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Misinformation making a disease
outbreak worse: outcomes compared
for influenza, monkeypox, and
norovirus

Julii Brainard and Paul R Hunter

Abstract
Health misinformation can exacerbate infectious disease outbreaks. Especially pernicious advice could be classified as
‘‘fake news’’: manufactured with no respect for accuracy and often integrated with emotive or conspiracy-framed narra-
tives. We built an agent-based model that simulated separate but linked circulating contagious disease and sharing of
health advice (classified as useful or harmful). Such advice has potential to influence human risk-taking behavior and
therefore the risk of acquiring infection, especially as people are more likely in observed social networks to share bad
advice. We test strategies proposed in the recent literature for countering misinformation. Reducing harmful advice from
50% to 40% of circulating information, or making at least 20% of the population unable to share or believe harmful
advice, mitigated the influence of bad advice in the disease outbreak outcomes. How feasible it is to try to make people
‘‘immune’’ to misinformation or control spread of harmful advice should be explored.
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1. Introduction

Previously we constructed an agent-based model (ABM)1,2

about what could happen during a norovirus outbreak exa-

cerbated by circulating misinformation (which we call

‘‘bad advice’’). Bad advice is relevant when it changes

human behavior to be riskier (that is, a higher risk of get-

ting disease). Examples of possible risky behavior can

include not washing hands, sharing food with ill people,

not disinfecting potentially contaminated surfaces or

fomites, sneezing, coughing, or vomiting in places where

there is a high risk of spread onto food or surfaces, lack of

disinfection, and other unprotected physical contact with

infectious persons or their bodily fluids.

Some people in disease outbreak situations take few

precautions to avoid getting disease, even when awareness

of the outbreak is widespread and many official sources

are widely disseminating information about how to avoid

illness. Compliance with quarantine protocols during a

2003 outbreak of severe acute respiratory syndrome

(SARS)-coronavirus was found to be uneven. Compliance

related to risk perception, which in turn related to how

trustworthy and credible sources of health advice were

perceived to be, as well as difficulties respondents had in

accepting parts of the situation they could not be in control

of.3 During a large and well publicized norovirus outbreak

at a Canadian university, 25% of symptomatic students

were observed to not avoid contacts, while 17% of the

observed cohort did not comply with recommended hand-

washing practices.4 In a 2019 survey in the UK,5 14% of

2000 surveyed parents reported sending a child to school

with symptoms of contagious chickenpox, violating school

policies and official advice to quarantine such children.

That misinformation can be linked to taking fewer mea-

sures to effectively prevent disease transmission is espe-

cially well documented with respect to Ebola viral disease

(EVD). For instance, persons affected by the West Africa

outbreak (2013–2016) who believed other types of misin-

formation about EVD (e.g., that it can be airborne or trans-

mitted via mosquito bites) were more likely to report

practicing unsafe burial practices.6 Low trust in
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institutions and more belief in EVD misinformation were

associated with fewer preventive behaviors in the

Congolese outbreak that started in 2018.7 Following inef-

fective advice or disbelieving official recommendations

often led to pursuing other self-care actions first and thus

delayed actions that could reduce transmission (such as

formally getting tested for EVD).8 Most sources that have

studied disease-precaution behavior, especially vaccine

refusal (all diseases), note that cultural identity outside

perceived mainstream society is strongly positively linked

to the tendency to reject expectations of ‘‘good citizen

behavior,’’9–12 including disease avoidance actions recom-

mended by public health authorities.

Our objective was to model possible interactions

between misinformation spread and disease outcomes. The

modeling was done within an agent-based modeling13

environment, using Netlogo software.14 Most model para-

meters were available from sources reporting actual

human behavior, such as about the speed and frequency of

social media and real life information sharing. An ABM

environment was attractive because it afforded many

opportunities to include complex aspects of behavior and

response that might vary individually. We use the term

complex to distinctively mean processes that are thought

to be inherently unpredictable and have uncertain out-

comes (as opposed to the often misused near synonym

complicated, which can be better interpreted as describing

events that can be modeled using consistent albeit possibly

very multi-faceted decision trees).

Complexity in our models meant that, for instance,

clusters of individuals with frequent contact with each

other (physical or information sharing contact) might have

very different traits from the population averages.

