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In studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that
explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to
study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and
INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of
inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well
as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality,
sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL
variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more
candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an
average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate
variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to
VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations

for best practices for rare disease analysis.
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INTRODUCTION

Rare human diseases are often caused by de novo or inherited
variants in a single protein-coding gene'?. Isolating the small
subset of causal variants from the numerous inconsequential
variants in cohort exome and genome datasets remains an
analytical bottleneck. The decreasing cost of sequencing has
resulted in a dramatic increase in the number of groups analyzing
sequence data from rare disease families. Because of alignment
and variant calling artifacts®, careful filtering is required to extract
an accurate set of causal variants. Each research group may
choose custom strategies, use ad hoc software, or one of many
tools designed to facilitate the filtering, including seqr (https://
seqr.broadinstitute.org/), GEMINI*, and genmod (https://github.
com/moonso/genmod). This leads to innumerable possible out-
comes when analyzing the same cohort.

Even within a single tool, different parameter values can affect
the number of candidate variants, which in turn, can impact
variant prioritization and the ability to reach a genetic diagnosis. A
previous study® examined filtering strategies on variant call files
(VCFs) but did not provide a set of parameters that can be widely
applied across cohorts or the expected number of candidate rare-
disease variants expected. Here, we introduce a minimal, but
effective set of filtering parameters and report the resulting
number of candidate variants for each mode of inheritance. We
sought to provide a set of variant filtering parameters that would
reduce variability across studies and provide a common baseline
for research across different tools and research groups. We have
avoided several common filtering strategies that are either cohort-

specific, or potentially too strict; for example, although prioritizing
predicted loss-of-function (pLoF) variants®’ can reduce the search
space, many pathogenic variants in ClinVar® are not pLoF, so most
analyses must include a broader set of variants. These filters were
found to have nearly identical performance in two whole-genome
cohorts and also in two whole-exome cohorts. The resulting set of
recommended, data-derived filters can be used in any tool as a
standard practice for variant filtering. The strategies we describe
establish a baseline expectation for variant counts per trio for each
inheritance mode.

Throughout, we note that counts of autosomal dominant
candidates differ by orders of magnitude from the number of
candidates from de novo dominant and recessive modes of
inheritance. Therefore, researchers exploring autosomal dominant
candidates will require additional filtering or prioritization, though
here, we limit our explorations to simple, strict filtering and report
the resulting counts.

RESULTS

Establishing allele-balance and genotype-quality thresholds
for exome studies

Using a cohort of 149 mother, father, and child “trios” that had
been exome sequenced (see “Methods”), we labeled variants as
potential Mendelian violations when the parents were predicted
by GATK® to be homozygous for the reference allele, yet the child
was predicted to be heterozygous. Because we expect between
zero and two true de novo variants per exome trio?, Mendelian
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Fig. 1

Evaluation of the impact of allele-balance and genotype-quality cutoffs on Mendelian violation rates for trio exomes. We measured

the number of Mendelian violations (x-axis) and transmissions (y-axis) as we varied allele balance within each plot. The genotype-quality cutoff
applied is increased from 5 (A) to 10 (B) to 20 (C) for each plot. The line in each plot is drawn by varying the allele-balance cutoff and counting
the number of variants that are predicted to be transmitted or apparent Mendelian violations. Dots in each plot indicate the exact rates at a
given threshold. The chosen cutoff, marked with an asterisk, required a genotype quality 20 and an allele balance between 0.2 and 0.8. The
false negative rate (FNR) for the allele-balance cutoff of 0.2-0.8 (in purple) is annotated for each genotype-quality cutoff.

violations in excess of this expectation are predicted to be false
positives. Alleles that were heterozygous in the child and in only
one parent were considered to be transmitted from the parent to
the child, and treated as true positives. We varied allele balance
(AB; i.e., the ratio of reads aligned at a variant locus that support
the alternate allele) cutoffs before declaring a variant to be either
a Mendelian violation or transmitted variant (Fig. 1). For
transmitted variants, we used the minimum AB between the
parent and the child as the value that was filtered in creating the
curve. The flat portion of the curve indicates parameter changes
that remove likely spurious violations while retaining transmitted
variants.

