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Abstract

BACKGROUND: While evidence indicates that familial predisposition influences degenerative 

rotator cuff disease (RCD) risk, knowledge of specific genetic markers is limited. We conducted a 

genome-wide association study of RCD surgery using UK Biobank, a prospective cohort of 

500,000 people aged 40–69 at enrollment with genotype data.

METHODS: Degenerative RCD surgery cases were identified using linked hospital records. 

Cases were defined as presence of ICD-10 code M75.1 diagnosed by a trauma/orthopedic 

specialist with accompanying surgery consistent with RCD treatment. Cases were excluded if 

traumatic injury diagnoses were made during the same hospital visit. For each case up to five 

controls were chosen from UK Biobank matched by age, sex, and follow-up time. Analyses were 

limited to European-ancestry individuals who were not third degree or closer. We used logistic 

regression to test for genetic association of 674,405 typed and >10 million imputed markers 

adjusting for age, sex, population principal components, and follow-up.

RESULTS: We identified 2,917 RCD surgery cases and 14,158 matched controls. We observed 

one genome-wide significant signal (p-value<5×10−8) for a novel locus tagged by rs2237352 in 

the CREB5 gene on chromosome 7 (OR=1.17, 95%CI=1.11–1.24). Single nucleotide 

polymorphism (SNP) rs2237352 was imputed with a high degree of confidence (info 

score=0.9847) and is common with a minor allele frequency of 47%. After expanding the control 
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sample to include additional unmatched non-cases, rs2237352 and another SNP on the CREB5 

gene, rs12700903, were genome-wide significant. We did not detect genome-wide significant 

signals at loci associated with RCD in previous studies.

CONCLUSIONS: We identified a novel association between a variant in the CREB5 gene and 

RCD surgery. Validation of this finding in studies with imaging data to confirm diagnoses will be 

important.

CLINICAL RELEVANCE: Identification of genetic RCD susceptibility markers can guide 

understanding of biological processes in cuff degeneration and help inform disease risk in the 

clinical setting.

Introduction

Rotator cuff disease (RCD) is the most common cause of shoulder disability,1–4 but studies 

identifying risk factors for symptomatic disease have been sparse. Prevention strategies 

aimed at high risk groups could dramatically impact healthcare given the economic burden 

of treating painful RCD.5,6

Accumulating evidence indicates that familial predisposition influences degenerative RCD 

risk.7–10 However, knowledge of specific RCD genetic markers is limited. Studies have 

evaluated candidate genes and discovered associations with genes involved in repair and 

degenerative processes, including genes expressed in response to tissue damage.11–13 The 

first genome wide association study (GWAS) for RCD detected two associated single 

nucleotide polymorphisms (SNPs) involved in apoptosis,14 but this study of <350 RCD 

patients had limited statistical power. A second GWAS was unable to replicate associations 

from the first, and identified a new SNP associated with RCD.15 While this study was much 

larger (8,357 rotator cuff injury cases), the definition for RCD was non-specific, using ICD 

codes that might capture shoulder pain from other diseases.15

Uncertainty still exists about which genetic markers have true associations with degenerative 

RCD. The UK Biobank population of half a million people with genotype data provided a 

unique opportunity for a large GWAS with carefully defined RCD cases and controls to 

identify additional genetic markers and further evaluate the replicability of previous 

findings.

Methods

Our study population was derived from UK Biobank, a population-based prospective cohort 

of approximately 500,000 United Kingdom residents.16,17 Participants aged 40–69 years 

were recruited nationwide from 2006–2010 through invitations mailed to people registered 

with the National Health Service (NHS).18 At enrollment participants gave informed consent 

and whole blood samples were collected. NHS hospital records were linked to UK Biobank 

providing information on inpatient diagnoses and procedures during 2006–2017. Diagnoses 

were coded using the International Classification of Diseases, 10th revision (ICD-10). 