However, these differences could not be consistently pre-

dicted; nor could location or encounters with other agents.

Location and chances of getting disease or encountering

misinformation were best estimated for our purposes using

reiterative modeling and probabilistic distribution of rele-

vant attributes. These skewed traits could lead to localized

hotspots or low activity zones of disease and/or informa-

tion transmission. Multiple types of feedback loops could

be in operation that affected behavior choices. These feed-

back processes could be modeled at individual level using

an ABM. At the same time, many aspects of behavior and

response seemed likely to be probabilistic but perhaps on

uncertain distributions or with unclear central tendency

points. The iterative nature of ABMs meant that we could

not only try to use real world data to describe some beha-

vior aspects in the models, but also use iterations to esti-

mate what some central values for other behavior

tendencies might be.

In the ABM that we constructed, disease spread was

via direct or indirect physical contact, while misinforma-

tion spread was via social contact, particularly within

social groups (‘‘bubbles’’). These social groups were

constructed to have relatively similar susceptibility for

believing the misinformation. Members of one’s bubble

were often the same persons that were physically encoun-

tered, so these could be the same people with whom it was

likely that the disease could be exchanged. Our initial

work focused on norovirus because, although very com-

mon, gastrointestinal illness is rarely modeled in individ-

ual infectious disease models.15 Norovirus also had the

advantage of being unlikely to cause flight or death (so

those things could be defensibly not included in the

model). The incubation period is relatively short so travel

outside the residence area was excluded.

The purpose of this study is to adapt our misinformation

(agent-based) model to other communicable diseases and

outbreak conditions. We compare results for norovirus,

influenza, and monkeypox (Orthopoxvirus). The latter dis-

eases can be substantially different from norovirus in many

respects (such as the mean incubation period) and are often

not previously vaccinated for. Influenza is an important

communicable respiratory illness globally, while monkey-

pox is an emerging disease of high concern that has trig-

gered biosecurity concerns.16,17

These pathogens gave good opportunities to show that

our modeling approach could be adapted to multiple types

of disease and transmission risks.

2. Methods
2.1. Overview

Table 1 shows model assumptions and targets, separated

by disease. Model assumptions and design features, such

as the rate of information injections, are described in

greater detail elsewhere.2 The underlying Netlogo model

code is available from the authors upon request. At least

100 iterations were run for the most likely candidate

thresholds or parameters to verify their reliability. Extra

simulations (above 100 minimum) were run until we

found that additional model runs did not produce mean or

median estimates that were any closer to the target condi-

tions (i.e., a monotonic state in target outputs had been

achieved).

2.2. Stage 1

A baseline stage 1 model was constructed for each circu-

lating disease. Target basic reproduction numbers (r0)

were determined from consulting relevant literature for

norovirus and influenza, and a likely maximum number of

generations during a monkeypox outbreak (see Table 1).

The stage 1 models were designed to achieve the target r0

or number of generations. Real life transmission of disease

depends on multi-faceted factors: biological, social, struc-

tural, and behavioral.18 We conceptually break the risk of

transmission down into three components: the probability

of (1) infectious persons or (2) susceptible persons taking
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adequate precautions to avoid catching disease, as well as

(3) viral shedding (which can be linked to pathogen and

illness characteristics, not truly under individual control).

The involuntary shedding is separated from behavioral

risks for many reasons. It makes sense that a small part of

the risk is purely biological not behavioral. Separation lets

individual behavior be fully separated from involuntary

shedding, while involuntary shedding may be adjusted to

vary over the course of illness in future more sophisticated

models (the amount of virus shed does varies with the

stage of illness in real infections19).

In a model run, during each time step and in a random

direction, well agents move one step. Well agents move

five times further than ill agents (who move 0.2 steps).

Each time step, susceptible agents near infectious agents

were tested for possible disease transmission. Disease was

transmitted if neither side took sufficient precautions and

viral shedding was sufficient for transmission. Individuals

had baseline take-precautions (TP)% values assigned at

the start of model runs. TP is the percentage of the time in

which agents took effective precautions against catching

disease. TP did not vary in the stage 1 mode, but was

important in stage 2 and 3 models when it could change in

response to circulating (mis)information. To establish the

initial (baseline) stage 1 models, an exercise (described in

the next paragraph) was undertaken to estimate the propor-

tion of risk that could be attributed to and reserved for just

viral shedding.

