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Abstract
Here, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an
endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-
hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role
of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris’ faeces shared
about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with
soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic
potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa
were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a
beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting,
once again, the potential consequent impacts on the wider habitat.
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Introduction

Geophagy, the intentional consumption of soil, is practiced by
many different human cultures over different continents [1].
Cultural tradition, together with sensory trap, hunger or stress
relief, are the main three non-adaptive explanations for human
geophagy [1]. The well-documented occurrence of geophagic

behaviour in many vertebrates, including non-human
Primates, encourages the formulation of two main adaptive
hypotheses: (i) the supplementation function consisting of
supplementing microelements that are lacking in the diet and
(ii) the protective function of soil in pH regulation, against
toxins and parasites [2]. In this respect, lemurs’ radiation in
more than 100 species, colonizing different habitats and
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performing soil eating in at least 40 species, make them a very
promising model for untangling the causes and functional
consequences of geophagy [3]. Indri (Indri indri), the biggest
among living lemurs, has a well-documented feeding and ge-
ophagy behaviour. This lemurs species is classified as ‘criti-
cally endangered’ by the IUCN Red List of Threatened
Species due to the destruction and fragmentation of its habitat
[4]. Furthermore, indris have never been successfully bred in
captivity [5]. This evidence suggests that some behavioural
and environmental factors are not satisfied with the already
tested captivity protocols.

The indris’ diet is mainly folivorous (i.e. immature leaves),
but it may include even bark, seeds, flowers and fruits [5] (Fig.
1 b, c and d, Supplementary Video S1). In the folivorous diet,
the interactions between host and gut microbiome are neces-
sary for the processes involved in cellulase activities due to the
absence of these enzymes in all vertebrates [6, 7]. Primates’
gut harbour a plethora ofmicrobes, including archaea, bacteria
and fungi, which play a crucial role in the digestion process,
health and behaviour [8–11]. Despite the limited studies on
primate mycobiome, indications are now accumulated on the
fungi’s important role in host physiology [12, 13]. However,
there is evidence that the primates’ gut lacks a stable core
mycobiome, unlike the bacterial microbiome [14]. In this re-
spect, to define if a fungal species inhabits the gut stably or
transiently remains an open question. The high inter-
individual variability can be explained considering that diet,

geography and environment are the primary drivers in shaping
the mycobiome composition [10] and fungal species of envi-
ronmental or food-associated origin could transiently colonise
the gut influencing the mycobiome composition. In this re-
gard, we aimed to investigate the linkages between geophagic
soil and indris gut mycobiome, using samples collected in the
Maromizaha forest (Madagascar) (Fig. 1a). Specifically, we
evaluated (i) the possible role of the soil properties eaten by
indris and (ii) the putative geophagic soil contribution to the
fungal communities inhabiting the indris’ gut.

Material and Methods

Behavioural Observation, Faecal and Soil Sample
Collection

All the samples were obtained from indris (faecal material)
and geophagic soils in Maromizaha forest (latitude 18° 57′ S
and 19° 00′ S, longitude 48° 26′ E and 48° 31′ E,Madagascar)
betweenDecember 4 and 6, 2018 (Fig. 1a). Indris has been the
subject of ongoing etho-ecological studies since 2009 [15].
Records are kept as photographs or videos.

Faecal samples were collected from 9 individuals (Table 1)
following the groups’ activity patterns in their natural habitat.
Every single individual was recognised by natural trough
marks [16]. We collected faecal samples immediately after

