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Abstract

The sympathetic nervous system represents a critical mechanism for homeostatic blood pressure 

regulation in humans. This review focuses on age-related alterations in neurocirculatory regulation 

in men and women by highlighting human studies that examined the relationship between muscle 

sympathetic nerve activity (MSNA) acquired by microneurography and circulatory variables (e.g., 

blood pressure, vascular resistance). We frame this review with epidemiological evidence 

highlighting sex-specific patterns in age-related blood pressure increases in developed nations. 

Indeed, young women exhibit lower blood pressure than men, but women demonstrate larger 

blood pressure increases with age, such that by about age 60 years, blood pressure is greater in 

women. Sympathetic neurocirculatory mechanisms contribute to sex differences in blood pressure 

rises with age. Muscle sympathetic nerve activity increases with age in both sexes, but women 

demonstrate greater age-related increases. The circulatory adjustments imposed by MSNA — 

referred to as neurovascular transduction or autonomic (sympathetic) support of blood pressure — 

differ in men and women. For example, whereas young men demonstrate a positive relationship 

between resting MSNA and vascular resistance, this relationship is absent in young women due to 

beta-2 adrenergic vasodilation, which offsets alpha-adrenergic vasoconstriction. However, post-

menopausal women demonstrate a positive relationship between MSNA and vascular resistance 

due to a decline in beta-2 adrenergic vasodilatory mechanisms. Emerging data suggest that greater 

aerobic fitness appears to modulate neurocirculatory regulation, at least in young, healthy men and 

women. This review also highlights recent advances in microneurographic recordings of 

sympathetic action potential discharge, which may nuance our understanding of age-related 

alterations in sympathetic neurocirculatory regulation in humans.
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1 | Introduction

The sympathetic nervous system imposes circulatory adjustments to regulate both short- and 

long-term arterial blood pressure — a key clinical variable, predictive of cardiovascular 

disease risk [1,2]. Epidemiological data from developed nations demonstrating that blood 

pressure rises steadily with age in healthy individuals [3,4], though differently among 

women and men, provide strong evidence of: i) age-related modifications to sympathetic 

neurocirculatory regulation in humans, and ii) sex differences in sympathetic vascular 

control. Indeed, young women have lower resting blood pressures than men [3,4]. However, 

as highlighted by Fig. 1, women demonstrate larger blood pressure increases across the life 

course, such that from about 60 years onwards, blood pressure is greater in women than men 

[3,4]. The incidence of diagnosed high blood pressure follows a similar pattern: young 

women are less likely to be diagnosed with hypertension than young men, but after about 60 

years, hypertension is more common in older women [1,5]. Age-related increases in blood 

pressure observed in developed nations are not obligatory, however. Data from indigenous 

Kuna who inhabit islands in the Panamanian Caribbean demonstrate no age-related increase 

in blood pressure [6]. Elevations in blood pressure observed in developed societies are also 

linked to age-related arterial stiffening, which is, in part, attributed to aberrant sympathetic 

discharge, collagen deposition, and vascular smooth muscle hypertrophy, among other 

factors [7]. Some evidence suggests that similar interactive effects of age and sex exist in 

arterial stiffening [8]. Although many important caveats exist regarding cardiovascular and 

anthropometrical sex differences (e.g., heart size and body size) [9], these observations raise 

important questions regarding neurocirculatory regulation in ageing women and men.

Accordingly, this work aims to review the evidence supporting age-related alterations in 

sympathetic neurocirculatory regulation in humans, highlighting important sex differences 

that exist across the lifespan. We also review the emerging literature targeting the impact of 

physical exercise and aerobic fitness on sympathetic neurocirculatory control in humans. 

Core to this discussion are two key fundamental physiological processes which will be 

reviewed: i) muscle sympathetic nerve activity (MSNA), which represents the action 

potential (AP) discharge patterns emanating from sympathetic nerves innervating the 

peripheral vasculature, and ii) neurovascular transduction or autonomic support of blood 

pressure, which describes the circulatory and hemodynamic effects of sympathetic discharge 

in humans.

2 | Sympathetic neurocirculatory regulation

The sympathetic nervous system controls vasomotor adjustments to maintain blood pressure 

homeostasis at rest and during physiological perturbations such as maintaining an upright 

posture and physical exercise. The connection between sympathetic neurocirculatory 

regulation and blood pressure can be explained by Ohm’s law applied to the circulation, 
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which highlights key roles for cardiac output and total peripheral resistance in the 

determination of mean arterial pressure: mean arterial pressure = cardiac output X total 

peripheral resistance (TPR). Importantly, sympathetic regulation of vascular diameter 

represents the core element of vascular resistance. Although cardiac output is also governed 

by sympathetic (and parasympathetic) neural mechanisms, this review focuses on 

sympathetic regulation of the peripheral vasculature in the context of human ageing [10]. 

Indeed, the inability to perform activities of daily living such as physical exercise or 

maintaining an upright posture in patients with sympathetic disorders or clinical 

sympathectomy reinforces the importance of sympathetic neurocirculatory control in 

humans [11,12].