These results established a genotype-quality (GQ) cutoff of 20 or
higher and an AB between 0.2 and 0.8 (the purple point in each
figure) as a rational trade-off between precision and sensitivity, as
it removes many of the Mendelian violations (false positives) while
retaining most (98.6%) transmitted variants (true positives). In fact,
this is likely a conservative threshold, as even the more stringent
threshold of 0.3-0.7 has a very high transmission rate, and an
estimated false negative rate of ~1.41%. In our testing, this range
performed well for both exome and genome data (see below). We
performed the same analysis on an independent cohort of 36
whole-exome trios from a study of congenital heart disease at the
University of Utah. We verified that the curves were similar and
that resulting thresholds were similarly effective (Supplementary
Fig. 2). Specifically, we note that the performance curves are
similar, that the thresholds are on a nearly identical location in
each curve, and that the chosen thresholds strike a similar balance
of sensitivity and specificity. For consistency with genome cohorts,
we also applied a depth threshold to exome calls (Supplementary
Figs. 1 and 2), which further reduced the violation rate. While this
cutoff is a reasonable default, it is simple for users to adjust these
AB cutoffs if, for example, more stringent calling is desired. Not
surprisingly, this recommendation is similar to thresholds used
elsewhere'®. Nonetheless, to our knowledge, it is the first data-
driven derivation of filtering cutoffs.

Evaluation of filters on the number of predicted de novo
variants in exome studies

In addition to filtering variants based on GQ and AB, for rare
disease research it is also important to require a candidate de
novo variant to be rare or absent in population databases such as
gnomAD'". Given the rarity and severity of the phenotype in rare
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disease studies, it is common to examine variants predicted to
have high (e.g., variants that introduce a stop codon or alter the
coding frame) or moderate (e.g., amino acid altering variants)
impact of the resulting protein. Such variants are henceforth
referred to as “impactful.” Combining these additional require-
ments reduces the number of candidate de novo mutations from
a mode of 3 to a mode of 1 per exome trio (Fig. 2). These filters
can be used across inheritance modes, except that the minimum
population (gnomAD) allele frequency (AF) for recessive modes
should be relaxed because selection on recessive alleles only
arises when frequencies are high enough that a (pathogenic) allele
from each parent can be transmitted to a child. While it is
common to filter de novo mutations by allele count in the
population to filter out pipeline-specific artifacts'’, we chose not
to utilize this as it would require a larger cohort and diminish the
generality of our variant filtering guidelines.

Candidate variants predicted across multiple inheritance
modes for exome studies
Integrating these thresholds, we evaluated the number of
candidate variants identified for a typical exome trio under de
novo, autosomal recessive, compound heterozygote, X-linked
recessive, X-linked de novo, and autosomal dominant inheritance
models (Fig. 3). Under de novo and autosomal dominant models
of inheritance, we required candidate variants to have an AF <
0.001 in each of the eight gnomAD populations (e.g. African,
Latino, East Asian, etc.). For all others, we required a frequency
<0.01, and for autosomal dominant, we also required that the
number of homozygous alternate alleles in gnomAD to be <10.
We emphasize that for exomes, filtering for “impactful” variants
does not dramatically reduce the number of variants per sample,
and is therefore not required for rare disease analysis (for example,
compare the middle and right columns in Fig. 2). Therefore, in
exome studies, we recommend the use of impactful as an
annotation, rather than as a strict filter such that all variants are
reported, while only a subset is marked as impactful. A key insight
from this analysis is that, except for dominant inheritance modes,
we can expect around ten candidate variants when applying data-
driven population AF, GQ, and AB filters to a typical exome.
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Fig.2 The effect of combined filters on the number of predicted de novo mutations in exome studies. The number of candidate de novo
variants for each of 149 exome trios. In each column, a point represents the number of de novo mutations per trio. Moving right along the
plot, each column adds filters to the column that precedes it. The first column uses only the sample information derived above, where AB is
allele balance (alternate reads/(alternate reads + reference reads) and GQ is genotype quality. The second column adds filters on gnomAD
allele frequency (AF); this reduces the average number of candidates. The third column further requires that the variant is “impactful,”

according to slivar.
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Fig. 3 The number of candidate variants that follow different inheritance modes per exome. The number of candidate variants for 149
exome trios are separated by inheritance mode and colored by variant class. Variants deemed impactful by slivar using annotations from VEP,
snpEff, and bcftools. Counts for autosomal dominant variants are shown in a separate plot due to the much larger numbers. Each point
represents the number of candidate variants for a single family (y-axis) passing the inheritance mode (x-axis), genotype-quality, population
allele-frequency, and allele-balance filters. Gray bars indicate the mean number for each class and inheritance mode. Points are jittered slightly

to allow viewing more samples simultaneously.

