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Abstract

To investigate cross-ancestry genetics of complex traits, we conducted a phenome-wide analysis of loci with heterogeneous
effects across African, Admixed-American, Central/South Asian, East Asian, European and Middle Eastern participants of
the UK Biobank (N = 441 331). Testing 843 phenotypes, we identified 82 independent genomic regions mapping variants
showing genome-wide significant (GWS) associations (P < 5 × 10−8) in the trans-ancestry meta-analysis and GWS
heterogeneity among the ancestry-specific effects. These included (i) loci with GWS association in one ancestry and
concordant but heterogeneous effects among the other ancestries and (ii) loci with a GWS association in one ancestry group
and an experiment-wide significant discordant effect (P < 6.1 × 10−4) in at least another ancestry. Since the trans-ancestry
GWS associations were mostly driven by the European ancestry sample size, we investigated the differences of the allele
frequency (�AF) and linkage disequilibrium regulome tagging (�LD) between European populations and the other ancestries.
Within loci with concordant effects, the degree of heterogeneity was associated with European–Middle Eastern �AF
(P = 9.04 × 10−6) and �LD of European populations with respect to African, Admixed-American and Central/South Asian
groups (P = 8.21 × 10−4, P = 7.17 × 10−4 and P = 2.16 × 10−3, respectively). Within loci with discordant effects, �AF and �LD of
European populations with respect to African and Central/South Asian ancestries were associated with the degree of
heterogeneity (�AF: P = 7.69 × 10−3 and P = 5.31 × 10−3, �LD: P = 0.016 and P = 2.65 × 10−4, respectively). Considering the
traits associated with cross-ancestry heterogeneous loci, we observed enrichments for blood biomarkers (P = 5.7 × 10−35)
and physical appearance (P = 1.38 × 10−4). This suggests that these specific phenotypic classes may present considerable
cross-ancestry heterogeneity owing to large allele frequency and LD variation among worldwide populations.
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Introduction

Genome-wide association studies (GWAS) are a powerful tool
to identify the genetic variants associated with human traits
and diseases (1). As of 15 December 2020, 4809 publications
and 227 262 associations have been listed in the GWAS
Catalog (2). This unprecedented amount of information has
revolutionized our understanding of the predisposition to
complex phenotypes, demonstrating that a large portion of
the heritability of complex traits resides in common genetic
variation [i.e. polymorphisms in the human genome that show
a minor allele frequency (MAF) greater than 1%] (1). In recent
years, the investigations of massive cohorts from 100 000 to
more than 1 000 000 participants were possible because of
large collaborative projects combining numerous studies (3–
6), the availability of biobanks enrolling an unprecedented
number of participant (7–9) and collaboration with direct-
to-consumer genetic testing companies (10). These large-
scale GWAS identifying ever-greater numbers of risk loci
with ever-smaller individual effects demonstrated that the
genetic architecture of common diseases is highly polygenic
and their heritability is likely owing to the contribution of
several thousands (or even more) of risk loci across the
human genome (11–14). One of the main GWAS promises is
that the knowledge gained can be used to develop genetic
instruments useful to predict disease risk, treatment response
and disease prognosis. Leveraging data generated by large-
scale GWAS, a growing number of studies are developing
approaches to test the utility of polygenic information with
respect to the human phenotypic spectrum (15–18). Although
these successful experiments strongly support the movement
toward the application of GWAS data to develop new strategies
to prevent and treat human diseases, important challenges
remain. Among them, one of the most pressing challenges is
related to the limited ancestry and ethnic diversity of large-
scale GWAS which have created a large gap between the
genetic data available for populations of European versus non-
European descent (19). Applying GWAS data generated from
European ancestry cohorts to non-European individuals raises
serious issues, including much lower predictive power than
that observed in comparisons between like populations (20,21)
and possible biases (e.g. reflecting unaccounted population
stratification rather than the phenotype of interest) owing to
the genetic variability among human populations (22,23). The
most reliable solution to this problem is to conduct large-scale
GWAS in populations with non-European ancestry. Ongoing
efforts such as the Million Veteran Program (24) and the All
of US Research Program (25) are investigating multiple ancestry
groups representative of the US population to reduce this gap.
Although these projects are expected to reduce the population
disparities in human genetic research, this is likely to be a long-
term outcome. To date, to contribute to a more comprehensive
understanding of human genetic diversity, we can leverage the
data available, combining large-scale genome-wide association
datasets generated from cohorts, mainly including participants
of European descent with reference panels representative of
the genetic diversity among worldwide populations (26–29). In
the present study, we focused our attention on the UK Biobank
(UKB). This large cohort includes more than 500 000 participants,
with >90% of them as British individuals of European descent
(30). In addition to participants of European descent, the
UKB cohort includes individuals of African (AFR), Admixed-
American (AMR), Central/South Asian (CSA), East Asian (EAS)
and Middle Eastern (MID) ancestral backgrounds. Combining