Anatomically, the sympathetic nervous system elicits vasomotor adjustments through 

postganglionic c-fibres which traverse arteries within the adventitia and interface with the 

smooth muscle via bulging varicosities containing synaptic vesicles. A single sympathetic 

postganglionic c-fibre innervates a large area of the vasculature through a process known as 

synapse en passant which describes the formation of intermittent varicosities along the 

length of the axon that enable a single c-fibre to interface with many vascular smooth muscle 

cells [10]. Postganglionic sympathetic c-fibres conduct APs, which upon arrival at 

sympathetic varicosities initiate the release of neurotransmitters responsible for vascular 

adjustments — the primary neurotransmitter, norepinephrine (NE), and co-transmitters, 

neuropeptide Y (NPY) and adenosine triphosphate (ATP) [13]. The primary avenue for NE-

mediated vasoconstriction results from binding postsynaptic alpha-1 and alpha-2 adrenergic 

receptors on the vascular smooth muscle. However, NE can also elicit vasodilation through 

the binding of vascular smooth muscle beta-2 adrenergic receptors [14]. Neuropeptide Y and 

ATP initiate vasoconstriction by binding NPY-Y1 and P2X1 receptors on the vascular 

smooth muscle, respectively [13]. Overall, the degree of sympathetic regulation of the 

vasculature depends on the distribution, concentration, and sensitivity of vascular smooth 

muscle receptors [15]. A detailed discussion of the vascular smooth muscle intracellular 

cascades responsible for vascular adjustments related to individual receptor types is 

available elsewhere [10,13,14].

2.1 | Muscle sympathetic nerve activity

Fundamental to the understanding of human sympathetic neurocirculatory regulation is a 

thorough comprehension of the discharge patterns emanating from the sympathetic 

postganglionic c-fibres innervating the vasculature and affecting neurotransmitter release. 

Muscle sympathetic nerve activity (MSNA) describes sympathetic postganglionic c-fibre 

discharge directed towards the vasculature supplying skeletal muscle [16,17]. Developed by 

Hagbarth and Vallbo in 1968, microneurography involves the insertion of a thin tungsten 

microelectrode into a common nerve carrying postganglionic c-fibres to provide direct 

measurement of MSNA in humans [16,18]. Although the sympathetic nervous system 

broadly innervates the human vasculature and heart, microneurographic measurements in 

humans are commonly performed on superficial peripheral nerves such as the peroneal 

(fibular) nerve in the lower leg or the median nerve in the arm [19,20]. However, an 

intriguing new study by Macefield and colleagues highlights the possibility of performing 

ultrasound-guided microneurographic recordings from deeper (sympathetic) nerves under 
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supervised clinical conditions [21]. In general, sympathetic nerve activity recorded from the 

peroneal nerve reflects sympathetic traffic towards other circulatory beds and the heart, as 

assessed from NE spillover [22–24].

Microneurographic recordings of MSNA require delicate positioning of the microelectrode 

tip near spontaneously discharging bundles of unmyelinated postganglionic c-fibres 

supplying the skeletal muscle vasculature [25]. Postganglionic sympathetic nerves vary in 

diameter from 0.5 to 2 μm and form small bundles most often comprised of approximately 

five c-fibres, with a broad range of 1 to about 40 c-fibres per bundle [26]. Because 

sympathetic c-fibres fire synchronously, or at about the same time, MSNA is fundamentally 

characterized by bursts of activity that demonstrate time-varying amplitude [27]. 

Synchronous MSNA discharge is governed by the arterial baroreflex, a critical neural reflex 

which imposes rhythmic sympathoinhibition related to pressure pulsatility accompanying 

the cardiac cycle, such that MSNA discharge is suppressed by the arterial baroreflex during 

systole [28,29]. As reviewed elsewhere [15,30], several reflexive mechanisms communicate 

physiological information to the brain (e.g., skeletal muscle fatigue) to regulate MSNA 

discharge and maintain blood pressure homeostasis during various physiological challenges 

(e.g., physical exercise). Sympathetic control of cutaneous circulation can also be assessed 

with microneurography [18]. Skin sympathetic nerve activity is not under strong baroreflex 

regulation, resulting in bursts that span multiple cardiac cycles and are morphologically 

distinct from MSNA [18]. Skin sympathetic nerve activity has been discussed in detail 

elsewhere [31]; however, this text focuses on MSNA which represents the fundamental 

neural signal for blood pressure regulation [32].

Due to the low signal-to-noise ratio of microneurographic recordings, MSNA is often 

measured at the multi-unit level (e.g., simultaneous recording from multiple active c-fibres) 

by integrating an amplified and filtered neurogram (Fig. 2). Inspection of the integrated 

signal enables quantification of sympathetic discharge through burst frequency (i.e., total 

bursts per min) or burst incidence metrics (i.e., total bursts per 100 heartbeats) [19]. Burst 

amplitude (size) represents an additional measure of sympathetic outflow [33]. Though 

repositioning of the microelectrode tip in relation to a c-fibre bundle during a 

microneurographic recording also produces variations in burst size, highlighting the 

importance of stable recordings and the microneurographers ability to detect such changes 

based on the morphological features of the neurogram [34]. Integrated MSNA bursts of 

variable size and frequency can be visualized in Fig. 2. Nonetheless, focusing entirely on the 

integrated MSNA signal conceals AP discharge emanating from individual sympathetic c-

fibres.

