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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a treatment-refractory malignancy in urgent need of
a molecular framework for guiding therapeutic strategies. Bulk transcriptomic efforts over the past
decade have yielded two broad consensus subtypes: classical-pancreatic/epithelial versus basal-
like/squamous/quasi-mesenchymal. While this binary classification enables prognostic
stratification, it does not currently inform the administration of treatments uniquely sensitive to
either subtype. Furthermore, bulk mRNA studies are challenged by distinguishing contributions
from the neoplastic compartment versus other cell types in the microenvironment, which is
accentuated in PDAC given that neoplastic cellularity can be low. The application of single-cell
transcriptomics to pancreatic tumors has generally lagged behind other cancer types due in part to
the difficulty of extracting high-quality RNA from enzymatically-degradative tissue, but emerging
studies have and will continue to shed light on intra-tumoral heterogeneity, malignant-stromal
interactions, and subtle transcriptional programs previously obscured at the bulk level. In
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conjunction with insights provided by single-cell/nucleus dissociative techniques, spatially
resolved technologies should also facilitate the contextualization of gene programs and inferred
cell-cell interactions within the tumor architecture. Finally, given that patients often receive
neoadjuvant chemotherapy and/or chemoradiotherapy even in resectable disease, deciphering the
gene programs enriched in or induced by cytotoxic therapy will be crucial for developing insights
into complementary treatments aimed at eradicating residual cancer cells. Taken together, single-
cell and spatial technologies provide an unprecedented opportunity to refine the foundations laid
by prior bulk molecular studies and significantly augment precision oncology efforts in pancreatic
cancer.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of only 9% and is
projected to become the second highest cause of cancer deaths in the US by 2030 (1,2).
Standard management often involves multi-agent chemotherapy in the form of
FOLFIRINOX or gemcitabine/nab-paclitaxel, but the administration of either regimen is not
generally guided by molecular characteristics of individual tumors (3,4). The rare examples
of precision oncology in pancreatic cancer involve patients with germline BRCA1IBRCAZ2
mutations who may benefit from platinum-based agents and poly(adenosine diphosphate—
ribose) polymerase (PARP) inhibition, and those with high microsatellite instability (MSI-
high) or defective DNA mismatch repair (iIMMR) who may respond to immune checkpoint
inhibitors, but these subgroups account for less than 4% and 1% of all PDAC patients,
respectively (5-9) (Table 1). As such, there remains a paramount need to refine the molecular
characterization of PDAC to stratify patients based on potentially targetable vulnerabilities
and efficacious therapeutic strategies.

Although a clinically informative taxonomy has yet to be established for pancreatic cancer,
there have been numerous attempts at molecular subtyping to date. In this review, we will
first briefly highlight the groundwork laid by bulk genomic and transcriptomic
characterizations of human PDAC, which have been more extensively reviewed elsewhere
(10-12). We then focus most of the review on insights gleaned from single-cell studies of
human specimens. Although applications of single-cell technologies to pancreatic cancer
have generally lagged behind other neoplasms due in part to the difficulty of extracting high-
quality RNA from enzymatically-degradative tissue (13,14), such studies are now rapidly
emerging and will continue to elucidate intra-tumoral heterogeneity and subtle
transcriptional programs once obscured at the bulk level. Insights revealed from enhanced
cellular resolution are particularly valuable in this disease given the relatively low neoplastic
cellularity of PDAC tumors (as low as <5% of total cells in the tumor specimen) and
pathological contributions from the tumor microenvironment (TME). In tandem with
biology gleaned through dissociative techniques, spatially-resolved technologies should also
facilitate the contextualization of expression programs and cellular interactions within the
tumor architecture. Taken together, the collective insights from these approaches have the
potential to inspire future directions for scientific investigation and spawn treatment
strategies aimed at modulating multiple cell type compartments within the TME.

Clin Cancer Res. Author manuscript; available in PMC 2022 January 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Guo et al.