UKB cross-ancestry data with information regarding the inter-
population variability in the linkage disequilibrium (LD) tagging
of regulatory elements, we investigated the cross-ancestry
heterogeneity of loci associated with the human phenotypic
spectrum (Supplementary Material, Table S1).

Results
Considering UKB genome-wide association statistics related
to 843 phenotypes investigated across the six ancestry groups
available, we identified 20 287 associations presenting genome-
wide significance (P < 5 × 10−8) in both the trans-ancestry meta-
analysis and the heterogeneity test (Supplementary Material,
Table S2; 14 708 variants and 93 phenotypes). Based on our
positional mapping strategy (described in the Materials and
Methods), we identified 82 independent genomic regions
mapping the 20 287 genome-wide significant (GWS) trans-
ancestry associations with GWS heterogeneity among the
ancestry-specific effects. Because our goal was to identify loci
with the strongest genetic heterogeneity among the ancestry
groups investigated, the GWAS index variants were defined
within each of the 82 independent genomic regions as the
variant with the strongest statistical evidence of the cross-
ancestry heterogeneity (Supplementary Material, Table S3).
Among the GWAS index variants, we observed two different
scenarios: (i) loci with GWS association in one ancestry
and concordant but with heterogeneous effects among the
other ancestries (i.e. cross-ancestry differences in the effect
size) and (ii) loci with a GWS association in one ancestry
group and an experiment-wide significant discordant effect
(P < 6.1 × 10−4, i.e. Bonferroni correction accounting for the
number of independent genomic regions) in at least one other
ancestry. Among the concordant but heterogeneous index
variants, the strongest degree of heterogeneity was observed
in the association of SLC45A2 rs35390∗A with ‘hair color
(natural, before graying): black’ (trans-ancestry beta = −0.456,
P = 1.95 × 10−78, heterogeneity P = 6.49 × 10−192) that showed
a much larger effect size in the UKB EUR participants (EUR
beta = −1.928, P = 5.12 × 10−265) than in other ancestries (AMR
beta = −0.629, P = 1.03 × 10−5; MID beta = −0.380, P = 1.54 × 10−4).
With respect to the ‘discordant-effect’ loci, the association
of LUC7L rs7189975∗A with mean corpuscular hemoglobin
(trans-ancestry beta = 0.105, P = 2.82 × 10−102, heterogeneity
P = 6.03 × 10−104) was positive in the UKB EUR participants
(EUR beta = 0.134, P = 2.26 × 10−151) and negative in the UKB
AFR participants (AFR beta = −0.336, P = 1.81 × 10−58). Owing
to the large sample size of the UKB EUR sample, most of
the trans-ancestry associations of the GWAS index variants
were driven by the EUR-specific analysis. Only three trans-
ancestry associations presented the strongest ancestry-specific
signals in non-EUR samples: UGT1 family members A3-A10
rs12466997∗C (total bilirubin; trans-ancestry beta = −0.107,
P = 3.54 × 10−91; AFR beta = −0.554, P = 5.18 × 10−142; heterogene-
ity P = 1.5 × 10−109), F8 rs782604098∗ATG (glycated hemoglobin;
trans-ancestry beta = −0.027, P = 2.71 × 10−9; AFR beta = −0.544,
P = 1.45 × 10−109; heterogeneity P = 5.59 × 10−103) and ABO
rs9411476∗A (alkaline phosphatase; trans-ancestry beta = −
0.088, P = 2.99 × 10−13; AFR beta = −0.228, P = 3.21 × 10−16; het-
erogeneity P = 5 × 10−24). The heterogeneous effect of these AFR-
driven associations showed concordant directions across the
other ancestries. Table 1 reports the details of the associations
described before. Supplementary Material, Table S4 shows the
negligible LD among the 82 GWAS index variants (R2 < 0.01)
identified through our positional mapping strategy.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
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To understand how the genetic variation across ancestries
affects the heterogeneity observed among the ancestry-specific
associations, we investigated differences with respect to allele
frequency and LD. Figure 1 reports Spearman’s correlation
among the allele frequencies and LD–regulome tagging score
(RTS) of the 82 GWAS index variants among the ancestries
investigated. Since the EUR sample was the main driver of
most of the trans-ancestry associations investigated (96%),
we analyzed the relationship of the degree of heterogeneity
among these associations with respect to the �AF and �LD of the
European populations with the other ancestry groups (Table 2).
Among the concordant but heterogeneous associations, the
median-based linear regression (MBLM) two-dimensional
analysis highlighted the effect of four variables on the degree
of heterogeneity: the EUR–MID �AF (PMBLM = 9.04 × 10−6) and the
�LD of EUR sample with respect to AFR (PMBLM = 8.21 × 10−3), AMR
(PMBLM = 7.17 × 10−4) and CSA (PMBLM = 2.16 × 10−3). The locally
estimated scatterplot smoothing (LOESS)–generalized additive
model (GAM) multi-dimensional analysis confirmed that the
effect of EUR–MID �AF (PLOESS–GAM = 3.76 × 10−7), EUR–AFR �LD