Major advances in the microneurographic technique have provided insight to AP discharge 

emanating from postganglionic sympathetic c-fibres — the actual neural signal imposing 

neurocirculatory adjustments. First, Macefield and colleagues developed the single-unit 

microneurographic approach which relies on highly selective electrodes with higher 

impedance to study the discharge characteristics of one (or a few) sympathetic c-fibres [35–

37]. While this method enables the tracking of the discharge of a few c-fibres over time, it 

does not provide insight to the varying-sized sympathetic c-fibres that lie beyond the focused 
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recording field provided by high impedance electrodes. This concept prompted the 

development of additional complementary microneurographic signal processing methods.

Second, and more recently, Shoemaker and colleagues developed a continuous wavelet 

transform approach for detecting and extracting individual sympathetic APs from the multi-

unit filtered neurogram [38]. This technique enables morphological sorting of sympathetic 

APs into clusters which represent the discharge of size-based subpopulations of sympathetic 

postganglionic c-fibres [25,39]. This technique has revealed important information regarding 

sympathetic AP firing patterns. As visualized by Fig. 2, bursts of sympathetic activity are 

formed by the synchronous discharge of varying-sized sympathetic AP subpopulations and 

bursts demonstrate time-varying amplitude related to the number and size of synchronized 

APs [40]. While ‘bursty’ discharge describes the hallmark feature of MSNA, a recent multi-

unit AP study revealed that sympathetic bursts are not separated by complete neural silence 

but rather about 30% of total sympathetic APs fire asynchronously, between synchronized 

bursts [41]. As this finding was reproduced in two separate cohorts, it appears that 

asynchronous discharge represents a fundamental component of MSNA [41,42]. For 

simplicity, asynchronous discharge is not presented in Fig. 2, but the interested reader is 

directed to a recent review of the topic [43]. Under baseline conditions, AP clusters can be 

grouped into three general subpopulations (small, medium, and large APs) that vary in 

discharge characteristics and reflect the diameter of the sympathetic c-fibre that generated 

the AP [43–45]. While the subpopulation of medium APs fires most often, the 

subpopulations of small and large APs fire less frequently, suggesting differential regulation 

within the central sympathetic neurocircuitry and/or variable recruitment thresholds [38,42].

By imposing physiological perturbations to modify multi-unit AP firing patterns, 

investigators using the wavelet transform approach have revealed the fundamental 

sympathetic discharge strategies supporting blood pressure homeostasis. Consistent with 

single-unit microneurographic data [35], Steinback et al. [40] found that the firing frequency 

of sympathetic c-fibres active during baseline conditions increased during maximal 

voluntary inspiratory apnea. Importantly, during the breath-hold period, Steinback and 

colleagues also observed the firing of previously-silent larger and faster-conducting APs, 

representing the recruitment of a latent subpopulation of larger sympathetic c-fibres that are 

reserved for periods of severe physiological stress [40,46]. This recruitment feature is 

analogous to the size-principle for motor-unit recruitment [47]. The increase in the 

previously-active sympathetic AP subpopulations (rate-coding mechanism) and the 

recruitment of a previously-silent AP subpopulations (population-coding mechanism) during 

physiological stress underlie the increase in sympathetic burst occurrence and burst 

amplitude during physiological stress to defend blood pressure homeostasis. These strategies 

augment total sympathetic outflow to maintain blood pressure homeostasis during various 

physiological challenges including maintaining an upright posture [44], physical activity 

[48], and hypoxia [49].

Although the technical demands of microneurography preclude its role in routine clinical 

assessment, resting MSNA is an important factor in circulatory health. From cross sectional 

evidence it is well established that individuals with cardiovascular diseases and vascular risk 

factors show elevated supine resting MSNA [50,51]. Importantly, sympathetic dysregulation 
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plays a deleterious role in the progression of cardiovascular diseases. For example, elevated 

MSNA (> 49 bursts/min) independently predicted one-year mortality in a large sample of 

heart failure patients [52]. Thus, pathophysiological alterations in sympathetic discharge 

contribute to the development and progression of cardiovascular diseases.

2.2 | The impact of ageing on muscle sympathetic nerve activity in men and women

Similar to the blood pressure trends discussed at the outset of this report, MSNA increases 

with age but the magnitude of sympathoexcitation varies among men and women. A recent 

large cross-sectional report of healthy normotensive men and women demonstrated the 

differential impact of ageing on sympathetic activity in men and women [53]. As highlighted 

in Fig. 3, MSNA burst frequency was lower in young women than men. Both sexes 

demonstrated increased MSNA with age, but the magnitude of change was greater in women 

than men. Age-related modifications also exist in sympathetic AP discharge patterns at rest 

and during periods of physiological stress. For example, compared to young healthy 

individuals, Badrov and colleagues [54] observed greater resting sympathetic AP discharge 

in older healthy individuals. Also, during maximal voluntary breath-holds, older individuals 

exhibited attenuated rises in the firing probability of previously-active APs (rate-coding) and 

impaired recruitment of previously-silent larger and faster-conducting sympathetic APs 