Evaluation of filters on the number of predicted de novo
variants in whole-genome studies

We repeated similar analyses for a cohort of 94 trios that
underwent whole-genome sequencing (WGS) to ~30X coverage,
as part of the Rare Genomes Project (“Methods”). In order to
explore additional options for WGS variant filtering, we considered
calls from DeepVariant'? that were joint-genotyped by GLNexus'?
and compared filtering strategies with GATK® calls. Using only AB
and GQ filters, GATK reports more ostensibly transmitted variants

Published in partnership with CEGMR, King Abdulaziz University

than DeepVariant and GLnexus (hereafter referred to simply as
“DeepVariant”) at the expense of a higher number of Mendelian
violations (Supplementary Figs. 3 vs. 4, top row). Supplementary
Figs. 3-10 depict performance curves for Mendelian violations vs.
transmissions for various parameter combinations for two cohorts
for both GATK and DeepVariant. This represents a large volume of
parameter-space but we note that in every plot, the general shape
of each curve is similar and the location of our chosen cutoff (the
purple dot) is effective but conservative.
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With our means of choosing transmitted variants as true
positives, it is possible that the additional transmitted variants in
GATK relative to DeepVariant are merely false positives shared
between parent and child. Yun et al. found that while GATK makes
more calls than DeepVariant, DeepVariant actually has a higher
recall, indicating that many of the extra GATK calls are actually
potential false positives'*.

Based on the analysis in Supplementary Figs. 3-10, we decided
to use the same AB and GQ thresholds for genomes as for exomes.
We found that, for each candidate variant, requiring at least ten
aligned sequences in all members of the trio and excluding low-
complexity regions®® retained most transmitted variants and
removed a large percentage of Mendelian violations reported
when no sequencing depth requirement was enforced across
cohorts and tools (Supplementary Figs. 7-10). Mendelian violation
rates increase when variants in low-complexity regions are
included (Supplementary Figs. 3-6 vs. 7-10). Projects with higher
coverage or different accuracy requirements may raise or lower
the depth threshold, but we considered this to be an acceptable
trade-off. We validated that these thresholds were effective in an
independent cohort of whole genomes with diverse ancestry
revealed by PCA analysis with Peddy'> (see Supplementary Fig.
11). In addition, we performed an additional evaluation using the
Genome-in-a-Bottle’s (GiaB) set of high-quality variant calls'® to
show that each of our genotype, allele-balance, and depth
thresholds removed false-positive calls and retained true-positive
calls in an independent evaluation set (Supplementary Fig. 12).
Specifically, the chosen GQ cutoff alone would remove >80% of
false positives and retain >99% of true positives in GiaB. The depth
and AB cutoffs would each remove about 20% of false positives
and retain >99% of true positives.

We note that even with depth and parental AB filtering, we are
left with a median of 3127 and 660 candidate de novo variants per
trio from GATK and DeepVariant, even after excluding variants in
low-complexity regions (see Supplementary Fig. 13). We know
from previous studies'®'”"'® that an average of ~70 de novo SNV
and INDEL mutations should be observed genome-wide; there-
fore, the vast majority of these predicted mutations are false
positives. Filtering on depth (DP), AB, genotype quality, AF, and
parent allele-balance reduced the number of putative de novo
variants from both GATK and DeepVariant calls (Fig. 4). Note that

A

while this initially seems a daunting rate of error in these variant
callers, we are enriching for errors by nature of the search for rare,
de novo mutations. In fact, with each of the four million expected
variant sites in an individual, this number represents an extremely
low false-positive rate for variant detection (~0.07% for the
median of 3127), even if the false discovery rate for de novo
mutations is relatively high prior to filtering. Because low-
complexity regions are such a common source of false positives®,
we excluded variants in those regions from consideration in Fig. 4.
We further required that homozygous reference calls in the
parents had an AB of <0.02. This substantially reduced the number
of candidate de novo variants. However, there were still 407
putative de novo variants from GATK and 172 from DeepVariant
outside of low-complexity regions. While DeepVariant reports
fewer variants, it is still more than twice the expected number'®
and would require additional filters to reach a reasonable number.
However, when limiting to impactful variants, the number drops
to an average of 1.5 and 3.3 candidates for DeepVariant and GATK,
respectively—a number small enough such that each candidate
variant could be scrutinized. With a less stringent population AF
filter of <0.01 in gnomAD, there are 1.7 and 7.4 candidate variants
from DeepVariant and GATK, respectively. These filters are lenient
enough to be generalizable. However, specific projects may have
additional filters, but we argue that these averages are low
enough to be reasonable guidelines when considering “impactful”
variants as is typical for studies of rare disease.