Page 3

Profiling genomic aberrations in pancreatic cancer

Molecular

It has been well-established from both clinical biopsies and /7 vivo models that four of the
most common genetic mutations in pancreatic cancer are KRAS, TP53, SMAD4, and
CDKNZA (15-18). Unfortunately, with the exception of some recent trials (e.g.,
NCT04330664), mutant KRAS has thus far been largely recalcitrant to drug targeting, and
the latter three most commonly mutated genes are typically affected by loss-of-function
mutations that are difficult to revert therapeutically. As such, several large cohort studies of
primary tumor specimens were carried out over the past decade to discover additional
mutations enriched in pancreatic cancer (18). To date, the subpopulation of PDAC patients
for whom mutational signatures have guided treatment and conferred overall survival (OS)
benefits are those with forms of homologous recombination deficiency (HRD) such as
BRCAIand BRCAZ mutations receiving platinum agents, though they constitute less than
5% of all patients (9,19-21) (Table 1). This appears to be the case for most individual genetic
alterations in pancreatic cancer, which appear in only a minor subset of the patient
population (6). Given this, notable efforts over the past decade have shifted towards
subcategorizing PDAC based on transcriptomic information, which may be more conducive
to the generation of broader, clinically-meaningful subtypes.

subtyping using bulk transcriptomics

The ability to capture mRNA in a relatively unbiased manner across the entire transcriptome
has yielded gene expression based subtyping of various cancers, which in many cases, has
already generated prognostic and therapeutic insights (22-24). Unlike mutationally-driven
subtyping that is intrinsically limited by the prevalence of any particular genomic aberration
within the patient population, transcriptome-based subtypes have tunable granularity as they
are driven instead by expression signatures of multiple genes; the optimal extent of
subcategorization is therefore one that is precise enough to inform subgroup-specific
treatments but also broad enough to inspire therapeutic development and clinical
deployment.

Bulk transcriptomic analyses over the past decade have resulted in a general distinction
between two consensus subtypes: classical/epithelial and basal-like/squamous/quasi-
mesenchymal (Table 2). The classical phenotype is characterized by robust expression of
GATAG6-driven endodermal programs and genes involved in epithelial differentiation, which
was orthogonally confirmed through histological detection of abundantly secreted mucins
(25,26). Putative variants of this subtype, such as immunogenic-progenitor and aberrantly
differentiated endocrine exocrine (ADEX) (27), have also been proposed therein, but are
now thought to describe contributions from immune infiltrate in the TME, or acinar and
endocrine contamination, respectively (28). As a whole, the classical/epithelial subtype is
thought to be the ‘default’ pathway in PDAC pathogenesis given GATAG6 expression in
adjacent normal tissue and its higher prevalence in the patient population (29). Basal-like
tumors, in contrast, are characterized by an abundance of laminins and keratins, and exhibit
expression patterns consistent with previously-described basal-like subtypes in breast and
bladder cancer (30,31). This rarer subtype is thought to be correlated with high tumor grade,
some level of KRAS-independence, and poorer outcomes. Indeed, basal-like tumors are
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associated with approximately 8 months shorter median survival in the localized disease
setting (26). As with its classical counterpart, however, a recurring challenge in
characterizing this subtype at the bulk level has been differentiating between neoplastic-
intrinsic and TME-derived contributions. For example, an early study by Collisson et a/. in
2011 suggested that basal-like tumors exhibit mesenchymal-like features (25), though
retrospective comparisons have raised the possibility that these observations may have been
due to an admixture of the basal-like subtype and stromal contamination (26), a challenge
that is frequently accentuated in analyses of PDAC due to pervasive desmoplastic stroma.