(population-coding), compared to young healthy participants [54]. To date, sex differences 

in the age-related increases in sympathetic AP discharge and recruitment have not been 

investigated and this remains an interesting area for research. Although robust age-related 

MSNA increases occur, broad inter-individual variability exists in MSNA across the lifespan 

in both men and women. Indeed, even in individuals with similar blood pressures, MSNA 

may vary as much as 5–10 fold [32,55]. Complex and multi-factorial mechanisms likely 

produce both the wide inter-individual variations and age-related changes in sympathetic 

outflow including the central sympathetic neurocircuitry, arterial baroreflex regulation of 

sympathetic discharge, and/or vascular nitric oxide production [30,56].

4.1 | Quantifying sympathetic neurocirculatory regulation: Neurovascular transduction

In the seminal microneurographic studies, consistent observations of pressor responses 

following bursts of MSNA formed the first evidence for the vasoconstrictor nature of 

sympathetic discharge in humans [16,32,57]. Thus, several methodological strategies 

examining the relationship between MSNA and resultant circulatory adjustments – known 

commonly as neurovascular transduction – have been developed to understand the 

fundamental mechanisms of sympathetic neurocirculatory regulation and the factors 

modifying this process [15,58]. These techniques range in complexity from simply 

computing the quotient of mean TPR and mean MSNA over a given recording period, to 

quantifying the beat-by-beat circulatory (e.g., blood pressure, blood flow, vascular 

conductance) responses ensuing from a single burst of MSNA [59,60]. Nonetheless, 

questions remain unanswered regarding the assessment of neurovascular transduction in 

humans: Which aspect of the sympathetic neurogram best represents the message directed 

towards the vascular and what circulatory variable does the sympathetic system regulate? 

This section will draw attention to these questions while providing an overview of the key 

techniques currently used to assess sympathetic neurovascular control in humans.
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Quantifying the relationship between beat-by-beat MSNA and resultant cardiovascular 

adjustments offers the opportunity to study neurovascular transduction in the context of the 

time-varying nature of sympathetic discharge. The first investigation of beat-by beat 

sympathetic circulatory regulation was performed in the early 1980’s by Wallin and Nerhed 

who performed simultaneous recordings of integrated MSNA and beat-by-beat blood 

pressure which enabled tracking of the magnitude of pressure changes following an 

integrated burst of MSNA [61]. This group consistently observed a transient increase in 

diastolic pressure that began 1–2 beats and peaked 5–7 beats after a MSNA burst in all 

individuals (peak change: ~ 2–3 mmHg), with the magnitude of the pressor responses 

demonstrating inter-individual variability [61]. Using a similar approach about 30 years 

later, Vianna and colleagues discovered that the pressor responses stemming from MSNA 

bursts were primarily mediated by reductions in total vascular conductance, calculated from 

the quotient of cardiac output and mean pressure [62]. While these studies gained insight to 

neurocirculatory impact of sympathetic discharge, their indices of vasomotor adjustments 

were based on systemic hemodynamic variables [61,62]. Importantly, studies exploring beat-

by-beat neurovascular transduction have revealed rapid cardiac responses to MSNA bursts, 

which underscore the complexity of interpreting systemic blood pressure as the regulated 

variable in the context of neurovascular transduction in humans [61,63]. Blood pressure 

represents an integrated variable regulated by several physiological factors including not 

only vascular conductance (or resistance) but also cardiac output, MSNA, myogenic 

mechanisms, and vascular compliance [64,65].

To provide greater specificity in understanding the impact of sympathetic discharge on 

circulatory control, Fairfax and colleagues implemented Doppler ultrasound to facilitate 

simultaneous measures of femoral artery blood flow (to calculate vascular conductance) 

during microneurographic recordings of peroneal MSNA [60,62]. This enabled assessment 

of the MSNA discharge patterns that produced the most robust vascular adjustments. Upon 

grouping MSNA bursts into quartiles based on size, the reduction in vascular conductance 

scaled to burst size, that is, larger bursts produced greater reductions in vascular conductance 

[60]. Considering that a critical role for burst size has emerged consistently across 

neurocirculatory studies [60,62,66,67], this feature likely represents an important aspect of 

the sympathetic signal for neurocirculatory control.

Given that MSNA burst size stems from the number and size of synchronously firing 

sympathetic APs [68], the consistent observation that burst size is linked to vasomotor 

adjustments suggests that sympathetic AP discharge patterns affect neurocirculatory 

responses. Although measuring AP discharge carries additional technical demands, 

sympathetic AP discharge likely represents the optimal signal for assessing neurovascular 

transduction in humans. As proposed recently, subpopulations of differently sized APs 

demonstrating heterogeneous patterns of discharge, recruitment, and synchronization enable 

the sympathetic nervous system to fine-tune circulatory adjustments [25,69]. The 

observations made by Fairfax and colleagues suggest a robust role for larger sympathetic 

APs that fire with low probability under baseline conditions. However, the circulatory 

responses ensuing from the discharge of specific AP subpopulations including APs active 

under baseline conditions and previously-silent APs that are recruited during physiological 

stress remain unclear [69]. Also, although the previously described investigations focusing 
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on integrated MSNA bursts point towards a key role for synchronous sympathetic AP 

discharge, a large proportion (~30%) of sympathetic AP discharge occurs asynchronously 

under baseline conditions and may also affect vasomotor tone [41].