TP was assigned to each individual agent, generated

stochastically, and assumed to have a normal distribution

of values around the population mean, which was preset to

50% for several reasons. Constraining TP to a range only

between 0 and 1.0 (but with a fixed central population

mean) gave TP the maximum room for change. Also,

Table 1. Model assumptions and targets (stage 1).

Norovirus Influenza Monkeypox

Model baseline target
r0 or generations

r0 = 1.963 r0 = 1.4764 Insufficient data to
estimate r065 but assume
75% outbreaks have ≤ 4
generations of p2p
transmission66

Targets in stage 2
(worse r0 or gens)

r0 = 2.66 r0 = 2.06 Increase to 75%
outbreaks have ≤ 7
generations

% agents who start
model ill (infectious)

2% 2% 1%

Incubation period? 36 hours (mean)67,68 48 h (mean), range 1–4
days; SD = 0.5 d69

12 d (mean)70

(range 7–17 d)
Viral shedding pre-illness? Assumed none Yes: 1 day before illness

starts
Assumed none

Viral shedding post-illness? Mean 48 hours Only if illness < 6 days Assumed none
Infectious period while ill Entire duration of

illness71–73
First 6 days (mean) after
symptoms onset, or until
no longer ill (if < 6
days)69

Entire duration of illness

Duration of illness 46 hours71–73 7 days, with
SD = 1.75 day69

21 d (mean)70 (range 14–
28 d)

Chances of hospitalization 0% 5%/d (when ill) 70%/d (only after 4 d)
Case fatality rate 0%67 0.65%74 Low because assumed

high-income country
setting, 1–2%75

Vaccination available No After 5 months76 After 18 wks77

Vaccination efficacy Not applicable 100% if not incubating78 100% if < 4 d after
exposure, else 077

Vaccination uptake All those with TP > 25th percentile of TP% & susceptible (or incubating < 4 days if
monkeypox)

Model tests relevant to
disease transmission

If neither side takes enough precautions AND viral shed risk is high enough

CFR: case fatality rate; p2p: person to person; TP: take-precautions; gens: generations.

Notes: targets are from the literature (influenza pandemics after 2009). The CFR for monkeypox is plausible,65 but there is a lack of data from high-

income country settings. The model assumes no shortage of vaccines (once available, there is always enough to meet demand). Delay in influenza is

for production timeline; delay in monkeypox vaccine is for time to procure supply and to recognize need.
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prespecifying TP allowed us to estimate and specify sepa-

rately the small proportion of risk of transmission that

could be attributed to viral shedding alone (meant to be

pathogen-specific and due to the presence of infection, not

the risk of transmission due to agents’ good or poor behavior

choices). Designating a small separate viral shed risk from

behavior seemed desirable because only with fairly extreme

precautions (such as wearing personal protection equipment)

could the risk of disease transmission be truly reduced to

effectively zero. The mechanism of disease transfer was as

follows: transmission could happen when susceptible and

infectious agents were in close proximity and neither took

high enough precautions to avoid transmission. A small pro-

portion of the risk was also linked to viral shedding for each

disease. The variations in how disease was transmitted (with

and without a separate viral shedding risk) is helpful in show-

ing that our modeling approach can be flexible and adapted

for different disease or outbreak conditions.

Table 1 lists other model parameters and assumptions.

Between 1% and 2% of agents were infected at simulation

start time. Thereafter, agents moved around and tests were

made about potentially transmitted disease each time step

(1 hour). The model starts at 7am, and agents return

‘‘home’’ to the same location each evening, which means

the highest disease transmission risk is with others near

their home location. Agent density, grid size, and move-

ment rules were designed such that, in the absence of any

disease, the daily contact rate with other agents averaged

very close to 11.74 unique others/day (a target drawn from

published UK contact rates in non-epidemic situations20).