Bulk transcriptomic subtypes and response to therapy

Beyond prognostication, subtype determination currently does not influence the
administration of chemotherapy for patients, but preliminary pre-clinical and clinical data
suggest that there may be differential responses of basal-like and classical/epithelial tumors
to FOLFIRINOX vs. gemcitabine/nab-paclitaxel (Table 1; Figure 1). In 2011, Collisson et al.
showed that cell lines classified as quasi-mesenchymal were more sensitive to gemcitabine
relative to their classical counterparts (25). Furthermore, among the 12 patients who had
basal-like tumors in the COMPASS cohort, seven were responders (stable disease or partial
response) while five were non-responders (progressive disease) (32). Of note, nearly half of
patients in the former group received gemcitabine/nab-paclitaxel instead of modified
FOLFIRINOX while no patients in the latter group received gemcitabine/nab-paclitaxel,
though larger sample sizes are needed to substantiate this potential heightened sensitivity of
basal-like tumors to gemcitabine-based regimens (Table 1; Figure 1). Forthcoming
randomized controlled trials such as the PASS-01 study may provide further insights into
these outstanding questions by integrating molecular profiling (e.g., GATAB) into
comparisons of modified FOLFIRINOX vs. gemcitabine/nab-paclitaxel (NCT04469556).

Challenges of bulk transcriptomic profiling

Although mRNA-based subtyping efforts to date have improved our understanding and
classification of PDAC, they are intrinsically challenged by the mixing of mRNA derived
from unknown proportions of malignant and non-malignant cell types, providing a low-
resolution ensemble readout. Prior studies recognized this limitation and, as a result,
frequently performed microdissections or screened for high epithelial content prior to bulk
processing. Nonetheless, the limitations of bulk transcriptomics were evident in the
conception of malignant subtypes now believed to result from stromal contamination. This
strongly indicates the need to dissect this disease using emerging single-cell technologies
that can compartmentalize the various cell types within the TME and differentiate neoplastic
from non-neoplastic programs. If combined with spatially-resolved analyses, single-cell
RNA-seq (scRNA-seq) can further reveal how various subtypes co-localize with one another
across cell types. Indeed, an outstanding question in the field is how neoplastic subtypes
differentially associate with cancer-associated fibroblast (CAF) subtypes, for instance. We
thus dedicate the remainder of this review to emerging research that leverages single-cell
transcriptomics and spatial technologies to illuminate the intra- and inter-tumoral
heterogeneity of PDAC at unprecedented resolution.
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Single cell and spatial technologies redefine the molecular diversity of
pancreatic cancer

The maturation of scRNA-seq in recent years has enabled the discovery of previously-
unknown cell types and improved characterizations of transitory cell states (33-36). In
human cancers, these approaches have already been applied to sites such as the brain, breast,
skin, and colon, among many others (33,35,37-39), but have lagged behind in the pancreas
by several years. However, technological improvements have led to emerging single cell
studies in PDAC that shed light on intra-tumoral heterogeneity, malignant-stromal
interactions, treatment-induced alterations, and gene expression programs in rarer cell types
or subtypes (29,40-47) (Table 3). In this section, we discuss the various techniques that have
been used as well as the insights specifically derived from the malignant, CAF, and immune
compartments.

Malignant Cells

In 2018, Bernard et al. used Drop-seq (36) to analyze 3343 cells from two PDAC, two low
grade intraductal papillary mucinous neoplasms (IPMN), and two high-grade IPMNs to
dissect the epithelial cell programs involved in the progression of nascent lesions (42). They
found numerous similarities in signaling programs between invasive PDAC and high-grade
IPMNs, and conversely, fewer between invasive cancer and low-grade lesions. By capturing
other cell types in the microenvironment, they also revealed the acquisition of heterogeneous
alterations not only in the epithelium but also in non-neoplastic compartments throughout
tumor progression. In spite of these insights, no modification to the existing molecular
taxonomy was proposed perhaps in part due to the low numbers of cells and specimens
examined.