In addition to studies evaluating spontaneous beat-by-beat changes in MSNA and circulatory 

adjustments, intravenous infusion of pharmacological agents affecting neural control of the 

circulation has provided valuable insight to the role of the sympathetic (and 

parasympathetic) nervous system in human blood pressure regulation. In particular, the 

intravenous infusion of trimethaphan camsylate – a competitive ganglionic nicotinic receptor 

antagonist – abolishes sympathetic and parasympathetic activity directed towards 

cardiovascular end-targets [32]. This experimental model holds that changes in blood 

pressure attributed to reductions in neural discharge towards the circulation are used to 

determine “autonomic support” of blood pressure [70]. Commonly, a larger blood pressure 

reduction during trimethaphan infusion is interpreted to suggest that an individual or cohort 

has greater autonomic support of blood pressure. Important to the interpretation of the drop 

in blood pressure with trimethaphan is the concomitant change in cardiac output that stems, 

in part, from parasympathetic blockade. For example, compared to young individuals, older 

participants show larger reductions in blood pressure during trimethaphan infusion, in part 

because they have greater baseline sympathetic vasoconstriction, but also because there is 

less tonic parasympathetic suppression of heart rate during rest in older participants, so 

blocking parasympathetic control leads to a smaller increase in heart rate, and therefore 

cardiac output compared to young participants [71].

4.2 | Sympathetic neurocirculatory regulation with ageing in men and women

Considerable interactive effects of age and sex exist in sympathetic neurocirculatory control 

(Table 1). Although sympathetic discharge represents the essential vasoconstrictor stimulus 

[32,61], investigations of healthy cohorts of both sexes have consistently revealed broad 

inter-individual differences in MSNA among individuals with similar blood pressures 

[55,72]. Notably, in young healthy individuals no significant relationship exists between 

MSNA and blood pressure under supine resting conditions [73,74]: young individuals with 

high MSNA do not necessarily demonstrate high blood pressures.

Further study of this paradoxical finding revealed that in young men and women less than 40 

years of age, integrative neural and hemodynamic factors buffer sympathetic 

vasoconstriction to maintain homeostatic blood pressures and render no relationship between 

MSNA burst frequency and blood pressure [74,75]. However, the mechanisms buffering the 

relationship between sympathetic outflow and blood pressure in young healthy individuals 

differ in men and women. In young men, a positive relationship exists between MSNA and 

total peripheral resistance that is offset by an inverse relationship between MSNA and 

cardiac output [74,75]. Thus, men with greater resting sympathetically-mediated vascular 

resistance have lower cardiac output to prevent excessive blood pressure. Also, in a young 

male cohort there was an inverse relationship between resting MSNA burst frequency and 

forearm vasoconstrictor responsiveness to norepinephrine and tyramine infusions [76]. 

Therefore, reduced alpha-adrenergic sensitivity balances sympathetic vasoconstriction in 

young men with higher resting sympathetic outflow.
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Conversely, in young women, no relationship exists between MSNA and total peripheral 

resistance or cardiac output [75]. Consequently, young women have less vasomotor 

regulation compared to young men. Consistent with this idea, ganglionic blockade with 

trimethaphan imposed lesser pressure reductions in young women than men, suggesting that 

women rely less on autonomic support of blood pressure [77]. Beta-2 adrenergic receptors 

on the vascular smooth muscle likely represent a key mechanism underlying the absence of 

the MSNA-BP relationship in young women. Indeed, in a cohort of young women Hart and 

colleagues observed significant positive associations between MSNA burst occurrence and 

both TPR and MAP during beta adrenergic blockade [78]. Also, forearm NE infusion 

produced a larger reduction in forearm vascular conductance during beta-adrenergic 

blockade compared to control conditions in the same group of women [78]. These data also 

provide an explanation for the observation of lower blood pressure young women than 

young men.

Ageing modifies sympathetic circulatory regulation in men and women. On a cohort level in 

both healthy men and women >40 years a moderate positive relationship exists between 

MSNA and blood pressure [73]. Thus, older individuals with greater MSNA generally have 

elevated blood pressure. Consistent with this idea, studies have repeatedly observed that 

compared to young individuals, older men and women exhibit larger reductions in blood 

pressure following ganglionic blockade with trimethaphan, though these findings are 

complicated by the observation that older individuals also demonstrate lesser cardiac 

responses to ganglionic blockade than younger cohorts [70,79]. Nevertheless, the magnitude 

of the blood pressure reduction with ganglionic blockade is inversely related to resting 

MSNA, implicating sympathetic control of the vasculature [70,80].