Procedures were coded using the Office of Population Censuses and Surveys Classification, 

4th revision (OPCS-4). DNA was extracted from whole blood samples and genotyped using 
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the UK Biobank Axiom Array, which includes 812,428 SNPs and insertion-deletion 

markers.17,19 An additional 73 million markers were imputed using a reference haplotype 

panel to predict genetic markers not directly assayed. We obtained de-identified data from 

UK Biobank (project number 27034) on 488,292 UK Biobank participants with available 

genotype results. Of these, 968 participants were excluded because of poor quality results 

indicated by either extreme heterozygosity or missingness.17

Within the remaining 487,324 people we selected cases and controls. As >94% of 

participants self-reported European/white ancestry, the case-control population was limited 

to this group to reduce population stratification. Numerous quality control (QC) measures 

were undertaken to confirm data quality of the selected case-control sample.20,21 People 

were excluded if there was discordance between their reported and genetic sex, or a typed 

autosomal call rate <0.95. Population principal components (PCs) were used to infer shared 

ancestry.22 Individuals who reported European/white ancestry, but whose PCs did not cluster 

with the British ancestry cohort were excluded.17 We included individuals whose first three 

PCs were near the mean of this British cluster, namely within one third the full range of that 

PC across populations. Related pairs up to a third degree were provided by UK Biobank. To 

facilitate GWAS methods that assume unrelated individuals, one person from each related 

pair was excluded. When a pair contained a case (as defined below) and a non-case, the non-

case was preferentially excluded. Otherwise, one person was excluded at random. The 

remaining subcohort formed the population from which cases and controls were selected.

Degenerative RCD cases were identified based on a primary or secondary ICD-10 diagnosis 

code of M75.1. To reduce risk of misdiagnosis, RCD cases were included only if a diagnosis 

was made by a trauma/orthopedics specialist and an accompanying surgical procedure 

consistent with RCD treatment was present. As genetic factors are considered important 

primarily for degenerative RCD, cases were excluded if they occurred concurrently with 

traumatic injury diagnoses (ex. shoulder dislocation).

Five controls were randomly selected for each case through incidence-density sampling, in 

which controls are randomly chosen from individuals in follow-up without a prior 

degenerative RCD diagnosis at the time of case diagnosis. Incidence-density sampling 

ensures a representative sample population with comparable follow-up for cases and 

controls.23,24 Follow-up was defined as time since enrollment in UK Biobank. Controls were 

matched to cases by age and reported sex.

The NHS Research Ethics Committee approved the UK Biobank. The Washington 

University Institutional Review Board determined this study to be exempt from oversight.

We included genetic variants that did not diverge from Hardy-Weinberg equilibrium with a 

p-value<1×10−6 and that had a minor allele frequency (MAF) >0.004285. The MAF cut-off 

was based on the formula 25/(2*number of cases) so ≥25 minor alleles would be expected in 

cases under the null hypothesis. Only imputed variants with an INFO score ≥0.3 were 

included to remove variants with low confidence imputed values.

Association tests used logistic regression to model genotype dosage effects on RCD, with 

covariates for age, sex, follow-up time, and the first 10 population PCs.22 QQ-plots were 
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graphed and a genomic inflation factor calculated to check for bias. We required a genome-

wide significance threshold of 5×10−8.20,25 For regions harboring GWAS significant signals, 

we performed an adjusted analysis using the lead SNP as a covariate to detect additional 

independent signals. We also specifically examined genetic markers identified as 

significantly associated with RCD in prior literature.11–15,26–30 For these markers a 

Bonferroni-adjusted p-value<0.05 and an odds ratio (OR) indicating an association in the 

same direction as the original publication were considered evidence of replication. PLINK 

(v1.9 and v2.0) was used for data cleaning and analysis.31,32

For genome-wide significant variants identified in initial analyses, several sensitivity 

analyses were undertaken. First, associations were estimated using the same cases and a 

larger set of controls defined as all non-cases in UK Biobank who met the quality control 

standards outlined above. Second, associations were estimated using conditional logistic 

regression to incorporate individuals selected multiple times as controls through incidence-

density sampling and more precisely adjust for matching criteria. Third, associations were 

estimated in the subgroup of cases ≤60 years old at RCD surgery (and corresponding 

controls), as we hypothesized that genetic predisposition could lead to earlier-onset disease.

Results

Of the 487,324 people with usable genotype information, 28,072 people reported non-white 

ancestry (Figure 1). We excluded 364 people with a typed autosomal call rate <0.95, 357 

people with discordance between reported and genetic sex, and 78,859 people to eliminate 

relatedness up to the 3rd degree. Thirty-one people were excluded based on population PCs.