A larger-scale effort was carried forth in 2019 by Peng et al. (43) in which 41,986 single-
cells were analyzed from 24 primary tumors and 11 ‘normal’ control pancreata using the
commercially-available 10x Genomics Chromium Single Cell Gene Expression (3’ v2)
platform, revealing 10 distinct clusters in expression space that corresponded to specific
known cell types. The epithelial cells, in particular, were separated into type 1 and 2 ductal
cells, with the former approximating moderately atypical ductal cells and the latter
malignant cells with pronounced chromosomal copy number variations (CNVs). A series of
differential gene expression analyses showed that the type 1 ductal cells were enriched for
cell adhesion, migration, and inflammatory response but still maintained perfunctory
pancreatic roles, while type 2 ductal cells were enriched for malignant phenotypes such as
proliferation and hypoxia. When superimposed onto previous Bailey et al. subtypes (27), the
classical-progenitor and basal-like/squamous subtypes scored highly in the ‘malignant’ type
2 ductal cells as expected, though they were also present in other non-ductal cells,
underscoring the cell type admixing present in these bulk expression subtypes. Using a
subset of markers from the malignant ductal cells (type 2), the authors clustered The Cancer
Genome Atlas (TCGA) patients into three distinct groups based on bulk RNA-seq data with
differing survival and immune composition associations such as an inverse relationship
between high levels of proliferative ductal markers and cytotoxic T cell markers, marking
the first attempt at de novo patient-level categorization using single-cell insights. The
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authors also performed pseudotime trajectory analysis and found that £PCAM maintained
high expression across the transition from abnormal ductal to malignant while other genes
known to be involved with tumor progression, such as MUCZ, gradually increased during
PDAC progression (43).

In addition to performing bulk RNA-seq on 248 PDAC specimens, the COMPASS/PanCuRx
investigators also conducted sScRNA-seq on a limited subset of 15 samples (13 primary, 2
metastatic) using 10x Genomics Chromium Single Cell Gene Expression (3’ v2), which
yielded 31,195 cells for downstream analysis (29). Although the single-cell data was not
used to perform a de novo analysis, perhaps owing in part to an insufficient number of cells,
the data was helpful for validating the reclassification derived from non-negative matrix
factorization of the bulk RNA-seq data (Basal-like A, Basal-like B, Hybrid, Classical A,
Classical B). The intra-tumoral co-existence of basal-like and classical programs in different
malignant cells was demonstrated (29,46), and other studies have also shown that cells
generally exist along a continuum of basal-like and classical-like states, with certain cells
exhibiting characteristics of both (41). Such findings may have profound therapeutic
ramifications and raise the question of whether combinations of agents aimed at both basal-
like and classical cells may be advantageous for tumors harboring characteristics of both
subtypes. Further investigation into the defining signatures and dependencies of ‘hybrid
cells” should also be integrated into therapeutic considerations.

The loss of spatial relationships that comes with dissociation into a single-cell suspension is
a notable limitation when asking questions about the heterogeneity of cell types and cell-cell
interactions within the tumor architecture. To address this challenge, Moncada and
colleagues integrated single-cell RNA-seq with spatial transcriptomics (ST) on bisected
PDAC samples (45). As a proof-of-principle, they demonstrated their multimodal
intersection analysis (MIA) technigque on two specimens. The ST component had a
resolution of 20-70 cells and captured 1-2 orders of magnitude fewer unique genes and
transcripts compared to sScRNA-seq, which meant that reliable cell type identification in
space using such an approach required a robust SCRNA-seq atlas. Through their method, the
authors were able to demonstrate that subpopulations of neoplastic cells, ductal cells,
macrophages, and other immune cells had distinct spatial associations with one another;
among these, neoplastic cells exhibiting a stress response gene module were shown to co-
localize with a subset of CAFs called inflammatory CAFs (iCAFs), which we discuss in
greater detail in subsequent sections.