Multiple interactive mechanisms likely mediate the age-related changes in sympathetic 

circulatory regulation. In older men, no inverse relationship between MSNA and cardiac 

output was observed, suggesting that an age-related loss may occur in the integrative neuro-

hemodynamic relationships that buffer the MSNA-BP relationship in younger healthy 

individuals [76]. Surprisingly, despite the positive relationship between MSNA and BP in 

older individuals, it seems that at least in men, there are reductions in alpha-adrenergic 

sensitivity with age. For instance, compared to their younger counterparts, older men 

showed lesser reductions in forearm blood flow during low dose tyramine infusion, a drug 

which increases norepinephrine release [76]. Reduced beta-2 adrenergic receptor 

mechanisms likely contribute to age-related alterations in the sympathetic control of blood 

pressure in women. For example, older women demonstrate attenuated increases in forearm 

blood flow in response to low doses of a non-specific beta-adrenergic agonist (isoproterenol) 

and a beta-2 adrenergic agonist (terbutaline) [81,82]. Nitric oxide contributes to the beta-2 

adrenergic vasodilation in young women, and reductions in nitric oxide bioavailability likely 

affect the age-related loss in beta-adrenergic vasodilation in women [82]. Common to both 

men and women are robust increases in resting MSNA and reductions in vascular 

endothelial function with ageing that likely also contribute to the relationship between 

resting MSNA and blood pressure in older individuals that is not observed in younger 

cohorts [53,83]. Although not discussed in detail here, alterations in circulating sex steroid 

concentrations with ageing contribute to changes in sympathetic vascular control [30,83,84].
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Studies investigating the beat-by-beat sympathetic regulation of vasomotor behaviour have 

provided additional insight to the effects of age and sex on neurocirculatory regulation. 

When assessing neurovascular transduction in each participant by assessing the slope of the 

relationship between diastolic pressures regressed against MSNA burst areas of preceding 

cardiac cycles, Briant and colleagues found that young women demonstrated weaker 

neurovascular regulation than young men [66]. Interactive sex and age effects were revealed 

when comparing neurovascular regulation between older and younger cohorts. Briant and 

colleagues identified that neurovascular transduction was greater in older women compared 

to younger women but was lower in older than younger men [66]. Similarly, using a transfer 

function approach that relied on an adapted Poiseuille’s equation for determining the 

relationship between MSNA, blood pressure, and leg blood flow, Tan et al. identified that 

sympathetic regulation of the peripheral skeletal muscle vascular was lesser in older than 

younger men [85]. Combined, these cross-sectional data support the concept that ageing 

exerts divergent neurocirculatory effects on men and women — neurovascular transduction 

becomes augmented with age in women but attenuated in men.

The effects of age and sex on neurovascular transduction are not universal in studies relying 

on beat-to-beat models of neurovascular transduction, however. For example, Vianna and 

colleagues found similar neurovascular transduction in young men and women and observed 

reduced neurovascular transduction with ageing both sexes [62]. In some studies sex 

differences only emerge when examining vasomotor or depressor responses resulting from 

cardiac cycles containing no bursts of MSNA. For example, Coovadia and colleagues [86] 

found that compared to young women, young men demonstrated larger reductions in mean 

pressure following cardiac cycles without sympathetic bursts during device-guided slow 

breathing [86]. These findings support the overall concept that men rely more on 

sympathetic vasomotor control but also raise the possibility that sex differences may exist in 

asynchronous sympathetic AP discharge which theoretically may support circulatory control 

during periods without sympathetic bursting activity.

4.3 | Impact of physical exercise and aerobic fitness on sympathetic neurocirculatory 
regulation

The link between elevated sympathetic activity and blood pressure with human ageing 

necessitates the implementation of strategies that modulate sympathetic vascular regulation. 

Aerobic physical exercise represents a reliable non-pharmacological strategy often employed 

concomitantly with other behavioural interventions (e.g., dietary) to lower blood pressure in 

healthy individuals and patients diagnosed with, or at risk of, cardiovascular diseases [1,87]. 

Reduced sympathetic vasoconstrictor signaling with physical exercise training has been 

observed consistently in patients with cardiovascular diseases and other risk factors such as 

metabolic syndrome, obesity, and sleep apnea [88]. The reduction in supine resting MSNA 

burst frequency likely represents an important mechanism among the multiple factors (e.g., 

improved endothelial function) contributing to lower blood pressure [88,89]. For example, a 

cohort of middle-aged hypertensives exhibited large reductions in MSNA burst incidence 

(~40%) and mean pressure (10 mmHg) after four months of an aerobic intervention [90]. 

Although aerobic training decreases blood pressure in healthy individuals, this effect may 

not stem from a sympathoinhibitory effect [88]. Thus, it is plausible that physical exercise 
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may also modulate the vascular responses to sympathetic discharge in healthy and high-

cardiovascular risk individuals.