With the general filtering strategies outlined above, we
examined the number of candidate “impactful” variants discov-
ered in each WGS trio under each mode of inheritance (Fig. 5).
Although DeepVariant reports about half as many putative false-
positive calls as GATK (see Fig. 4), after filtering with gnomAD AF
(below 0.001 for de novo and dominant and below 0.01 for
recessive modes of inheritance), the difference between the two
callers is substantially reduced (Fig. 5A). This effect is similar to
what was observed for exomes, but with generally higher variant
counts due to the additional genes and coding regions covered in
whole-genome data. Note that for genomes, expanding the
search to include synonymous and UTR variants can more than
double the number of compound heterozygote, x-linked reces-
sive, and autosomal dominant candidates (Fig. 5B). Across all
modes of inheritance, the total increase when allowing less
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Fig. 4 Candidate autosomal de novo variants per genome identified by GATK and DeepVariant outside of low-complexity regions. A
cohort of 94 WGS trios from the Rare Genomes Project were screened for candidate de novo mutations using GATK (A) and DeepVariant (B).
Variants lying in low-complexity regions were excluded. The leftmost boxplot within each subplot requires a depth 210, an allele balance
between 0.2 and 0.8 along with a genotype quality (GQ) >20. Lines within the boxplot are determined from the quartiles of the data. The next
box requires that the allele frequency in gnomAD is <0.01. The third box lowers the allele-frequency cutoff in gnomAD of <0.001. The final box
excludes candidate de novo variants where the allele balance (of the homozygous call) in the parent is 22%. Supplementary Fig. 13 presents

the analogous plots when including low-complexity regions.
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Fig. 5 The number of candidate variants that follow different inheritance modes per genome using two different variant callers. A Only
“impactful” variants as determined by slivar using annotations from VEP, snpEff, or bcftools are shown. B The set of variants is extended to
include synonymous, UTR, and conserved intron regions (but not all intronic). Counts for autosomal dominant variants are shown in a
separate plot due to the much larger numbers. Each dot represents the number of candidate variants (y-axis) passing the inheritance mode (x-
axis), genotype-quality, population allele-frequency, and allele-balance filters for a single family. Gray bars indicate the mean number for each
class and inheritance mode. We show Fig. 5A for the sarcoma replication cohort in Supplementary Fig. 14.

Depth of at least 10 for all samples in a family in whole-genome data

Table 1. Recommended filtering parameters.

Description Filter

High genotype quality for all samples in a family GQ =20
Allele balance between 0.2 and 0.8 for heterozygous samples 02<AB<08
Allele balance <0.02 homozygous samples AB < 0.02

Low allele-frequency (or absent) in population allele-frequency databases

DP > 10 (whole-genome only)
population_AF < 0.01 (recessive inheritance modes)

population_AF < 0.001 (dominant inheritance modes)

impactful variants is large enough that additional prioritization
strategies might be needed. However, including all intronic
variants further increases the number of candidates by several
fold. These findings are replicated in an independent Ewing
sarcoma cohort in Supplementary Fig. 14 and Supplementary
Table 1.

Though we show that we retain nearly all ostensibly “true”
variants with our filters, we also assessed whether our filters
excluded candidate causal variants reported by the RGP project. In
short, we recovered all expected SNP and indel variants. For
samples we evaluated, we recovered 21 of the 24 single-
nucleotide or insertion-deletion variants reported as causal by
the RGP Project. Variants that were discovered by the RGP team
but not reported in this analysis were limited to those where one
side of a compound heterozygote was a CNV call (CNVs were not
evaluated in the present study) or to nonstandard inheritance
patterns (see Supplementary Discussion for additional details).