In the remaining 379,641 people, we identified 2,917 degenerative RCD surgery cases. For 

cases, diagnoses occurred after a median 5 years of follow-up (interquartile range=3–6 

years, range=0–10 years). The median diagnosis age was 65 years old (interquartile 

range=59–69, range=41–78), and 48% of cases were women (Table 1). Cases were follow-

up, age, and sex-matched with a 1:5 ratio to 14,158 unique controls. For conditional logistic 

regression to represent incidence-density sampling, some individuals could be selected as 

controls multiple times, giving 14,547 controls.

Initially, over 77 million typed and imputed variants were available for analyses. Of these, 

>66 million were removed because of MAF<0.004285 and 50,998 were removed because of 

a Hardy-Weinberg exact test p-value<1×10−6. There remained 674,405 typed and 

10,140,917 imputed variants included in analyses.

The Q-Q plot and genomic inflation factor of 1.02 provided no evidence for bias after 

accounting for matching factors and the first 10 PCs (Figure 2).

We observed one novel genome-wide significant signal (p-value=4.04×10−8) at SNP 

rs2237352 in the CREB5 gene on chromosome 7 (OR=1.17, 95%CI=1.11–1.24, Table 2, 

Figure 3). SNP rs2237352 was imputed with a high degree of confidence (INFO 

score=0.9847) and is a common variant (MAF=46.8%). The second strongest signal was for 

imputed SNP rs12700903 in the CREB5 gene (OR=1.17, 95%CI=1.11–1.24, p-

value=5.63×10−8), which is in strong linkage disequilibrium (LD) with rs2237352 (r2 = 
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0.98). Thus both SNPs represent the same statistical signal. The most significant directly 

assayed SNP in the CREB5 gene was rs66539057, but the association was not significant at 

a genome-wide level (OR=1.16, 95%CI=1.09–1.23, p-value=1.29×10−6). Figure 4 shows a 

detailed view of the associated region, with the lead SNP rs2237352 having strong to 

moderate LD with additional SNPs in the region.33 The strongest signal for a SNP having 

modest LD with rs2237352 was for rs4722837 (OR=0.86, p-value=1.26E-7, r2=0.38 with 

rs2237352).

Results were similar in conditional logistic regression (rs2237352 OR=1.17, 95%CI=1.10–

1.24; rs12700903 OR=1.17, 95%CI=1.10–1.24, Table 2).

After analyses adjusting for rs2237352 genotype, no additional SNPs in the region showed 

strong association (lowest p-value within 500Kb was 1.5×10−4).

We did not detect genome-wide significant signals at 28 loci associated with RCD in other 

studies. Two SNPs, rs820218 in the SAP30BP gene and rs2277698 at the TIMP2 gene, were 

associated with RCD surgery with a nominal p-value<0.05 (rs820218 OR=0.93, 

95%CI=0.88–0.99, p-value=0.025; rs2277698 OR=0.87, 95%CI=0.80–0.95, p-value=0.002, 

Table 3). However, for rs2277698 the association was in the opposite direction as in the prior 

study. After Bonferroni-adjustment for 28 replication attempts, neither SNP remained 

significant.

After expanding controls to include the larger, unmatched cohort of non-cases (N=375,560), 

rs2237352 remained genome-wide significant (p-value=2.29×10−8, Table 2). Additionally, 

the rs12700903 association with degenerative RCD surgery became genome-wide 

significant (p-value=3.69×10−8).

There were 735 cases ≤60 years old at diagnosis and 3602 corresponding controls. Within 

this subgroup, associations with rs2237352 and rs12700903 were not genome wide-

significant due to reduced statistical power. Odds ratios were slightly larger (rs2237352 

OR=1.22, 95%CI=1.09–1.37, p-value=0.0006; rs12700903 OR=1.23, 95%CI=1.09–1.38, p-

value=0.0005).

Discussion

We conducted a large, population-based GWAS of degenerative RCD surgery with well-

defined cases and identified a novel association with a common SNP in the CREB5 gene. 

SNP associations from prior RCD studies did not replicate in our population after multiple 

test correction. These findings highlight the need for further large GWAS of degenerative 

RCD focused on carefully defining case and control status and identifying replicable results.

We identified a novel association between SNP rs2237352 and degenerative RCD surgery. 