(PLOESS–GAM = 0.026) and EUR–AMR �LD (PLOESS–GAM = 3.47 × 10−3)
are independent of each other. A different pattern was
observed with respect to the GWAS index variants with
discordant, heterogeneous effects. Among them, the degree of
heterogeneity observed was associated with the differences
of EUR populations with AFR and CSA ancestries (EUR–
AFR: �AF PMBLM = 7.69 × 10−3, �LD PMBLM = 0.016; EUR–CSA: �AF

PMBLM = 5.31 × 10−3, �LD PMBLM = 5.31 × 10−3). However, these
effects appeared to be driven by EUR–AFR �AF (PLOESS–GAM = 0.026).
To explore further the effect of �AF and �LD on cross-ancestry
heterogeneity, we analyzed their associations considering all
GWAS index variants (Supplementary Material, Table S5). Across
loci with concordant and discordant heterogeneous cross-
ancestry effects, the degree of heterogeneity was associated
independently with EUR–MID �AF (PLOESS–GAM = 8 × 10−6), EUR–
AFR �LD (PLOESS–GAM = 5.1 × 10−3) and EUR–AMR �LD (PLOESS–GAM =
4.4 × 10−4). With respect to both concordant and discordant
cross-ancestry heterogeneity, the strength of the �LD and
�AF associations was not correlated with the sample size
of the non-European ancestry cohorts investigated (P > 0.05;
Supplementary Material, Table S6).

The 82 GWAS index variants showed associations with a
total of 59 phenotypes (Supplementary Material, Table S2). To
investigate the enrichment for specific phenotypic classes, we
considered only the phenotypic association with the strongest
statistical evidence of cross-ancestry heterogeneity for each
GWAS index variant. Among them (N = 40), we observed
blood biomarkers (82.5%), physical appearance (10%) and
anthropometric traits (7.5%). Accordingly, we observed that
the same trait was associated with multiple GWAS index
variants located in independent genomic regions. Among blood
biomarkers, low-density lipoprotein (LDL) cholesterol adjusted
by medication showed five independent associations with loci
with cross-ancestry heterogeneous effects (i.e. PCSK9 rs2479413
on chromosome 1, DYNC2LI1 rs4953016 on chromosome 2,
ANKRD31 rs55810502 on chromosome 5, TXNL4B rs217181
on chromosome 16 and SPC24 rs79668907 on chromosome
19). Similarly, ‘hair color (natural, before graying): black’ was
associated with four independent loci with cross-ancestry
heterogeneity (i.e. SLC45A2 rs35390 on chromosome 5, IRF4
rs11308001 on chromosome 6, rs11437447 on chromosome 12
and SLC24A4 rs4904871 on chromosome 14). Other 20 traits
in these phenotypic classes showed an association with at
least two GWAS index variants. Comparing the distribution of