Fig. 1 a Localisation of the study site, the Maromizaha Forest, in north-eastern Madagascar; (b) indri eating a mature, speckled leaf; (c) indri eating
young leaves; (d) indri eating soil from a fallen tree site
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defecation, when only one animal was present, to avoid indi-
vidual misidentification during the sampling process [15].
Disposable sterile gloves were worn when collecting samples
to prevent contamination. Specifically, about 5 g of faeces was
collected into screw-capped tubes, with an integrated plastic
shovel-like tool attached to the cap, containing 10 ml of
RNAlater (Thermofisher, Waltham, MA, USA). The stool
amount was taken from the middle of each fresh piece of
faeces to avoid soil contamination. Next, the small plastic
shovel-like tool attached to the cap of screw-capped tubes
was used to scoop faecal samples. Every container was sealed
immediately after the collection to avoid cross-contamination
among samples. Seven soil samples (Table 1) were collected
from the seven geophagy sites. All samples have been pre-
served in a portable refrigerator and then stored at − 20 °C in
the laboratory until downstream analysis.

Soil Characterisation

Soil samples were air-dried, milled and sieved at 2 mm for soil
analysis in agreement with SSSA methods [17]. Briefly, total
carbon (Ctot) and total nitrogen (Ntot) were determined using
an elemental analyser (Flash 2000, Thermo Scientific,
Germany) coupled with an isotopic mass spectrometer
(DELTA Advantage, Thermo Scientific, Germany). Pseudo
total element concentration was determined after acid
mineralisation with aqua regia and hydrogen peroxide in an
Ethos TC microwave lab station (Milestone, Bergamo, Italy)
by an inductively coupled plasma optical emission spectrom-
eter (ICP-OES, Ametek Spectro, Arcos, Germany). Iron, alu-
minium, titanium and silica oxide concentrations were deter-
mined by ICP-OES (Ametek Spectro, Arcos, Germany) after
extraction with sodium dithionite (Na2S2O4).

DNA Extraction and NGS Sequencing

Total DNA extraction from 200 mg faecal and soil samples
was carried out using the DNeasy PowerSoil Kit (QIAGEN,
Hilden, Germany) with a modification to the protocol

including a pre-treatment with lyticase. Briefly, the samples
were initially treated with 200 U lyticase (Sigma-Aldrich Co.,
Gillingham, UK), homogenised and incubated for 30 min at
room temperature [18]. Lastly, the DNA was eluted twice to
improve yield. Extracted DNA was quantified using a QuBit
2.0 Fluorometer Assay (Life Technologies Corporation) and
then adjusted at 1 ng μL−1.

Fungal ITS region was amplified using the primer pairs
ITS3 (5 ′-TCGTCGGCAGCGTCAGATGTGTATAA
GAGACAGGCATCGATGAAGAACGCAGC-3′) and ITS4
(5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AGTCCTCCGCTTATTGATATGC 3′) modified with the re-
quired Illumina sequencing adaptors [19]. PCR was conduct-
ed in a total reaction volume of 25 μl using the Platinum™
Taq DNA Polymerase High Fidelity (Thermo Fisher
Scientific, Italy), 1 μl of each primer (10 μM) and 2.5 μL of
DNA template. In all samples, 0.4 mg/ml BSA was added.
The thermal cycling protocol consisted of 94 °C for 2 min
followed by 30 cycles each of 30 s at 94 °C, 30 s at 53 °C
and 30 s at 72 °C and final elongation at 72 °C for 5 min. The
libraries were prepared by BMR-Genomics Ltd. (http://www.
bmr-genomics.it/) and sequenced on the MiSeq platform
(Illumina Inc., San Diego, Ca, USA).

Bioinformatics Analysis and Statistical Analysis

Raw data were quality checked via FastQC [20]. Sequences
were pre-processed, quality filtered, trimmed, de-noised,
merged, modelled and analysed via DADA2 within QIIME2
[21]. Chimeras were discarded using the ‘consensus’ method
[22]. Finally, the sequences variants were clustered using
VSEARCH with a cut-off of 97% [23]. The taxonomy anno-
tation was performed using a Naïve-Bayes classifier trained
on the UNITE+INSD database against the representative se-
quences [24]. The taxonomic annotated OTU table was parsed
against the FunGuild (v1.0) database to assign putative func-
tional guilds to each sample [25]. All sequences have been
submitted to the European Nucleotide Archive (EMBL-EBI)
under the study accession number PRJEB39443 (sample ac-
cession number from ERS4827963 to ERS4827978).
Cryptococcus sequences were aligned using CLUSTALW
[26]. For phylogenetic reconstruction, the neighbour-joining
algorithm and Kimura’s two-parameter model were used with
complete deletion of positions containing gaps or missing data
and 1000 bootstrap replications [27]. Phylogenetic analyses
were carried out in MEGAX version 10.2 [27].