Recommended practices and resulting candidate yield

We have shown that simple cutoffs on GQ, AB, depth, impact, and
gnomAD AF are sufficient to drastically reduce the number of
candidate variants in a typical family, while retaining the vast
majority of transmitted variants (Table 1). We have avoided using
cohort-specific attributes such as allele count to improve the
generality of our findings. In order to evaluate variant calling
accuracy, we use Mendelian violations as putative false positives,
and heterozygous variants transmitted from one parent (and
homozygous reference in the other parent) as true positives. While
there are limitations to the assumptions underlying this approach
(for example that the parent and child could share a spurious
heterozygous call by chance or that somel Mendelian violations

Published in partnership with CEGMR, King Abdulaziz University

are not false positives), the shape of the ROC curves in Fig. 1 and
Supplementary Figs. 1-10 demonstrate that certain parameter
ranges dramatically reduce the number of Mendelian violations
without reducing the count of transmitted variants. This indicates
that parameter values beyond these ranges (e.g., low GQ, low
depth, extreme ABs) are enriched for false positives.

These simple strategies can reduce candidate “impactful”
variants across most inheritance modes (excluding autosomal
dominant) to a manageable number. While we expect these to
vary by cohort, the numbers are similar across our whole-genome
and whole-exome cohorts. For our whole-genome cohort, we find
a mean of 13.1 (1.4 de novo, 0.8 autosomal recessive, 9.2
compound heterozygotes, 1.7 x-linked recessive, and 0.02 x-linked
de novo) and 18.3 (3.5 de novo, 0.7 autosomal recessive, 11.2
compound heterozygotes, 2.9 x-linked recessive, and 0.0 x-linked
de novo), for DeepVariant and GATK, respectively (Table 2). Over
half of those variants (9.2 on average for DeepVariant and 11.2 for
GATK) are pairs of variants for a compound heterozygote, so the
number of candidate genes is even lower. These numbers of
candidate variants replicated extremely well in a separate cohort
of 49 ancestrally diverse family trios where the proband had
Ewing’s Sarcoma (See Supplementary Table 1). While this number
of variants is small enough that it is possible to manually inspect
each variant in small cohorts where the mode of inheritance is not
autosomal dominant, large cohorts will likely benefit from variant
prioritization tools that are outside of the scope of this paper and
of the slivar tool we developed for this study. When considering
autosomal dominant modes of inheritance, the number of
candidate variants will be high enough (average of ~100
candidates) that larger families, gene lists for limiting search
space, or variant prioritization methods will be needed to discover
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Table 2. Mean number of candidate variants for each inheritance mode for a cohort of 149 whole-exome trios and and a cohort of 94 whole-
genome trios.

Inheritance mode Exome GATK Genome GATK Genome Exome GATK  Genome GATK  Genome Genome GATK

DeepVariant impactful (impactful) DeepVariant (genic except
(impactful) intronic)

De novo 1.4 434.7 178.7 1.1 3.5 1.4 13.9
Autosomal recessive 0.5 185.0 320.7 0.4 0.7 0.8 53
Compound 7.3 219 219 34 11.2 9.2 25.0
heterozygote

X-linked recessive 0.3 572.7 401.8 0.3 29 1.7 18.0

X-linked de novo 0.3 5.0 2.5 0.3 0.0 0.0 0.2
Autosomal dominant  102.0 10,874.1 11704.6 68.9 1129 99.0 653.2

causal variants reliably. In addition, once candidate impactful
variants are ruled out, methods for limiting and prioritizing
candidate variants from introns and noncoding regions will be
essential. Likewise, when expanding beyond impactful variants in
WGS studies, the count of candidate variants rises quickly; for
example, from an average of 3.5 to an average of 434.7 GATK
candidate de novo variants (Table 2). When not limiting to
impactful variants, other prioritization methods or prior knowl-
edge such as genes or regions of interest would be required to
limit candidates to a reasonable number. We find that whole-
genome samples have a much higher proportion of impactful
variants with an impact of splice_region as compared to exome
(Supplementary Fig. 15); this, combined with more complete
coverage explains the higher counts in whole-genome studies
compared to exome'®.

DISCUSSION

We have derived minimal, yet effective filtering parameters for
rare disease research and demonstrated their efficacy in rare
disease cohorts having undergone exome or genome sequencing.
Although the recommendations we make here may be intuitive,
we argue that it is important to define clear, reproducible, and
defensible recommendations as a starting point for rare disease
analyses. We have also reported an expected number of candidate
variants for each inheritance mode for exome and genome.