phenotypic classes associated with loci with cross-ancestry
heterogeneous effects with that of the 843 traits tested
initially, we observed an over-representation for associations
with blood biomarkers (enrichment = 11.04, P = 5.7 × 10−35)
and traits related to physical appearance (enrichment = 12.04,
P = 1.38 × 10−4). We also verified whether the GWAS index
variants are enriched for evolutionary signatures. Considering
the integrated haplotype score (iHS) (31), the composite of
multiple signals (CMS; long haplotypes, differentiated alleles
and high frequency derived alleles) (32) and the Neanderthal
local ancestry (LA) (33), we observed that only 1.2, 2.4 and
4.9% of the GWAS index variants were in the top 2% of these
scores (Supplementary Material, Table S7). These proportions
were not significantly different from those observed from
randomly selected variants matched for genomic characteristics
(Supplementary Material, Table S8).

Discussion
To provide a more comprehensive understanding of the genetics
of complex traits across worldwide populations, we investi-
gated heterogeneity among loci identified by a cross-ancestry
GWAS meta-analysis. The results obtained provide a compre-
hensive overview of how genetic differences among human
population groups affect the genetic associations of complex
traits. Specifically, we observed that loci showing cross-ancestry
heterogeneous effects present specific genetic and phenotypic
characteristics.

Allele frequency differences among human populations
can affect certain genotype–phenotype associations because
the number of effect-allele carriers changes the statistical
power of the association analysis conducted (34). The Popu-
lation Architecture using Genomics and Epidemiology study
highlighted that the effect sizes of the multi-ancestry joint
analyses were significantly weaker than those observed in
homogenous cohorts, suggesting truly differential effect sizes
between ancestries rather than the comparisons being biased
by the ‘winner’s curse’ (34).

The LD structure among human populations also plays
a key role in the functional implication of the variants
identified by GWAS (35,36). Indeed, it has been proposed that
cross-ancestry meta-analyses can be a useful tool to fine
map causal loci responsible for GWS loci (37–39). Our study
demonstrates that both allele frequency and LD differences
among human populations are significant contributors to the
cross-ancestry heterogeneity across the human phenotypic
spectrum. Additionally, we showed that the cross-ancestry
variability in the tagging properties of regulatory elements is
linked to both the differences in LD structure and variant density
among human populations (Supplementary Material, Figs S1–
S4). Considering the population diversity of the UKB cohort,
we identified many loci with a cross-ancestry GWS association
with a certain trait and GWS heterogeneity among the ancestry-
specific effects. The heterogeneity observed was both qualitative
and quantitative. Among the GWAS index variants located in
independent genomic regions, 16 loci (22%) showed qualitative
heterogeneity among the ancestry specific effects, i.e. a GWS
association in one ancestry group and an experiment-wide
significant discordant effect in at least one another ancestry
group. Applying a two-dimensional model (i.e. MBLM approach),
the degree of heterogeneity was associated with the genetic
differences of EUR ancestry with respect to the AFR and CSA
population groups. However, the multi-dimensional LOESS–
GAM approach highlighted that the qualitative heterogeneity

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
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Figure 1. Correlation (Spearman’s rho) among allele frequencies (upper triangle) and LD–RTS (lower triangle) of the ancestral groups investigated by considering the

GWAS index variants tested. The correlations presented survive Bonferroni multiple testing correction accounting for the number of tests performed.