SNP rs12700903 was also associated with degenerative RCD surgery after expansion of our 

control group, and represents the same signal as SNP rs2237352. Both SNPs are located on 

the CREB5 gene, which encodes a protein that is part of the cAMP response element-

binding protein family.34 CREB5 is a transcription factor involved in cell growth, 

proliferation, and differentiation.35,36 CREB5 expression has been associated with plasma 
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interleukin-6 levels and may influence inflammatory response genes.37 As CREB family 

proteins influence expression of other genes,38,39 there may be numerous genetic mutations 

that could influence the same biologic pathways. If further research confirms this 

association, one would expect genetic risk for RCD to be highly polygenic as is common for 

most complex traits. Differential CREB5 expression has also been specifically documented 

in fibroblasts,40 lending further evidence that mutations in this gene could be of importance 

for tendon injury and repair.

After adjusting for rs2237352 in models, no additional signals were detected, consistent with 

this region harboring one primary locus associated with degenerative RCD. CREB5 SNPs in 

weaker LD with the top signal did not provide GWAS-significant evidence for another 

distinct signal in the region. However, this locus could represent an accumulation of weak 

effects from linked variants that influence degenerative RCD.41 Notably, as rs2237352 is an 

intron variant, it may be indicative of an unknown genetic determinant with which it co-

segregates.

Most prior RCD genetic epidemiology studies have been candidate gene studies, while two 

GWAS RCD studies in independent populations have been conducted.10,13,15 Candidate 

gene studies focus on specific genes with known function potentially related to rotator cuff 

degeneration, whereas GWAS studies take an agnostic approach to testing association with 

large portions of the genome. Of the 28 SNPs from prior studies that we could evaluate in 

UK Biobank, only 1 demonstrated an association in UK Biobank in the same direction as the 

prior study with a nominal, uncorrected P<0.05 (rs820218), while none reached genome-

wide significance. SNP rs820218 is located on the SAP30BP gene, which encodes a 

transcriptional regulator protein involved in cell death and apoptosis.14,42 Numerous studies 

have shown increased tendon cell apoptosis related to rotator cuff tearing.43–45 However, as 

only 1 SNP out of 28 demonstrated a consistent association, this could indicate a chance 

replication.

Other findings were not replicated in our study. These discrepancies could be due to initial 

findings being due to chance, or could result from differences in case definitions. As our 

cases were specifically drawn from surgical cases in a hospital, they likely represent more 

severe disease than cases in studies capturing all confirmed rotator cuff tears in an 

orthopaedic clinical setting. For SNPs reported from candidate gene studies, we were unable 

to replicate associations at the P<0.05 level. Candidate gene studies have had limited success 

in identifying large portions of the genetic contributions to other complex diseases, and can 

be more susceptible to publication bias.46–48

One other genetic RCD study has recently been conducted in UK Biobank, which used a 

less specific case definition that appeared to include primary care diagnoses without 

treatment information.49 The associated SNPs in our study were not identified as having 

genome-wide significant signals in that study. Instead, three other associated SNPs were 

identified. These SNPs in the GLCCI1, THSD7A, and ZNF804A genes showed similar 

associations in our results that were not genome-wide significant (ex. for variant in GLCC1 

gene: odds ratio of 0.88 vs. 0.89 in our study with P-value=2.84×10−4). The contrasting 

results likely reflect differing case definitions. The other study’s less stringent definition 
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could capture cases that represent alternate sources of shoulder pain given preliminary 

diagnoses of RCD, while we expect our cases to disproportionately capture severe disease.

There are important limitations to the current study. First, we could not confirm rotator cuff 

tears with MRI or ultrasound as shoulder imaging was not available within UK Biobank. 

Relatedly, our control group could include people with asymptomatic tears or symptomatic 

tears being treated conservatively or in an outpatient setting. The prevalence of shoulder 

conditions in the UK primary care setting is reported to be 16–26% with most relating to 

rotator cuff tendon problems.50,51 We also could not differentiate between genetic effects 

that influence tear initiation, progression in tear severity, and pain tolerance. We did not have 

information on treatment outcomes and so could not evaluate how genetics influenced 

surgical outcomes. As is usual for GWAS results, the associated SNPs might not be directly 

causal, but instead merely correlated with functionally significant variants. Finally, as our 

analyses were limited to the white/European-ancestry population, further studies in non-

European ancestry populations will be important in the future to examine the 

generalizability of our results.

