Skip to main content
. 2021 Jul 15;13:156. doi: 10.1007/s40820-021-00681-9

Table 2.

Overview of range of 2D nanomaterials for electrocatalytic applications

2D nanomaterials Synthesis Application Conditions Performance or parameter Activity origin or mechanism Refs
Double-gyroid MoS2 Electrodeposition, followed by sulfidization HER Acidic medium

Overpotential = 150–200 mV

Tafel slope = 50 mV decade−1

Surface embellishment for edge site exposure [35]
Co3S4 Physical etching HER Alkaline medium

Ƞ10 = 63 mV

Tafel slope = 58 mV decade−1

Abundant sulfur vacancies [340]
Co–N-GA Solvothermal HER Acidic medium

Onset = 0 V,

Ƞ10 = 46 mV

Tafel slope = 33 mV decade−1

Synergetic effect of N-doped carbon and inner metal Co [306]
MoS2 Hydrothermal HER Acidic medium

Ƞ-200 = 198 mV

Tafel slope = 36 mV decade−1

Facilitated ion diffusion by channel engineering [36]
WSe2 Hydrothermal HER Acidic medium

Onset = 150 mV

Tafel slope = 78 mV decade−1

Many exposed edge sites can provide abundant active reaction sites [186]
Mo2CTx Ball milling, HF etching HER Acidic medium

Ƞ10 = 189 mV

Tafel slope = 70 mV decade−1

Tx as surface functional groups [287]
NiFe-LDH Ultrasonication OER Alkaline medium

Ƞ10 = 254 mV

Tafel slope: 32 mV decade−1

Metal and oxygen vacancies [216]
Ni–Fe-MOF Solvothermal OER Alkaline medium

Ƞ10 = 221 mV

Tafel slope = 56 mV decade−1

Fe constitutes the active site [307]
CoFe LDH Hydrothermal and Water-plasma-enabled exfoliation OER Alkaline medium

Ƞ10 = 232 mV

Tafel slope = 36 mV decade−1

As-exfoliated increased active sites and multi-vacancies [215]
CoCo-LDH

Soft template

method

OER Alkaline medium

Ƞ10 = 319 mV

Tafel slope = 42 mV decade−1

More highly active edge sites with lower coordination number and mass diffusion promotion [346]
Ni(OH)2 Chemical etching OER Alkaline medium

Ƞ10 = 335 mV

Tafel slope = 65 mV decade−1

Holes developed inside the sheet structure supply tremendous permeable channels for ions adsorption and transportation [344]
BP Liquid phase exfoliation OER Alkaline medium

Onset = 1.45 V,

Ƞ10 = 300 mV

Tafel slope = 88 mV decade−1

Reduction in thickness generates active sites and improves specific surface area [283]
Ni-MOF@Fe-MOF Ultrasonication OER Alkaline medium

Ƞ10 = 265 mV

Tafel slope = 82 mV decade−1

Hybridization and cooperativity between Ni and Fe [289]
Co-C3N4/CNT Polycondensation reactions, and acid leaching process ORR and OER Alkaline medium

HER onset = 0.9 V,

OER onset = 1.5 V

Tafel slope = 68.4 mV decade−1

M-N2 coordination [171]
Fe-Co/N-rGO-Al Solvothermal ORR Alkaline medium

Onset = 0.98 V

half-wave potential = 0.84 V

Four electron transfer mechanism and a lower HO2− yield [347]
Pd Thermal treatment ORR Alkaline medium

Mass activity (0.85 V) = 21.1 mA mg−1

electron transfer number = 3.73–3.85

Unique structural features [237]
WSe2 Chemical vapor transportation CO2RR Acidic media

Current density = 18.95 mA cm−2

CO formation turnover frequency = 0.28 s−1

Overpotential = 54 mV

Presence of ionic liquids and high density of edges [349]
Ru/MgAl Wet impregnation CO2RR

Gas phase

reaction

CO2 conversion = 85%

CH4 yield = 84%

Non-thermal plasma (NTP) activated CO2 hydrogenation [348]