Table 2. Association of �AF and �LD with the degree of heterogeneity considering GWAS index variants with concordant and discordant
heterogeneity

Heterogeneity Variable MBLM LOESS–GAM

V-value Pr (>|V|) F-value Pr (>|t|)

Concordant �AF EUR versus AFR 997 0.714 — —
AMR 1122 0.206 — —
CSA 998 0.709 — —
EAS 1113 0.23 — —
MID 1564 9.04E-06 1564 9.04E-06

�LD EUR versus AFR 577 8.21E-03 577 8.21E-03
AMR 1417 7.17E-04 1417 7.17E-04
CSA 518 2.16E-03 518 2.16E-03
EAS 1175 0.1 — —

Discordant �AF EUR versus AFR 145 0.00769 6.32 0.026
AMR 108 0.338 — —
CSA 21 5.31E-03 2.48 0.140
EAS 50 0.127 — —
MID 69 0.486 — —

�LD EUR versus AFR 31 0.0159 1.13 0.308
AMR 46 0.089 — —
CSA 16 2.65E-03 0.11 0.744
EAS 70 0.514 — —

V-value: the intercept value of the Theil-Sen regression; Pr (>|V|): p-value of the Theil-Sen regression slope; F-value: statistics related to the V-test; Pr(>|F): p-value for
the t-test.
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observed was primarily driven by the EUR–AFR �AF. This finding
is in line with the human evolutionary history. Because of
the African origin of the human species and the subsequent
out-of-Africa bottlenecks (40,41), African populations present
a much greater genetic variation than any other human
group. Previous investigations highlighted how these genetic
differences affect the statistical power of genetic association
analyses (42). To our knowledge, the present findings represent
the first comprehensive assessment of how the genetic
diversity of African populations can lead to a discordant
effect in the genotype–phenotype associations when compared
with other ancestries. Additionally, although UKB includes
a limited number of individuals of non-European descent,
we identified three independent associations related to the
blood biomarkers (i.e. rs12466997, total bilirubin; rs782604098,
glycated hemoglobin; rs9411476, alkaline phosphatase) with
cross-ancestry heterogeneity driven by the UKB participant
of African descent. This strongly supports that investigating
diverse populations can improve the gene discovery for complex
traits.

We observed a different scenario with respect to the loci with
quantitative heterogeneity (i.e. concordant effects with hetero-
geneous effect size). The degree of heterogeneity among these
loci was independently associated with primarily EUR–MID �AF

and EUR–AMR �LD and to a lesser extent with the EUR–AFR
�LD. This highlights that, while the diversity of AFR populations
is still a significant contributor, the cross-ancestry quantita-
tive heterogeneity observed within the UKB cohort was more
strongly affected by the differences of EUR ancestry with MID
and AMR populations. This is particularly interesting because
of the demographic history of these two human groups. Indeed,
although they occurred on a different time scale and extent, a
certain degree of admixture is present in both. AMR populations
present an admixture of Native American, Sub-Saharan African
and European ancestries, and the proportions of these three
components can vary greatly across the American continent
reflecting pre-Colombian civilizations, European colonization
and the Atlantic slave trade (43). MID populations present an
admixture of Mediterranean African, Southern European and
Central Asian ancestries related to the demographic history that
occurred over a long period of time in that region (e.g. rise and
fall of empires, invasions, migrations and trade) (44). Accord-
ingly, our study highlights that the genetic admixture is likely
a key mechanism contributing to the qualitative heterogeneity
observed among the ancestry-specific effects.

Beyond their genetic characteristics, the loci identified
as heterogeneous among the ancestries investigated showed
associations with specific phenotypic classes. We observed
that certain traits are enriched for associations with vari-
ants presenting strong heterogeneity among the ancestry-
specific effects. Additionally, GWAS index variants located in
independent genomic regions are associated with the same
traits. This strongly highlights how cross-ancestry genetic
heterogeneity is widespread in the genetic associations with
certain phenotypic classes and how it does not represent a
unique or exceptional event. Across the 14 categories identified
within the 843 traits tested (Supplementary Material, Table S1),
we observed enrichments for cross-ancestry heterogeneous
associations with respect to traits related to blood biomark-
ers and physical appearance. The enrichment for the first
categories showed the strongest significance. Out of the 63
blood biomarkers tested (Supplementary Material, Table S1),
33 (52%) showed one or more associations with loci with
cross-ancestry heterogeneous effects. These included blood