Our study also had numerous strengths. This is one of the largest genetic RCD studies that 

has been conducted to date.15 Our incorporation of diagnostic, procedure, and provider 

specialty information likely made our case definition more specific than other large RCD 

GWAS,15,49 and we did not appear to be substantially under-capturing RCD surgery cases 

based on rates in the literature.52 A large number of genetic markers were available for 

examination, including typed markers and markers imputed with a high degree of 

confidence. This strength of UK Biobank will improve further in the future as plans are in 

place for whole genome sequencing of the population.53

A more comprehensive understanding of genetic susceptibility for degenerative RCD could 

aid treatment and prevention in several ways. First, someone with a genetic predisposition 

for RCD could derive greater benefits from changing modifiable risk factors such as 

smoking or occupational burdens. Second, a predisposition for cuff degeneration may also 

indicate impaired ability of the cuff to heal following surgical repair, which could influence 

cuff repair indications. Third, genetic susceptibility markers may point to key biological 

pathways in cuff degeneration that could direct future basic science research leading to novel 

therapeutics.

We identified a novel SNP in the CREB5 gene associated with degenerative RCD surgery in 

a general population sample of the United Kingdom. Further replication of this finding will 

be important in the future. Future examination of the genetic determinants of other chronic 

tendon disorders, including investigation of commonalities across such disorders, would be 

useful. The extensive information available in UK Biobank could allow future evaluation of 

risk models incorporating genetics, non-genetic characteristics, and gene-environment 

interactions.54 Identification of potentially important genetic markers in our study and others 

can allow a more focused study of these markers in smaller cohorts with more detailed 

clinical information, including investigations of how genetic factors may influence RCD 

progression and outcomes after surgical treatment.
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Figure 1. Flow chart of exclusions made prior to selection of rotator cuff surgery cases and 
controls in the UK Biobank
*Analyses using matched controls, such as conditional logistic regression, allowed 

individuals to serve as controls for multiple cases or serve as a case later in follow-up. As a 

result, 14,547 controls were identified for these analyses.
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Figure 2. Quantile-Quantile plot comparing observed P-values to the expected distribution of P-
values for each association of a genetic variant with rotator cuff disease surgery in the UK 
Biobank
Substantial, systematic divergence of the distribution of data points from the red diagonal 

line would indicate bias. Lambda represents the genomic inflation factor calculated by 

dividing the median observed test statistics by the median expected test statistic. A genomic 

inflation factor of 1 indicates no bias.
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Figure 3. Manhattan plot of –log10 p-values for each association of a genetic variant with rotator 
cuff disease surgery in the UK Biobank by chromosome location
The red horizontal line indicates the genome-wide significance threshold of P=5×10−8. The 

blue line represents a threshold of P=1×10−5.
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Figure 4. The association for Rotator Cuff Disease (RCD) on chromosome 7.
LocusZoom plot shows the association (left y-axis; log10-transformed p-values) with RCD. 

Genotyped SNPs are depicted by circles and imputed SNPs are depicted by squares. Shading 

of the points represent the linkage disequilibrium (r2, based on the 1000 Genomes Project 

Europeans) between each SNP and the top SNP, indicated by purple shading. Grey points in 

the plot represent the lack of LD information between the index SNP (rs2237352) the 

plotted SNP.
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TABLE I

Characteristics of Population of RCD Surgery Cases and Selected Controls from the UK Biobank

No (%)*

Cases Controls

Total 2,917 14,158

Age (yr)

 At enrollment 61 (55, 65) 61 (55, 65)

 At diagnosis 65 (59, 69) Not applic.