For clarity, our recommendations come as a single number (for
example, GQ at or above 20). However, our analyses demonstrate
that overall performance is not affected by the exact choice. For
example, one could choose a GQ of 15 and an AB range of 0.3-0.7
and achieve a similar enrichment of true positive variants. Most
likely, cohorts with lower sequencing depth would need to lower
the depth cutoff of 10 (at the likely expense of additional false
positives). This will be an avenue for future research.

While the exact choice of what is impactful will affect the
results, the set of impacts used for this study would retain 98.83%
of ClinVar® pathogenic variants. This cutoff is easily changed by
users of slivar by editing the default impact order; the ordering
used in this study is included in Supplementary Table 2. Note that
the impactful cutoff is currently quite inclusive by default,
including for example “splice_region” in addition to the “spli-
ce_acceptor” and “splice_donor” sites. It is possible to expand the
search to include UTR and synonymous variants. Including these
categories can yield more than three times as many total
candidate variants as compared to the impactful set. However,
in some scenarios, this is still a small enough set to evaluate, but
will require previous knowledge or variant prioritization methods
to limit variants to high-quality candidates. Such knowledge will
be even more necessary when searching introns and the
noncoding genome. By providing clear data-driven variant
filtering guidelines to filter variants, we provide reproducible
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strategies to limit the number of variants that may need to
undergo more intensive investigations. These results memorialize,
for example, the fact that the number of autosomal dominant
variants is large enough that additional filtering strategies such as
limiting to gene lists or utilizing variant pathogenicity scores
would be required.

In summary, we have derived a set of best practices for variant
filtering in studies of rare human disease, and report the expected
number of candidate variants across different modes of inheri-
tance. In addition, we have developed slivar, a new tool for rapidly
applying these filters and extracting variants that meet each
inheritance mode. We facilitate application of these recommenda-
tions with the continued development of slivar software.

METHODS

We have complied with all relevant ethical regulations. We have obtained
informed consent from all relevant participants. The clinical exome data
obtained from ARUP Laboratories for the main exomes for this study was
approved for de-identified research use by the Institutional Review Board
of the University of Utah.

Software implementation

Slivar is implemented as a command-line tool. It is built on hts-nim?2°,
which is a nim language wrapper for htslib. While slivar uses hts-nim for
reading and writing VCFs, it also embeds the duktape javascript engine
(https://duktape.org) to enable user-defined expressions on each variant.
slivar expects a pedigree file that indicates the phenotype status and the
family relationships; from this, it infers each possible trio and family. Then,
for each variant, it fills a javascript object for variant and for INFO and for
each trio, it consecutively aliases the samples with the labels “kid,” “mom,”
and “dad” and then applies the user expression. For example, a minimal
expression to call a de novo variant in the kid would look like:

kid.het && mom.hom ref && dad.hom_ref &&\ kid.
GQ>10 && mom.GQ>10 && dad.GQ> 10 && \ variant.
FILTER==PASS && INFO.gnomad_popmax_af <0.001

This expression requires that: the child is heterozygous while the parents
are homozygous; each sample has a GQ > 10, and that the alternate allele
for variant is observed at <1 in 1000 frequency in gnomAD. Slivar
automatically discovers each trio from a pedigree file and applies this
expression to each trio, for each variant. For any variant that meets these
criteria for a given family, slivar appends the sample name of the kid to the
variants INFO field in the VCF file. The attributes available for each sample
(kid, mom, dad) and for INFO and variant are enumerated in Table 1.
Expressions like the one above can be encapsulated in javascript functions,
put in a separate file and then called, for example as:

denovo(kid, mom, dad)

This allows the distribution of a set of best-practices functions for de
novo, compound heterozygotes, recessives, X-linked, and other modes of
inheritance.
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The trio mode described above is a special case of a more general
framework within slivar for families. A family in slivar is any set of samples with
the same family identifier in a pedigree file; this can be a single sample, or a
large, multigenerational pedigree. This framework enables a more flexible set
of expressions that handle most use cases, for example, finding a segregating,
dominant variant in a single sample, a trio, a larger nuclear family, or a
multigenerational pedigree is handled by a single javascript function.

Another mode, that we call “groups,” is an additional way to handle sets of
samples that do not meet a normal family structure, for example, a cohort of
cancer patients with a “normal” and “tumor1,” “tumor2,” “tumor3” to indicate
three tumor time-points. These groups can be defined in slivar via a tab-
delimited file where the header indicates the labels and each row indicates
the sample IDs those labels are applied to. For example, a cohort with ten
quartets would have a header line with four columns (in this case “kid,”
“mom,” “dad,” “sib” might be appropriate) and ten rows, each with four
sample IDs. The user expression utilizing the labels “mom,” “dad,” “kid,” “sib”
would be applied to each of the ten quartets for each variant.