Rarefaction curves and Venn diagram were created using
‘ggplot’ and ‘vegan’ packages within the ‘R’ environment
[28–30]. Linear discriminant analysis effect size (LEfSe) al-
gorithm (considering an LDA score ≥ 2 and p value < 0.05)
was applied to discover the most abundant fungal genera (av-
erage > 0.3%) and functional guilds associated with indri and

Table 1 Information of the indris and soils considered

Name Group Age (years) Sex Geophagic behaviour

Bemasoandro 8MZ > 6 Female Yes

Emè 8MZ 1 Male Yes

Zafy 8MZ 6 Male Yes

Eva 4MZ > 6 Female Yes

Koto 4MZ > 6 Male Yes

Mahagaga 3MZ > 6 Male Yes

Bevolo 1MZ > 6 Female Yes

Cami 1MZ 1 Female Yes

Dary 2MZ 6 months Unknown Yes
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soil samples [31]. All the analyses were performed on rarefied
data to 1154 reads.

Results and Discussion

Geophagy

In all nine individuals considered in this study (Table 1), we
observed soil eating behaviour and a quite stereotypical inges-
tion method (Fig. 1d; Supplemental Video S1). The focal
group always moved to a precise location solely for soil con-
sumption. In all soil feeding-bouts observed, an indri
descended first to the ground, jumping from a tree or a liana
near the geophagy site, and started to eat soil. During one soil
feeding-bout, one member of the group began to eat. The other
members approached the site and stayed on the nearest trees
monitoring the surrounding environment (< 10min) till he/she
left the site, and a new indri took his/her turn in eating soil, one
after the other.

The individuals consumed the soil directly by eating the
exposed horizons with the mouth or collecting a small amount
of soil with the hand and successively introducing it into the
mouth.

When the mother carried the babies (i.e. Eme and Cami)
(Table 1) and the female entered the site, we observed geoph-
agy also in the youngest animals (Supplemental Video S1).
After all individuals had fed, the group scurried out of the
geophagy site. Next, the group reached a new location for
eating or resting. Geophagy sites observed were mostly in
the proximity of fallen trees, landslides or soft mounds of
earth, revealing the lower soil horizons. There were exposed
soils at the bases of trees uprooted by wind or rainfall in the
valley, at lower elevations, in the slopes. All the locations
were relatively free of debris (grass, leaves, stones, etc.)
(Supplementary Video S1).

Geophagic Soil Composition

Soil composition analysis revealed that the different sampling
sites might be classified as Oxisols rich in secondary oxide-
hydroxides and highly weathered clays [32]. In particular, soil
analysis revealed that the sandy loam was characterised by a
quite acid pH, relatively rich in organic carbon, total nitrogen,
potassium and magnesium, but poor in phosphorous and cal-
cium (Table 2). Soil components as secondary oxide-
hydroxides are characterised by a high specific surface area,
being thus ideal candidates for the gut detoxification of indri.
This type of soil could be involved in the plant toxin adsorp-
tion, such as tannins, terpenes and cyanogenic glycosides de-
rived from the diet based on immature fruits and leaves [2,
33]. Further, the low pH is a common characteristic of
geophagic soils [34]; a consequent higher metal availability

could be advantageous for their incorporation in the biological
processes. In addition, soils were rich in manganese (Mn) and
iron (Fe) (Table 2). These essential micronutrients might
thereby contribute to both enhanced enzymatic activities and
an important nutrient supply playing a crucial role in the indri
physiology [35]. Further, heavy metals found in the soil, such
as cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni) and
zinc (Zn), were suitably below the threshold value for either
ecological and health risks (Table 2) [36].