Cancer Associated Fibroblasts

While transcriptional programs intrinsic to malignant cells are generally the focus of
subtyping efforts, many groups have also recognized the prominent role of the stroma in
pancreatic cancer and have sought to characterize their cell-type constituents at the bulk and
single-cell level. In particular, cancer associated fibroblasts (CAFs) are an abundant member
of the tumor stroma (48) and have received considerable interest given their capacity to
facilitate tumor growth and metastasis, interfere with drug delivery (44,49,50), and augment
desmoplasia and immune suppression (51).
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Single-cell analyses of CAFs have not only validated the existence of known subtypes but
also refined markers and revealed rarer subpopulations that were obscured by bulk analyses.
Elyada et al., for instance, confirmed the presence of tumor-adjacent myofibroblastic CAFs
(myCAFs) with elevated ACTAZ expression and iCAFs within regions of high desmoplasia
expressing various cytokines and chemokines such as /L6 (44,52). In doing so, they
discovered novel markers for each subtype, such as TAGLN, MYL9, TPM1, TPM?,
MMP11, POSTN, and HOPX for myCAFs, and CFD, LMNA, and DPT for iCAFs. More
broadly, they were also able to reclassify general CAF markers as subtype-specific ones (e.g.
PDGFRA for iCAFs) and identify additional hallmarks of CAFs (e.g., PDPN, DCN) in
pancreatic cancer. Finally, using sScCRNA-seq to analyze mouse models of pancreatic cancer
in parallel with patient samples, Elyada and colleagues found a novel antigen-presenting
CAF (apCAF) subpopulation that upregulates MHC class Il genes and interacts with CD4*
T cells (44). Interestingly, this apCAF subpopulation lacks costimulatory molecules
necessary for T cell activation and is therefore purported to be an immunosuppressive decoy
that unfavorably skews the ratio of CD8" to regulatory T cells. Of note, however, the authors
observed that these CAFs are plastic and have the ability to interconvert among the various
phenotypes (44), which may present an opportunity to modulate the TME for either
endogenous recognition by the host immune system or facilitate immunotherapies that have
shown limited success in PDAC to date.

Although myCAFs are generally well-demarcated across single-cell studies examining
fibroblasts, some have not been able to identify iCAFs or apCAFs from de novo
unsupervised clustering (40,47). Lin et al,, for instance, reported three distinct fibroblast
clusters but found that two of them exhibited quiescent/normal and smooth muscle
signatures (RSG5, NOTCHS3, CSRP2) instead of iCAFs and apCAFs (47). It may therefore
be helpful for future work to examine whether iCAFs or apCAFs exist as smaller
subpopulations within one or more of these clusters, and to decipher the gene expression
patterns that obscure their identification in unsupervised clustering analyses.

In addition to classifying the CAF subpopulations, it has also been of great interest to learn
of the cell types they co-enrich with, their spatiotemporal orientations, as well as their
differential compatibilities with various therapeutic modalities. Toward this end, Bernard et
al. noted in their single-cell study that myCAFs were well-represented in high-grade IPMNs
and may therefore result from or contribute to pre-invasive dysplastic processes. Conversely,
iCAFs were only found in invasive cancer specimens and notably absent from non-invasive
IPMNs, suggesting that this CAF sub-population may not arise until more mature stages of
oncogenic transformation (42). This is consistent with the notion that the TME becomes
increasingly immune-suppressed throughout tumor development. Our group has also
undertaken efforts to examine interactions between stromal and cancer cells through RNA /n
situhybridization (RNA-1SH) with the stromal marker, SPARC, and the neoplastic markers
MKI67 (proliferation, PRO) and FNI (epithelial-mesenchymal transition, EMT). In this
study (53), we found that distinct neoplastic gland types (PRO vs. EMT vs. both) were
differentially associated with stromal abundance. Specifically, PRO*EMT™ glands were
enriched in high-stroma tumors, EMT* in medium-stroma tumors, and PRO* in low-stroma
tumors. More broadly, these results revealed that the CAF-rich stroma in PDAC has a large
influence on the overall tumor architecture and the heterogeneity that lies therein.
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Immune Cells