A user can specify multiple group, family, and trio expressions, each with a
label that is added to the INFO field for each passing expression. For example,
if an expression labeled as “denovo” is evaluated as true in a trio, then
denovo = $kid sample id would be added to the INFO for that variant.
Multiple samples (trios) passing the same expression are joined by commas.

Compound heterozygote analysis

Because slivar expressions operate successively on each variant, there is a
separate subtool to find compound heterozygotes. It expects gene
annotations as added by snpEff®', VEP??, or bcftools csq®® in order to
group variants by gene. It then uses the pedigree structure to phase
variants to ensure that the two alleles in the compound heterozygote are
on different haplotypes. In addition, it supports variant pairs where one
side of the compound is a de novo. As with the standard slivar mode, this
adds an annotation to the INFO field indicating the sample and the variant
pair that are part of the compound heterozygote.

Impactful variants

Annotations added by VEP, snpEff, or bcftools are automatically parsed by
slivar and evaluated for “impactful-ness.” In slivar, we have collected all
consequence annotations (missense, synonymous, frameshift, etc), given
them a severity order, and split them into “impactful” and not. This ordering is
somewhat arbitrary, as for example a case could be made that stop_loss
annotation indicates a more severe impact than frameshift or vice versa, but
we have based it on the ordering indicated for variant-effect predictor (https://
m.ensembl.org/info/genome/variation/prediction/predicted_data.html). In
addition, the exact ordering is less important as a user will be interested in
a variant that is stop_loss or frameshift should it appear. We have chosen the
cutoff for impactful to be quite lenient, and the ordering and cutoff are both
customizable by a simple text file. slivar will automatically detect and parse
these annotations if they appear in the VCF, iterate over each consequence
and add an “impactful” flag if any consequence is above the cutoff. This can
be used independently of the family-based analyses to annotate variants of
interest. If multiple annotations are found, for example from both VEP and
snpEff, slivar will use the highest impact across tools to determine impact. This
simple flag allows the user to find variants of interest without checking for an
exact consequence of “missense,” “stop_gained,” etc.

For evaluating an expanded definition of impactful, we also included
variants annotated as “synonymous,” “gene,” “coding_sequence,”
“mature_miRNA,”  “5_prime_UTR_premature_start_codon_gain_variant,”
“5_prime_UTR,” “3_prime_UTR,” “initiator_codon,” “miRNA,” “non_coding_-
transcript_exon,” “non_coding_exon,” “nc_transcript,” “exon_region,” and
“conserved_intron,” with UTR and intronic annotations capturing nearly all
of the additional variants. We used this order of variants: https://github.
com/brentp/slivar/blob/a79595f1dc5b6e7bb348f5c9b938e7866b70ab99/
src/slivarpkg/default-order.txt.

"o

Annotation with population AF

As we demonstrate, annotating with population AF is critical for rare
disease research. As the size of population AF resources such as
gnomAD”, TopMED24, and dbSNP? increase, distributing these resources
and leveraging them for variant annotation is ever more time and
resource-consuming. For example, the whole-genomes summary file from
gnomAD v3 is 235 GiB. In order to facilitate annotation with massive
population AF databases, we developed, as a part of slivar, a reduced
format that can be easily distributed and used for rapid annotation and
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concurrent filtering. While there are solutions such as vcfanno®® for
annotating VCFs, the size of these files (the gnomAD v3 VCF is ~235GB
and the V2 exomes file is ~59 GB) make them substantial requirements and
slow to parse. To alleviate this, we developed a custom, reduced
annotation format that can encode the variant position, reference allele,
alternate allele, and a boolean indicating a non-PASS FILTER in a single 64-
bit integer. This is similar to VariantKey (https://www.biorxiv.org/content/
10.1101/473744v3), except that VariantKey stores the chromosome, but
not the FILTER. slivar assumes that variant files will be sorted by
chromosome, so we can store variants from each chromosome separately
instead of including the chromosome in the encoded value. slivar stores
variants with a REF + ALT allele longer than 13 bases in a separate text file
as these can not be encoded into a 64-bit integer. Since the percent of
variants of that size is low, the size of the text file is small and searching in
the text file is only done when the query variant is also large. Whenever a
long variant is found, a sentinel value with an empty reference and
alternate allele are added to the encoded array indicating the presence of
a long variant. Additional fields containing the values of interest, for
example the AF and the number of hom-alt samples are stored in separate
arrays. All arrays and chromosomes are written to a single compressed zip
file. This allows us to distribute gnomAD version 3 AFs and positions for the
whole-genome cohort in a 4-GB file (compared to the original 235-GiB
compressed VCF). In order to annotate a query VCF, each query variant
(position, reference, alternate) is encoded to the 64-bit value and a binary
search is used to find that variant. If it is found, the index of that variant in
the array is used to extract the values, which are then added to the INFO
field of the query variant. If a sentinel value is found, slivar searches the
(sorted) array of long alleles and returns those. This setup allows us to
annotate at >20K variants per second. We call this format and annotation
method “gnotation.” slivar performs this gnotation step before the user
expressions are applied so that the expressions can utilize population AFs.
This annotation can be performed independently of the family expressions
as a way to quickly annotate with AFs.