Empirically, we found that 1600 agents achieved the target

contact rate, on a torus world shape (e.g., going off the

bottom meant re-entry at the top), with a visible area mea-

suring 88 3 90 patches that agents could move around

on. Incubation periods, assumptions about shedding before

or after illness, the duration of active illness and the infec-

tious period, and case fatality rates were drawn from the

relevant literature. In Table 1, chances of hospitalization

or fatality were plausible, not meant to be definitive.

Because health care in the UK is free at the point of use to

and urgent care facilities are widely available, we assume

that all very ill individuals will seek medical advice. We

assume that only very ill individuals will die from disease.

Therefore, the models assume that only hospitalized cases

ever died and that no transmission occurred after someone

was hospitalized due to effective infection control mea-

sures. Vaccine efficacy was assumed to be 100%, but vac-

cine availability varied by disease. Uptake was assumed to

be high but not universal (75% of those who could benefit).

Hospitalization is the only form of quarantine considered.

2.3. Stage 2

The stage 2 model used the same disease and information

circulating assumptions as the stage 1 model, but with

exacerbation due to spread of misinformation that often

reduced taking effective precautions (TP). Recall that the

mean TP value was assigned randomly on a normal distri-

bution with a preset mean of 50% at the start. In stage 2,

each exposure to misinformation changed individual TP,

with limits at 0% and 100%. The possible change in TP

(DTP) was determined using repeated model runs to

achieve a 40% worse (higher) r0 for norovirus or influ-

enza, or more generations of transmission (from target 4

to target 7 in 75% of simulations) for monkeypox. The

magnitude of change in response to advice was equal

whether good or bad advice.21–23DTP is the key response

that individuals have to circulating information (or misin-

formation). Exposure to ‘‘good’’ advice increases taking

precautions; exposure to bad advice decreases taking

precautions.

2.4. Social contacts and information sharing

Each agent had a list of other agents that they might share

information with (their own unique ‘‘information bub-

ble’’). There were typically 80–230 members of this ‘‘bub-

ble’’ (mean number = 150, to conform with estimates of

significant friendship circle size, Dunbar numbers24,25).

The list of social contacts was created such that (on aver-

age) two-thirds of the social contacts had similar propen-

sity (randomly assigned around population mean = 38.9%)

to believe misinformation (from experimental and obser-

vation data that typically members of the British public

believe on an average 38.9% of conspiracy theories that

they are exposed to26). About 20% of social contacts were

located near the agent’s home location; physical proximity

made it more likely that disease would be shared with

these specific same social contacts with whom (mis)infor-

mation was shared. In every model run, agents moved

around, potentially transmitted disease, and made deci-

sions about whether to share information they had been

exposed to. Susceptible agents with lower TP values were

at highest risk of acquiring infection.

A total of 138 times per hour a single agent chosen at

random was exposed to a piece of information and made a

decision (stochastically) whether to share the information

onward to a small percentage (2.5%) of their social con-

tacts. The cascades of resulting information (number of

times the information passed through unique sharers) were

monitored and the model performance in this regard is

documented elsewhere.2 The frequency of relevant infor-

mation sharing and the likelihood of sharing advice were

both determined empirically so that the resulting informa-

tion cascades would conform with information sharing

patterns reported recently on Twitter for true and false

stories.27 Distinguishing true from false (good and bad

advice in our model) was important, because false stories

were observed to be four times more likely to be shared in
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the Twitter study. In stage 2, the ratio of good:bad advice

exposed to agents was 50:50.

2.5. Stage 3: intervention strategies

Proposed strategies to fight fake news from the previous

literature include the following:

1) provide counter-information that is equally or bet-

ter evidenced, or more persuasive28–34;

2) tax the advertising or tax the profits of products

sold via misinformation35;

3) drown bad info with good information35;

4) regulate information33 and possibly impose civil or

criminal liabilities,29 which could lead to explicit

censorship29,33;

5) revise financial models available to fake news dis-

seminators (incentives) to stop encouraging the produc-

tion and sharing of false (or even just very salaciously

written) stories over truth and accuracy27,34,36–39;

6) labeling (reliability rating or counter-arguments

provided) by the news provider 27,29,33,34;

7) encourage individuals to actively strive to make

their own social filter bubbles more diverse33’