While dissociating viable malignant cells and CAFs from PDAC tissues is challenging,
immune cells are readily detached, achieving non-enriched viable cell fractions of
approximately 90% (44). Therefore, several SCRNA-seq studies to date have assessed the
immune microenvironment of PDAC at the single-cell level. Elyada and colleagues
identified two major immune cell clusters representing the myeloid and lymphoid lineages
(44). Within the myeloid cluster, sub-clustering revealed six distinct populations that were
identified as resident macrophages, alternatively activated (M2-like) macrophages, classic
monocytes, conventional type 1 dendritic cells (cDC1), and two types of Langerhans-like
dendritic cells. Within the lymphoid cluster, sub-clustering identified five discrete cell types:
CD8* T cells, CD4* T cells, regulatory T cells (Tregs), proliferating Tregs, and natural killer
(NK) cells. In addition, several groups have examined features of the tumor immune
microenvironment (TIME) during the tumorigenic process, relative to malignant cell
transcriptional state, and in primary versus metastatic deposits.

Low-grade IPMNs are enriched for cytotoxic T lymphocytes and CD4* effector T cells
compared to high-grade IPMNs and PDACs, suggesting an inflammatory reaction early in
pancreatic tumorigenesis that becomes suppressed over time (42). In contrast, PDACs are
enriched for granulocytic myeloid-derived suppressor cells (MDSCs) compared to precursor
IPMNs (42). Once invasive cancer has developed, cancer cell-intrinsic transcriptional
features appear to have a role in modulating the TIME. For example, Peng and colleagues
used their single-cell malignant ductal markers to cluster 178 pancreatic cancer patients
from TCGA based on bulk RNA-seq data (43). Among the three PDAC patient clusters
identified, cluster 3 featured proliferation markers and was associated with worse survival
compared with patients in clusters 1 and 2. Differential gene expression analysis of cluster 3
versus clusters 1 and 2 revealed an enrichment of cell cycle, DNA replication, and DNA
repair pathways and a depletion in several immune/T cell activation gene sets (43). In both
the TCGA and scRNA-seq cohorts, there was an inverse correlation between high expression
of proliferative ductal markers and low expression of T cell activation markers (43).
Immunohistochemistry demonstrated that low Ki67* ductal cells were spatially associated
with high T cell infiltration and vice versa, indicating that dysregulated ductal cell
proliferation and the local immune response are closely linked and pointing to a potential
therapeutic strategy combining cell-cycle inhibitors and immunotherapy (54).

The TIMEs of primary tumors and metastatic lesions are distinct in numerous ways,
including organ-specific differences. Using sScRNA-seq, Lin and colleagues extracted
immune cells from primary tumor resections and metastatic biopsies (mostly liver) (47).
Clustering tumor-infiltrating lymphocytes across primary tumors and metastases yielded two
mixed clusters, indicating similar functional states among lymphocytes in these two
contexts. The first cluster exhibited high levels of activation/exhaustion markers (e.g.,
PDCD1, TIGIT, CTLA4, HAVCR2, LAG3) while the second cluster was characteristic of
naive, antigen-inexperienced T cells (47). In contrast, macrophages from primary tumors
and metastases clustered separately with the former enriched in genes associated with
extracellular matrix production and would healing processes (M2-like polarization) while
the latter expressed MHC ll-related genes associated with antigen-presentation (47). These
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findings warrant further exploration, though intrinsic distinctions between pancreas-resident
and liver-resident macrophages may contribute to the observed differences.