Slivar includes a subtool to create these gnotation files, but we provide
downloads for gnomAD for version GRCh37 and for hg38 that contain
“gnomad_popmax_af,” and “gnomad_nhomalt” that are the union of
exome and whole genomes. In addition, we provide a TOPMed gnotation
file for hg38.

Best-practices workflow for rare disease

In order to develop the best practices for rare disease, we utilize a cohort of
149 rare disease exome trios and a WGS cohort of 94 trios aligned to hg38.
These families all have unaffected parents, making them more likely to
follow recessive or de novo inheritance, however, we also evaluated
autosomal dominant strategies by artificially setting the mother to
“affected.” This gives an idea of the number of variants left after filtering
in an analysis under each of these disease models. We also replicated the
analyses in independent whole genome and exome cohorts. The
additional whole-genome cohort contained 49 trios where the proband
had a sarcoma phenotype and the exome cohort was 36 trios with a
coronary heart disease phenotype.

We use the number of putative de novo and transmitted variants
discovered in each trio to inform viable filtering strategies. We know, for
example, that there should be between 0 and 2 de novo variants in the
exome. Due to alignment issues, base-calling errors, and variant calling
errors, there will be many more than this without additional filtering. We
can evaluate the specificity of different filters by looking at the number of
putative de novo variants; likewise, we?’ can evaluate the sensitivity by
counting the number of transmitted variants—that is, the number of
heterozygous variants in one (and only one) parent that are transmitted to
the child. We chose to require transmitted variants to appear in the child
and in either, but not both parents, so that we would penalize a caller that
over-called heterozygotes. If we allowed a true positive to be any variant
that appeared in both parents and the child, it would be more likely that
we included variants that were false positives in all three samples.

We primarily rely on filtering strategies that utilize allele balance,
genotype quality, and genotype that will be common to most VCFs, rather
than on custom fields like fisher-strand bias or mapping-quality rank-sum,
which are optional annotations from GATK. Although depth is generally
used, this can vary between cohorts and does not offer improvement over
allele balance and genotype quality in exomes, therefore we do not utilize
it as a default. But it can be beneficial in filtering whole-genome samples.
In addition, for the whole-genome cohort we use Deep Variant'? and
evaluate slivar filters effective for that tool.
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For this study, we used nextflow?” to run slivar with and without low-
complexity regions for each cohort and tools. This workflow used is
available at the following URL: https://github.com/brentp/slivar/blob/
cf9328054a84ac6c1c2400925df604fe3e8170b2/paper/slivar.nf.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

RGP sequence data are available via: https://raregenomes.org/data-sharing. Ewing
Sarcoma data are in dbGap Study Accession: phs001228.v1.p1. CHD data are in
dbGap Study Accession: dbGaP phs000744. The clinical exome data obtained from
ARUP Laboratories for the main exomes for this study were approved for de-
identified research use by the Institutional Review Board of the University of Utah.
However, ARUP legal counsel has determined that the clinical testing consent form
signed by these patients does not allow for the full sharing of raw data to any
publicly available database. The genome-in-a-bottle data are available from: ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/
NISTv4.1/GRCh37/.
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Code used for the analyses in the paper is available here: https://github.com/brentp/
slivar/tree/master/paper. The slivar software is available at https:/github.com/
brentp/slivar.
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