8) ‘‘immunize’’ recipients to disregard fake news

(education-based strategy).36,40

We do not model the effects of intervention strategy 1

because the results are predictable; any changes will be lin-

ear responses if good advice increases without a reduction

in bad advice or if good and bad advice are equally conta-

gious. Therefore, in stage 3, two strategies for reducing

misinformation impacts were tested because their impacts

could not be easily foreseen: (1) increasing the proportion

of ‘‘good advice’’ that encourages more protective beha-

viors; and (2) ‘‘immunizing’’ individuals so that they do

not respond to or share bad advice. Possible thresholds (to

reduce the r0 from stage 2 to stage 1 values, or even lower)

were explored both for the proportion misinformation

adjustment and ‘‘immunization’’ strategies. Stage 3 models

were run under stage 2 conditions but with the following

modifications and objectives.

� Stage 3.1: reduce bad advice injections from 50%

to a value that achieved conditions similar to our

stage 1 models (stage 1 target r0 or number of gen-

erations), as well as the stage 3.2 test of what hap-

pened if only 10% of circulating advice is bad

advice.
� ‘‘Immunize’’ against bad information (but not

immunized against the virus, and still able to react

positively to good advice): a percentage of ran-

domly selected agents were selected to be fully

resistant (‘‘immunized’’) to bad advice. The exact

percentage was found empirically, such that (stage

3.3) the stage 1 r0 or number of generations was

achieved. We also tested (stage 3.4) if ‘‘immuniz-

ing’’ 90% of agents could reduce r0 below 1.0.

‘‘Immunization’’ also meant no sharing of bad

advice. This strategy simulated approaches that

were based on education or diversifying social con-

tacts (social filter bubbles).

Statistical differences in the outcomes under each set of

modeling assumptions were calculated using Wilcoxon

rank sum tests using Stata v. 16.0 software (stage 1 was

the reference condition).

3. Results

Table 2 shows estimated viral shed risk values found to

consistently get the closest to target r0s in stage 1 models,

when mean TP = 50%, and the change in TP (DTP)

required upon each information exposure to increase r0 by

40% (stage 2 models). Table 3 shows model run results

(r0, duration of outbreak, final attack rate, and prevalence

of disease at peak) for each separate disease. Supplemental

files S1–S3 show additional results for alternative model

parameters. For all diseases, reducing bad advice from

50% to 40% of all relevant circulating advice changed

Table 2. Performance metrics and results to generate stage 1–2 models.

Norovirus Influenza Monkeypox

Stage 1. Proportion of transmission risk due to viral shedding
(5–95th percentiles for linked r0)

8.3%
(1.75–2.06)

3.6%
(1.27–1.58)

0.8%
(0–0.53)

Stage 1. Mean case fatality rate %
(CFR, 5–95th percentiles)

n/a 0.70%
(0.42–1.03%)

1.04%
(0–2.93%)

Stage 2. �TP value required to consistently increase r0 or gens
(5–95th percentiles for linked r0)

1.9%
(2.44–2.89)

1.05%
(1.78–2.32)

1.1%
(0–0.89)

Stage 2. Mean case fatality rate %
(CFR, 5–95th percentiles)

n/a 0.62%
(0.42–1.14%)

1.39%
(0–1.68%)

CFR: case fatality rate; gens: generations.

Note: these values most closely enabled meeting the r0 or #generations targets (in Table 1). Values in () are range of r0 or CFR, 5–95th percentiles,

over ø 100 simulations. More detailed results are in the supplemental information.
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stage 2 outbreak conditions to stage 1 levels. Similarly,

making 20–25% of individuals ‘‘immune’’ to believing or

sharing bad advice changed stage 2 outbreak outcomes

back to stage 1 levels (with respect to r0 or number of gen-

erations of transmission, duration of outbreak, peak attack

rate, case fatality rate, or final total attack rate).

We find it interesting to note that even if the strategies

are applied relatively drastically and effectively (i.e., quite

large reductions in proportion of bad advice circulating

or high percentage ‘‘immunized’’ against bad advice),

disease spread was not stopped. The results in Table 3 sug-

gest that even if bad advice were only 10% of circulating

advice (stage 3.2), r0 for norovirus and influenza may

reach 1.0, while the number of generations of transmission

for monkeypox will be ø 3 in at least 25% of simulations.