The tradeoff for the depth of phenotypic characterization offered by scRNA-seq is the loss of
tissue architecture, which hinders inferences of intercellular interactions. A complementary
approach with single-cell spatial resolution but much lower molecular resolution involves
multiplexed immunolabelling or RNA /n situ hybridization and imaging. For example,
Carstens and colleagues developed an eight-plex immunofluorescence (IF) assay (a-smooth
muscle actin, collagen I, cytokeratin 8, CD3, CD8, CD4, Foxp3, DAPI) and performed
multispectral imaging with spectral unmixing for simultaneous assessment of all markers on
tissue microarrays derived from 132 PDAC specimens (55). They found that high levels of
total T cell, CD8* cytotoxic T cell, and CD4" effector T cell infiltration were all
independently associated with improved survival in a multivariate Cox regression analysis
(55). Focusing on a 20 um radius around each CK8* cancer cell, only high infiltration of
cytotoxic CD8* T cells was significantly associated with improved patient survival. Notably,
aSMA levels did not correlate with T-cell infiltration and collagen | deposition was actually
positively correlated with T-cell infiltration, indicating that desmoplastic stroma does not
appear to have a net hinderance on lymphocyte infiltration in this context (49,56). Recently,
a similar multiplexed IF approach was used to investigate myeloid cells (CD14, CD15,
CD33, ARG1, HLA-DR) and macrophages (CD68, CD86, CD163, CD206, IRF5) in tissue
microarrays assembled from 305 primary resection specimens (57). Using four polarization
markers to calculate a continuous M1-M2 macrophage polarization index (M1: CD86, IRF1;
M2: CD163, CD206), Vayrynen and colleagues discovered that M1-polarized macrophages
were located significantly closer to cancer cells than M2-polarized macrophages (57).
Furthermore, reduced survival was associated with high density of CD15*ARG1*
immunosuppressive granulocytic cells and M2-polarized macrophages, as well as closer
proximity of M2-polarized macrophages to cancer cells. Finally, the authors found that
myeloid cell densities were associated with alterations in PDAC driver genes (e.g., higher
CD15" granulocytic cell density associated with 7253 alterations, lower CD14* monocytic
cell density associated with SMAD4 inactivation), which provides further evidence that
cancer cell-intrinsic factors influence the PDAC TIME and are important considerations in
future efforts at therapeutic immunomodulation (57).

Emerging evidence and future directions

Early single-cell studies have demonstrated promise and have overcome prior challenges
posed by stromal admixing with neoplastic cells. In addition, the cumulative availability of
novel datasets that now constitute profiling from dozens of patients and hundreds of
thousands of cells (40,41,43) provides an exceptional opportunity to confirm cell-type-
specific findings derived from orthogonal settings or models (58). Nonetheless, there remain
several outstanding issues that still need to be resolved. First, single-cell studies have not yet
resulted in a molecular taxonomy that anchors a substantive clinical framework. Next, the
requirement of SCRNA-seq for freshly dissociated tissue limits data quality due to
suboptimal dissociation and lower RNA quality—as well as hampers the potential for multi-
institutional collaboration. This results in relatively low stromal capture of primary PDAC
tumors, leading to a non-representative distribution of the cell types acquired (44).
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Conversely, extracting single nuclei from difficult to dissociate tissues such as benign
pancreas and neuronal specimens has been demonstrated, and comparisons between the
mMRNA transcripts derived from nuclei and the cytoplasmic compartment have shown similar
abundance patterns (14,59-63). As such, one alternative strategy would be to use single-
nucleus RNA-seq (snRNA-seq) for PDAC, which has shown compatibility with frozen
specimens and bypasses some of the challenges of balancing viability, dissociation, and
RNA integrity seen with ScRNA-seq (40). Indeed, sSnRNA-seq in primary PDAC captures a
histologically representative distribution of the major cell types (40). It should be noted,
however, that many patients with PDAC present with metastatic disease, and as such, there
may be additional insights that can be gleaned from examination of non-primary lesions.
Towards this end, a recent study used Seq-Well to profile 23,042 single cells from mostly
metastatic liver lesions, where the challenges of dissociating fibrotic tissue for sScRNA-seq
are thought to be less accentuated (41).