The limited available evidence suggests that greater aerobic fitness may dampen the 

circulatory adjustments to MSNA, at least in men. When studying the beat-by-beat pressor 

responses to sympathetic activity in a young male cohort (VO2peak range: ~35 – 60 mL/kg/

min), O’Brien and colleagues observed an inverse relationship between aerobic fitness and 

maximal pressure responses to individual bursts of MSNA [91]. This is consistent with the 

observation that forearm vascular resistance responses scaled positively to MSNA changes 

(imposed by simulated orthostatic stress) in sedentary middle-aged men (VO2peak: ~25 

mL/kg/min) but no relationship was observed in trained counterparts (VO2peak: ~40 mL/kg/

min) [59]. Combined, despite using different approaches, these studies suggest that aerobic 

fitness modulates the circulatory responses to sympathetic vasoconstrictor stimuli, at least in 

men. However, the finding that trained and sedentary men exhibit similar blood pressure 

reductions with trimethaphan do not align with these findings [92]. How these data translate 

to the impact of physical exercise remains inconclusive. This question is complicated by 

observations that sympathetic outflow is often reduced by exercise interventions (at least in 

those with elevated vascular risk) but some cross-sectional data have revealed a positive 

relationship between aerobic fitness and MSNA burst frequency [71,88].

The observation that age-related increases in MSNA and blood pressure are greater in 

women than men highlight the need to study the modulatory influence of aerobic fitness and 

physical exercise on neurovascular control in women. However, to our knowledge only one 

investigation has addressed this topic. Recently, Baker and colleagues examined the 

relationship between aerobic fitness, resting MSNA, and the circulatory responses to 

intravenous trimethaphan infusion in cohorts of young healthy (VO2max range: ~25 – 50 

mL/kg/min) and older healthy, post-menopausal women (VO2max range: ~20 – 40 mL/kg/

min) [71]. Compared to the younger group, older women demonstrated greater resting 

MSNA and larger reductions in blood pressure with ganglionic blockade. Interestingly, the 

reduction in blood pressure with ganglionic blockade was positively associated with aerobic 

fitness in young women, but this relationship was not observed in the older cohort. When 

Baker et al. investigated the autonomic neural mechanisms mediating the positive 

relationship between aerobic fitness and pressure changes with ganglionic blockade, they 

found that aerobic fitness was positively related to resting sympathetic activity (MSNA) and 

parasympathetic activity (the cardiac output responses to ganglionic blockade) in younger 

women. Conversely, there was no link between fitness, MSNA, and cardiac output responses 

to ganglionic blockade in older women. Combined, these observations suggest that aerobic 

fitness influences the autonomic support of blood pressure in young but not older, post-

menopausal women. In young women, greater aerobic fitness increases MSNA and 

parasympathetic activity, resulting in greater cardiac output responses and lesser blood 

pressure reductions to ganglionic blockade. Whether these findings are attributed to an effect 

of age, sex hormone status, or some other physiological factor (e.g., blood volume) in 

women remains unclear from these data. Evidently, further research is require to understand 

the optimal physiological conditions and exercise paradigms required to expose the neuro- 

and vaso-protective effects of physical exercise in men and older post-menopausal women.
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5 | Conclusions

Among inhabitants of developed nations, human ageing modifies sympathetic 

neurocirculatory regulation to produce steady rises in blood pressure across the life course, 

yet sympathetic vasomotor regulation fundamentally differs between women and men, 

resulting in sex-specific blood pressure trajectories. Broad inter-individual variability exists 

in resting MSNA, but generally, young women have lower sympathetic discharge than young 

men [53,93]. Although MSNA bursts evoke vasoconstriction, healthy young individuals 

demonstrate no relationship between resting MSNA and blood pressure [16,73]. This 

explains why individuals with similar blood pressures may have substantially different 

resting MSNA. The mechanisms buffering the relationship between sympathetic outflow and 

blood pressure in young healthy individuals differ in men (cardiac output and alpha-

adrenergic receptor sensitivity) and women (beta-2 adrenergic vasodilatory mechanisms) 

[75,76,78,94]. In young men, there is a positive relationship between MSNA and vascular 

resistance that is offset by an inverse relationship between MSNA and both cardiac output 

and alpha-adrenergic receptor sensitivity. Conversely, in young women, due to greater 

contributions from beta-2 adrenergic vasodilatory mechanisms, no relationship exists 

between MSNA and vascular resistance. Combined, these physiological sex-differences 

produce lower blood pressure in young women than young men. Sympathetic outflow 

towards the vasculature increases with ageing, but women demonstrate larger increases in 

MSNA with age than men [53,73]. Ageing also imposes changes in the integrative neuro-

hemodynamic factors that buffer vasoconstriction. Compared to young individuals, older 

men and women demonstrate a positive relationship between MSNA and blood pressure. In 

addition to the increase in MSNA with age, this observation likely stems from a loss of the 

inverse MSNA-cardiac output relationship in men and reduced beta-2 adrenergic 

vasodilatory mechanisms in women. These physiological alterations drive blood pressure 

increases with age and explain, at least in part, why women demonstrate larger blood 

pressure changes and a greater rise in the prevalence of hypertension with age than men. 

Aerobic physical exercise represents a reliable strategy to lower blood pressure in healthy 

individuals and patients with elevated vascular risk [87,88]. Evidence regarding the impact 

of physical exercise interventions on sympathetic neurocirculatory regulation is lacking, but 

emerging data suggest that greater aerobic fitness may dampen the circulatory adjustments 

to MSNA, at least in young healthy men and women [71,91]. Future research should explore 

the optimal physiological conditions and exercise paradigms required to expose the neuro- 

and vaso-protective effects of physical exercise in men and older post-menopausal women. 