Mycobiome of the Geophagic Soil and Indri

After bioinformatics analysis, we obtained 437,872 reads
clustered in 1110 OTUs (97% identity). Rarefaction curves
showed that almost all the soil and indris faecal samples nearly
reached plateau (Fig. S1). We found that 74 (8.9%) of the
OTUs were shared between soil and indris’ faeces samples

Table 2 Geophagic soil characteristics, average and standard error (es)

Geophagic soil Average ± es

Granulometry Clay 14.7 ± 1.4

Silt 8.9 ± 0.9

Sand 76.4 ± 1.2

pH (H2O) 4.2 ± 0.1

Total carbon and nitrogen N (%) 0.23 ± 0.02

C (%) 3.18 ± 0.31

C/N 13.71 ± 0.41

Pseudo total elements (mg/kg) Al 77273 ± 5638

Ca 427 ± 91

Co 6.08 ± 1.61

Cr 46.67 ± 9.64

Cu 15.49 ± 4.48

Fe 39394 ± 6102

K 476 ± 192

Mg 263 ± 108

Mn 201 ± 61

Mo 2.57 ± 0.58

Na 104 ± 14

Ni 17.35 ± 5.81

P 287 ± 51

Pb 39.93 ± 5.28

S 279 ± 16

Si 279 ± 98

Sn 3.17 ± 0.28

Ti 2212 ± 491

V 67.42 ± 24.54

Zn 55.51 ± 10.10

Dithionite-extractable metals (mg/kg) Al 3580 ± 463

Fe 7988 ± 852

Ti 156 ± 37
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(Fig. 2). To the best of our knowledge, only another work has
investigated the possible overlap between microbial species in
the gut and soil [37]. The authors analysed more than 3000
samples, finding a low number of microbial classes shared
between soil and gut. In addition, we re-analysed the OTU
table of Tasnim et al. [37], and we found a considerably lower
percentage (~ 2%) of shared OTUs (i.e. soil and gut) than in
our dataset.

Although with differences in relative abundance, some
genera were found both in soil and indris’ faeces, includ-
ing Fusarium, Aspergillus, Penicillium, Apiotrichum,
Ganoderma, Mortierella, Metarhizium, Tolypocladium
and Chaetosphaeria (Fig. 3). Several members affiliated
to the genera Fusarium, Aspergillus and Penicillium have
been commonly found in primates, especially with a veg-
etarian diet, as well as in forest soil and leaves of herba-
ceous and woody plants [10, 38, 39]. In some species of
Aspergillus and Penicillium is reported the presence of
catalytic enzymes such as pectin methyl esterase and
polygalacturonase involved in plant polysaccharide degra-
dation [39–41]. Besides, xylanase genes linked with the
degradation of xylan, xylose and/or carboxymethyl cellu-
lose have been detected in some Fusarium species [39,
42]. Apiotrichum Mortierella and Ganoderma are soil-
associated genera involved in the decomposing of plant
material, and some members may be associated with
mammals [43–48]. Further, Chaetosphaeria is a cosmo-
politan genus mainly found in the soil, rhizosphere or
p lan t mate r i a l [43 , 49] , and Meta rh iz ium and
Tolypocladium are entomopathogenic fungal taxa associ-
ated with soil-borne insects [50, 51].