Similarly, even if 90% of agents are ‘‘immune’’ to bad

advice (stage 3.4), outbreak r0 (norovirus and influenza)

will tend to be ø 1.0 and at least 25% of outbreaks will

have ø 3 generations of transmission. The Wilcoxon rank

sum tests (Table 3) show that, broadly, outcomes were

Table 3. Stage 1 (no sharing), stage 2 (outbreak exacerbated by bad advice), and stage 3 (results with intervention strategies). Mean
values for given outbreak characteristics, with 5–95th percentiles to indicate range without the most extreme values.

Stage 1. No circulating advice

r0 or #gens Duration (weeks) Final attack rate Peak attack rate Case fatality rate

Norovirus 1.90 (1.75–2.06) 9.4 78.6% 8.6% n/a
Influenza 1.46 (1.27–1.58) 13.6 59.2% 14.0% 0.70%
Monkeypox 75th perc #gens = 4 7.3 1.3% 0.98% 1.04%

Stage 2. Circulating advice makes outbreak worse, r0 increased by 40% or #gens from 4 to 7. Good:bad advice ratio is still 50:50

r0 or #gens Duration (weeks) Final attack rate Peak attack rate Case fatality rate
Norovirus 2.66 (2.44–2.89)** 8.7** 91.8%** 10.7%** n/a
Influenza 2.08 (1.78–2.32) ** 14.9** 82.7%** 18.2%** 0.62%**
Monkeypox 75th perc #gens = 7 9.9 2.2% 1.2% 1.39%**

Stage 3.1. Strategies to reduce impacts of circulating bad advice in stage 2 conditions: ratio advice needed to revert to stage 1 r0
or #gens

Good:bad advice ratio Duration (weeks) Final attack rate Peak attack rate Case fatality rate

Norovirus 59:41* 9.2 79.2%* 8.9% n/a
Influenza 60:40 14.4 59.0% 13.4% 0.73%
Monkeypox 61:39 7.1 7.3% 1.0% 1.33%

Stage 3.2. Stage 2 conditions, but if good:bad advice ratio is 90:10

r0 or #gens Duration (weeks) Final attack rate Peak attack rate Case fatality rate

Norovirus 0.99 (0.95–1.03)** 3.9** 21.1%** 3.9%** n/a
Influenza 0.88 (0.76–0.99) ** 5.1** 12.8%** 5.0%** 0.74%**
Monkeypox 75th perc #gens = 3** 5.6** 1.2%* 1.0% 0.96%

Stage 3.3. Stage 2 conditions, what % of agents need to be ‘‘immunized’’ against bad advice, needed to revert to stage 1 r0 or
#gens

% ‘‘immunized’’ Duration (weeks) Final attack rate Peak attack rate Case fatality rate

Norovirus 20% 9.3 78.5% 8.9% n/a
Influenza 22.5% 15.2** 59.6% 13.1%* 0.42%
Monkeypox 20–40% 6.9–8.4 1.3–1.5% 0.98–1.04% 0.86–1.34%

Stage 3.4. Stage 2 conditions, but if 90% of agents are ‘‘immunized’’

r0 or #gens Duration (weeks) Final attack rate Peak attack rate Case fatality rate

Norovirus 1.11 (1.03–1.22)** 5.0** 31.6%** 4.8%** n/a
Influenza 1.02 (0.88–1.13) ** 7.1** 22.4%** 7.5%** 0.15%**
Monkeypox 75th perc #gens = 3* 5.6* 1.2% 1.0% 0.96%

Note: ‘‘immunized’’ means acquired perfect resistance against believing or sharing bad advice, rather than inability to catch norovirus, influenza, or

monkeypox. 75th perc #gens is the 75th percentile value (among all eligible simulations) for number of disease transmission generations; 75% of

simulations had this number or fewer transmissions. Statistical significance: Wilcoxon rank sum tests with stage 1 outcomes as reference: ** means

p < 0.01, while * means 0.01 < p < 0.05.
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similar between stage 1 models and stage 3.1 and 3.3 mod-

els (which was the objective). Stage 2, 3.2, and 3.4 model

outcomes were quite different from stage 1 models (most

p-values were well below 0.01).