Sex

 Male 1,503 (51.5%) 7,284 (51.4%)

 Female 1,414 (48.5%) 6,874 (48.6%)

Self-reported race/ethnicity group

 White 6 (0.2%) 15 (0.1%)

 British 2,747 (94.2%) 13,269 (93.7%)

 Irish 79 (2.7%) 393 (2.8%)

 Any other White background 85 (2.9%) 481 (3.4%)

*
Except for age, which is given as the median (IQR).
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Table 3:

Replication Testing in the UK Biobank of SNPs Associated with Rotator Cuff Disease in the Prior Literature

Chromosome SNP Gene

Prior study information

A1

Results from UK Biobank

First Author Cases, N
CG vs. 
GWAS OR (95% CI) p-value

1 rs4654760 ALPL Peach 22 CG
T

1.00 (0.890, 
1.12) 0.958

5 rs3045 ANKH Peach 22 CG
C

1.01 (0.916, 
1.10) 0.910

5 rs1011814 FGF10 Motta 203 CG
T

1.03 (0.967, 
1.09) 0.393

5 rs11750845 FGF10 Motta 203 CG
C

1.01 (0.956, 
1.07) 0.687

6 rs12527089 SASH1 Tashjian 311 GWAS
T

0.959 (0.836, 
1.10) 0.545

8 rs13317 FGFR1 Motta 203 CG
C

0.961 (0.899, 
1.03) 0.237

8 rs1800972 DEFB1 Motta 203 CG
C

1.02 (0.956, 
1.09) 0.512

9 rs1590 TGFBR1 Figueiredo 211 CG
G

1.00 (0.940, 
1.07) 0.937

9 rs10759753 TNC Kluger 155 CG
G

0.989 (0.927, 
1.05) 0.725

9 rs1138545 TNC
Kluger; Kluger 

cuff healing
155; 120 (cuff 
healing study)

CG
T

1.06 (0.982, 
1.15) 0.136

9 rs2104772 TNC

Kluger cuff 
healing, 

Figueiredo

120, 211 
(Figueiredo)

CG

A
1.05 (0.991, 

1.11) 0.100

9 rs3789870 TNC Kluger 155 CG
A

0.994 (0.932, 
1.06) 0.865

9 rs7021589 TNC Kluger 155 CG
C

1.06 (0.984, 
1.15) 0.122

9 rs7035322 TNC Kluger 155 CG
A

1.02 (0.959, 
1.09) 0.500

9 rs72758637 TNC Kluger 155 CG
G

1.07 (0.994, 
1.16) 0.070

9 rs3196378 Col5A1 Figueiredo 211 CG
C

1.02 (0.967, 
1.08) 0.424

11 rs12574452 FGF3 Motta 203 CG
A

1.04 (0.982, 
1.11) 0.174

11 rs1799750 MMP1 Assuncao 64 CG Not measured or did not meet quality 
control filtering criteria in UK Biobank11 rs3025058 MMP3 Assuncao 64 CG

11 rs679620 MMP3 Figueiredo 211 CG C
1.01 (0.957, 

1.07) 0.658

14 rs10132091 ESRRB Bonato 49 CG
C

0.991 (0.936, 
1.05) 0.760

14 rs1676303 ESRRB Motta, Bonato 203 (Motta); 16 
(Bonato)

CG
C

1.00 (0.915, 
1.10) 0.964

14 rs17583842 ESRRB

Teerlink, 
Tashjian cuff 

healing

175 (Teerlink); 
30 (Tashjian cuff 

healing)

CG

C
0.940 (0.879, 

1.01) 0.072
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Chromosome SNP Gene

Prior study information

A1

Results from UK Biobank

First Author Cases, N
CG vs. 
GWAS OR (95% CI) p-value

14 rs4903399 ESRRB Motta, Bonato 203 (Motta); 49 
(Bonato)

CG
T

1.03 (0.959, 
1.11) 0.418

16 rs2285053 MMP2 Figueiredo 211 CG
T

1.08 (0.985, 
1.19) 0.101

16 rs71404070 Roos 8357 GWAS
A

0.993 (0.866, 
1.14) 0.919

17 rs820218 SAP30BP Tashjian 311 GWAS
A

0.934 (0.879, 
0.991) 0.025

17 rs2277698 TIMP2 Figueiredo 211 CG
T

0.870 (0.795, 
0.952) 0.002

19 rs1800470 TFGB1 Figueiredo 211 CG
G

1.02 (0.961, 
1.08) 0.532

19 rs1800469 TFGB1 Figueiredo 211 CG
A

1.01 (0.951, 
1.08) 0.710

20 rs17576 MMP9 Figueiredo 211 CG
G

1.01 (0.949, 
1.07) 0.821

CG=candidate gene study, GWAS=genome-wide association study
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