Also, incorporation of the microneurographic measurement of sympathetic AP discharge, 

recruitment, and synchronization patterns into studies employing pharmacological or beat-

by-beat techniques to quantify neurovascular transduction will likely provide added nuance 

to our understanding of the interactive effects of age and sex on human sympathetic 

neurocirculatory regulation.
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Highlights

• Sex-specific blood pressure trajectories exist across the life-course

• The sympathetic nervous system represents a critical regulator of blood 

pressure

• Interactive effects of age and sex exist in sympathetic neurocirculatory 

regulation

• Greater aerobic fitness may modulate sympathetic neurocirculatory regulation
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Figure 1. Trends in blood pressure with ageing in men and women.
Blood pressure rises steadily with age in healthy humans in developed nations. However, 

sex-specific blood pressure trajectories exist across the life course. Young women exhibit 

lower blood pressure than men, but the magnitude of blood pressure increase is greater in 

women than men. At about 60 years, men and women’s blood pressure intersects and from 

this point onwards, women demonstrate greater systolic blood pressure than men. Figure 

based on data from [3,4].
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Figure 2. Representative integrated muscle sympathetic nerve activity and sympathetic action 
potential discharge in a healthy individual.
The integrated neurogram highlights that muscle sympathetic nerve activity (MSNA) is 

fundamentally characterized by bursts of activity with time-varying frequency and size. In 

this figure, APs were detected and extracted from the filtered neurogram using a continuous 

wavelet transform [39]. The filtered neurogram and the detected action potentials (AP) show 

that MSNA bursting discharge is attributed to synchronous firing of varying-sized 

sympathetic APs. Fundamentally, larger integrated bursts are comprised by greater AP 

content and larger AP firing. Featured in the magnified inset at the bottom of the figure are 

the sympathetic AP clusters, representing APs of similar morphology, that comprise one 

selected MSNA burst. The size of each AP cluster is related to the sympathetic c-fibre that 

generated the AP. In the magnified inset, the AP clusters firing in the selected burst are 

organized by peak-to-peak amplitude, from smallest to largest. The number of times each 

AP cluster fired in this selected burst is displayed in parentheses: two AP clusters each fired 
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once, one AP cluster fired two times, and one AP cluster fired five times, for a total of nine 

APs firing in the selected burst. For simplicity, not shown in this figure are asynchronously 

discharging sympathetic APs which fire between synchronous bursts of MSNA. The 

interested reader is directed to Salmanpour et al. [39] and Shoemaker et al. [25] for more 

information regarding the continuous wavelet transform for sympathetic AP detection and 

discharge sympathetic AP discharge patterns in humans.
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Figure 3. Trends in muscle sympathetic nerve activity with ageing in men and women.
In healthy normotensive individuals, muscle sympathetic nerve activity (MSNA) burst 

frequency approximately doubles from the age of 20 to 70 years. However, the magnitude of 

MSNA increase with age differs in men and women. Young women have lesser MSNA burst 

frequency than men. Both sexes exhibit increases in MSNA with age but the magnitude of 

change is greater in women than men. Figure based on data from [53,73].
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Table 1 |

The interactive effects of age and sex on sympathetic neurocirculatory control

Young Men Young Women Older Men Older Women

Integrated MSNA Greater than young 
women Lesser than young men Greater than young men Greater than young 

women

Sympathetic AP 

discharge
a

Rate-coding and population-coding mechanisms exist to 
increase total MSNA during physiological stress

Greater resting sympathetic AP discharge plus 
impaired AP rate-coding and population-coding during 
physiological stress compared to young cohort

Relationship with 
integrated MSNA

 Blood Pressure No relationship No relationship
b Positive relationship Positive relationship

 Total Peripheral 
Resistance Positive relationship No relationship

b Positive relationship Positive relationship

 Cardiac Output Inverse relationship No relationship No relationship No relationship

Autonomic 
(Sympathetic) Support 
of Blood Pressure

Greater than young 
women Lesser than young men Greater than young men

Greater than young 
women and similar to 
older men

Neurovascular 
Transduction

Greater than young 
women Lesser than young men Lesser than young men Greater than young 

women

Alpha-adrenergic 
Vasoconstriction

Inverse relationship with 
MSNA Lesser than young men 

c Lesser than young men Greater than young 
women

Beta-adrenergic 
Vasodilation

Does not buffer alpha-
adrenergic 
vasoconstriction

Buffers alpha-adrenergic 
vasoconstriction

Does not buffer alpha-
adrenergic vasoconstriction

Lesser than young 
women

AP, action potential; MSNA, muscle sympathetic nerve activity.

Footnotes:

a
Sex differences in sympathetic AP discharge have not been investigated. As such, male and female groups are collapsed and only age comparisons 

are provided.

b
Beta-adrenergic blockade produces positive relationship

c
Beta-adrenergic blockade increases alpha-adrenergic constriction
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