Emerging clinical evidence suggests that neoadjuvant chemotherapy and/or radiotherapy
may improve clinical outcomes, even in resectable disease (64). Nevertheless, there is still
much room for improvement. Prior transcriptomic studies of PDAC, both bulk and single-
cell, have focused on untreated disease but given the increasing prevalence of neoadjuvant
therapies and second-line treatments after recurrence or metastatic spread, the need to study
the disease after molecular alteration by the selection pressure of treatment has never been
higher. Our group recently found in patient-derived cell lines that ex vivo treatment with
FOLFIRINOX induces a shift towards a more basal-like phenotype (Figure 1), whereas
treatment with Vitamin D augments the baseline basal-like or classical/epithelial state of the
cell line (65). Separately, in human primary resection specimens exposed to FOLFIRINOX
and radiotherapy with capecitabine, an enrichment of basal-like over classical/epithelial-like
signatures was observed in post-treatment malignant cells, though it remains unclear
whether these observations were induced by treatment or resultant from the depletion of
more vulnerable cell subtypes/states, given the absence of matched specimens (40).
Additional mMRNA profiling in the context of randomized controlled clinical trials with
matched pre- and post-treatment specimens would further elucidate the significance of
expression patterns observed after therapy.

The loss of spatial information inherent to dissociated single-cell methods is problematic
when an understanding of interacting cell partners is required to fully dissect the complex
tumor ecosystem. As such, Moncada and colleagues have made important technological
advances in combining scRNA-seq with spatial transcriptomics (45), revealing specific
associations between neoplastic programs and CAF subtypes. However, it should also be
noted there are orthogonal methods compatible with archival formalin-fixed paraffin-
embedded (FFPE) sections and higher transcript capture rates that can be leveraged. For
example, digital spatial RNA profiling on FFPE sections has revealed that basal-like cancer
cells spatially associate with lymphocytic infiltration relative to classical-like cancer cells
(40), and conversely, that classical-like neoplastic cells appear to associate more strongly
with a myeloid-rich microenvironment. These results mirror those seen in breast cancer, in
which the triple-negative subtype that features basal-like characteristics exhibits greater
lymphocytic infiltration and responsiveness to immune checkpoint inhibition (66). One
outstanding question in this regard, however, is how the various CAF subpopulations
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associate with both malignant subtypes and immune cell types. One might posit that
classical-like/macrophage microniches also engage with immunosuppressive iCAFs, for
instance, though this requires further validation. Interestingly, a 2013 study by Mitsunaga et
al. found that high serum levels of IL-6 and IL-1f, markers of iCAFs, associated with poor
response to gemcitabine in patients with advanced PDAC (67), substantiating the notion that
classical-like/iCAF/macrophage co-enrichment may be an orchestrated, multi-cellular
module conferring resistance to gemcitabine-based chemotherapies. However, it should also
be noted that a prior study by Somerville et al. (68) showed that pancreatic cancer cells
expressing the squamous/basal-like associated p63AN isoform could induce iCAF-like states
in pancreatic stellate cells through conditioned media experiments and orthotopic
transplantation into mouse pancreata.

Ultimately, the value of the biology uncovered using single-cell and -nucleus approaches and
the molecular subtyping of PDAC lies in the applicability to patients. Through cell type-
specific biology, spatial relationships among different cells, and temporal dynamics during
tumor evolution and response to therapy, we should be well equipped to design rational
therapeutic strategies to overcome the treatment-refractory nature of this disease. While
precision oncology in pancreatic cancer remains in its nascent stages compared to other
common cancers, there is hope from the recent momentum and results described in this
review that clinical trials for PDAC will soon be stratified by meaningful molecular subtypes
and discerning biomarkers. The era of managing PDAC patients with a one-size-fits-all
approach is nearing its conclusion.
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Figure 1.
Schematic diagram of potential transcriptomic subtype-dependent response to therapy,

associations among different cell types, and treatment-induced plasticity.
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