.83 −0.47 −1.20 −1.89 −7.47 −10.09
Class C −1.39 −3.63 −4.36 −1.76 −3.64 −6.80 −3.43 −9.72 −11.05
Class D −1.39 −1.96 −3.08 −2.95 −3.27 −7.35 −4.47 −9.79 −11.04
Overall −1.47 −3.88 −3.99 −1.16 −1.56 −3.44 −2.70 −8.98 −9.65
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Figure 6: Continued.
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)e in-loop filtering suggested works well, in particular, in
high-resolution video sequences, such as in class A1, class
A2, and class B.

5. Conclusion

In this article, we have introduced a deep learning
technique to improve VVC video quality while enhancing
the user’s services. To alleviate the coding artifacts as well
as ringing, blocking, and blurring, the proposed WSE-
DCNN technique is integrated into VVC standard to
replace the traditional in-loop filtering. Compared to
original VVC filters, simulation results show that the
proposed system offers best objective and subjective
compression efficiency, with a BD-rate reduction of ap-
proximately −2.85%, −8.89%, and −10.05% for Y, U, and

V components, respectively. )e comparative results
reveal that the proposed in-loop filtering framework
proves its effectiveness in improving video quality. In
future work, two deep learning algorithms will be de-
veloped, one to improve the VVC CU partition at
interprediction in order to reduce VVC complexity re-
duction and the other to replace original filters to enhance
visual quality.
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Figure 6: Comparative RD performance curves. (a) Class A1 “Campfire @ 3840 × 2160.” (b) Class A2 “CatRobot @ 3840 × 2160.” (c) Class B
“BasketballDrive @ 1920 × 1080.” (d) Class C “BasketballDrill @ 832 × 480.” (e) Class D “BasketballPass @ 416 × 240.”
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