4. Discussion

No previous studies have integrated information spread

with disease spread to the level of sophistication that we

have done. Prior models often considered information

spread in disease outbreak development, but information

awareness was typically equally available to all agents,

and benign at worst. Thus, information spread in the mod-

els nearly always led to greater protective measures

(such as increasing vaccine uptake or decreasing contact

rates41–50). Most previous similar disease and awareness

spread models had awareness increases that could only

happen following physical contact or as a result of global

conditions.42,45,48,50–55 Our modeling is unusual because

information spread was individual and separated from the

physical interactions that could transmit disease. Our

model is unique and original in attempting to consider the

potentially deleterious role of information sharing with

stochastic and individually assigned elements. The need

for research such as ours has been recognized before.17,56

More sophisticated information sharing networks than

we tried to create could make these models more credible.

There exist more sophisticated models on rumor spread

that we could possibly replicate for the information spread-

ing process,57–59 and simultaneously merge with existing

sophisticated disease spread models. More ambitious mod-

els than ours would describe more agents and more com-

plicated movement patterns, such as including flight as a

behavior option. Many rumor spreading models have bor-

rowed ideas and methods from epidemiological mod-

els,60,61 but not many (if any) previous models have

integrated both rumor and disease spread as separate but

interacting processes into one unified probabilistic model.

This study describes the spread of three viral diseases;

misinformation affecting the spread of bacterial diseases

could be modeled equally well. The ideas could be applied

to non-communicable diseases and health outcomes, but it

would be necessary to change the time scale to be much

longer to model chronic and lifestyle diseases and how

their incidence might change in response to circulating

misinformation. A much longer time scale would mean

incorporating many other lifestyle factors into the models.

Model construction relied heavily on a small number of

existing studies about such factors as number of contact

rates, social contacts (i.e.., Dunbar numbers), how much

bad or good advice can change behavior, and the propen-

sity to believe in misinformation (the finding that on aver-

age, British people believe in 38.9% of conspiracy theories

that they are exposed to). More reliably estimating any of

these and many of the other factors would also increase the

credibility of our results. Our threshold for a ‘‘worse’’ out-

break situation was r0 being 40% worse or the number of

generations of disease transmission increased from 4 to 7;

these thresholds were decided for convenience in this set

of demonstration models.

Given our definition of stage 2 as an outbreak ‘‘made

worse by circulating misinformation,’’ stage 3.1 modeling

concluded for all three diseases that a ratio of about 60:40

good:bad advice circulating would reduce the stage 2 con-

ditions to those of stage 1. The models also suggested that

‘‘immunizing’’ about 20% of the population against misin-

formation was likely to revert stage 2 to stage 1 conditions

(for all diseases, stage 3.3). Since these apparent consis-

tencies could be artefacts of shared model design, tests to

explore the true consistency of these findings for multiple

diseases would be worthwhile. It is possible that more

sophisticated, detailed, or larger models or more flexible

modeling software62 would facilitate better insights into

risk distributions and behavior choices.

There is uncertainty in the reliability of these findings

because the models are experimental and have not been

tested in real world situations. There is a general lack of

reliable quantification for how much misinformation

spread impacts real life risk-taking behavior with regard to

communicable diseases.

5. Conclusions

We applied three stages of modeling (1 = no misinforma-

tion spread, 2 = misinformation making outbreaks worse,

and 3 = strategies to reduce the influence of misinforma-

tion). Our modeling approach and design is adaptable to

many different types of diseases. Controlling spread of

misinformation or susceptibility to it could reduce commu-

nicable disease burdens. Our stage 3.1 modeling found

that a ratio of about 60:40 good:bad circulating advice

reduced stage 2 conditions to those of stage 1 in three

types of disease. ‘‘Immunizing’’ about 20% of the popula-

tion against misinformation (stage 3.3) was likely to revert

stage 2 to stage 1 conditions (for all diseases). The feasi-

bility of implementing these types of strategies (‘‘immuni-

zation’’ or changing the proportions of types of advice in

circulation) should be explored. The efficacy of imple-

menting such strategies to fight ‘‘fake news’’ needs to be

tested in real world settings, with costs and benefits ideally

compared with real world disease reduction.
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