On the contrary, Candida and Cryptococcus that are fre-
quently detected in human and non-human primates’ gastro-
intestinal tracts were only present in faecal samples [10, 44,
52] (Fig. 3). A few species affiliated to Cryptococcus (i.e.
C. neoformans) can cause Cryptococcosis, an animal-
associated infectious disease with a worldwide distribution
[53]. Further, these species can grow and proliferate in the
decomposing wood of tree holes and the soils covered by
plant debris [53–55]. Consequently, the pathogen can be
spread among individuals via an environmental or zoophilic
way [53, 55]. Although we are aware of the technical limita-
tion (i.e. short reads), the OTU 2157 (with the highest frequen-
cy among Cryptococcus OTUs) resulted in being the closest
relative with C. neoformans (Fig. S2). The detection of this
taxon could be seen as a health problem for potential overlap
with humans, specifically for the rural communities present in
the area.

Furthermore, fungal species only present in indris’ faeces
were Nigrospora and Meyerozyma, which have been fre-
quently found in association with primates, leaves and soil
[47, 56] (Fig. 3).

The high percentage of ‘plant-associated’ fungi in the
indris’ mycobiome is not surprising considering the link-
ages between the folivorous diet and the consequent accu-
mulation of leaf-associated microbes in their gut (Fig. 4).
For instance, these environmental fungi may survive, in-
fluence and, in some cases, colonise the gut [52]. Yet, the
high percentage of ‘undefined saprotrophs’ fungal species
may assist the breakdown of indigestible leaf cellulose and
the redistribution of the nutrients [39, 57] (Fig. 4). In soil,
saprophytic fungi are well known for the production of

Fig. 2 Venn diagram showing the
number and percentage of shared
fungal OTUs between geophagic
soils and indri. OTUs were
defined by 97% sequence
similarity
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several secondary metabolites that play a crucial role in the
initial destruction of complex organic compounds [58, 59].
Nevertheless, saprotrophic fungi could have a beneficial
role in the production of enzymes necessary for the
neutralisation of toxic compounds derived from the diet
[60]. Although some environmental fungal species can be
passengers or transient inhabitants of the indris’ gut, they
most likely affect the gut microbiome directly or indirectly
(i.e. interaction with other microbes) [8, 61]. During ge-
ophagy, indris assumes soil microorganisms, which prob-
ably can colonise the intestine, at least in part and tran-
siently. Thus, they effectively could fulfil a specific tem-
porary or stable physiological role (e.g. plant polysaccha-
rides, detoxification and production of bioactive or antimi-
crobial compounds) [39, 57]. Therefore, we cannot exclude
that the continuous intake of soil microorganisms through
geophagy could constitute for indris a sort of ‘treatment’
that they seek, relevant for their health.

Conclusion

Non-human primates are of particular interest for deepening
our knowledge about bacterial microbiome research, but
mycobiota of wild populations have been poorly explored.
Recent findings have demonstrated the link between diet, hab-
itat integrity and bacterial and fungal diversity in the host gut,
rethinking the role of gut microbiota research as a tool for
conservation [12, 62, 63]. As the microbial diversity may di-
rectly impact host health [64], the fungal diversity and the
characteristics of the geophagic soil could play a crucial role
in the indri’s health. Thus, the soil may be considered a source
of some fungal species and essential nutrients [8]. With this
regard, protecting the lemur habitat integrity may be reflected
in protecting the integrity of gut microbial diversity, especially
in specialist primates, like the leaf-eating indris. Our findings
expand the current knowledge of the gut fungal diversity and
geophagy in wild non-human primates that could be a baseline

Fig. 3 Bubble plot representing the relative abundance of the most abundant Genera. The asterisk (*) indicates the significative difference between soil
and indri samples (p value < 0.05 and LDA score > 2.0)

Fig. 4 Bar plots representing the
relative abundance of predicted
fungal functions/guilds. The
asterisks (*), indicate the
significative difference between
soil and indri samples (p value <
0.05 and LDA score > 2.0) LDA
score and p value of the most
abundant genera are shown in
Supplemental information (Tab.
S1 and S2)
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for further studies regarding the lemurs, including indris,
conservation.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00248-020-01677-5.
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