biomarkers related to lipid metabolism (e.g. LDL cholesterol,
lipoprotein A and apolipoprotein B), liver function (alanine
aminotransferase and alkaline phosphatase), inflammation (C-
reactive protein), glucose metabolism (glucose and glycated
hemoglobin), immune function (e.g. eosinophil percentage,
monocyte count and neutrophil count), hematic parameters (e.g.
platelet count and erythrocyte distribution width), hormonal
regulation (sex hormone-binding globulin) and vitamin levels
(vitamin D). Accordingly, we hypothesize that cross-ancestry
genetic heterogeneity is not related to a specific function but
is rather pervasive across the genetics of multiple molecular
phenotypes. Genetic ancestry has been previously associated
with the variability of certain blood biomarkers among world-
wide populations (45). In line with these genetic differences,
multiple studies highlighted that blood biomarkers related to
different health outcomes (e.g. cardiometabolic risk and brain
aging) present significant differences among ancestry groups
(46,47). These previous data support that reference intervals
for blood biomarkers should be tailored to ancestry groups and
that the integration of genetic information into clinical practice
could help to develop precision medicine protocols among
diverse populations with respect to certain health outcomes.
Our present findings not only expand this previous evidence but
also provide novel insights into the underlying mechanisms
responsible for this variability. With respect to �AF and �LD

contribution to the genetic heterogeneity of blood biomarkers,
we hypothesize that natural selection may have also contributed
in addition to the human demographic history. Indeed, loci
associated with certain blood biomarkers (e.g. those related
to immune function) present genomic selective signatures
owing to the selective pressures of pathogens, diet changes
and several other environmental variables that shaped the
human evolutionary history (48). With respect to the second
phenotypic domain enriched for loci presenting cross-ancestry
heterogeneity, we expect that evolutionary pressures had played
a much larger role. Indeed, the traits identified were related to
hair and skin appearance. ‘Hair color (natural, before graying)’
showed strong heterogeneity among AMR, CSA, EUR and MID
groups. In line with the minimal hair color variation within
AFR and EAS individuals, no effect was observed with respect
to these human groups. Conversely, alleles associated with
black and dark brown hair colors showed concordant but
heterogeneous effects among the remaining ancestries available
in the UKB cohort. Among the seven GWAS index variants
located in independent genomic regions (four for black hair
color and three for dark brown hair color), the associated allele
generally showed the largest effect size with respect to the
EUR sample. However, in one case (the association of NPLOC4
rs9895741∗G allele with dark brown hair color), we observed a
discordant effect between EUR (beta = 0.104, P = 2.32 × 10−75) and
CSA (beta = −0.194, P = 1.95 × 10−5). The phenotype related to
skin pigmentation (i.e. ‘ease of skin tanning’ ranging from ‘never
tan, only burn’ to ‘get very tanned’) showed the same pattern
across three associated independent GWAS index variants
(TYR rs7941686∗A on chromosome 11, SLC24A5 rs1426654∗G on
chromosome 15 and TCF25 rs577053706∗C on chromosome 16):
negative GWS association in EUR, consistent effect direction
among the other non-AFR samples and positive effect direction
in AFR. The heterogeneity observed within these loci is likely to
be affected by the evolutionary mechanisms that shaped human
skin and hair pigmentation (49). Indeed, the variability of human
pigmentation reflects the subsequent adaptive processes from
the protective, dark, eumelanin-enriched coloration useful to
protect the naked skin in the tropical regions where Homo sapiens

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab114#supplementary-data
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originated to the loss of melanin pigmentation that occurred
during the dispersal of H. sapiens into non-tropical landmasses
(49–51). With respect to this previous knowledge, we expand
the understanding of the genetic mechanisms underlying this
phenotypic variation, also putting this in the context of the
genetics of the human phenotypic spectrum. Although the
phenotypic classes identified are known to be related to human
evolutionary history, we did not observe enrichments for positive
selection measures. This can be owing to the fact that cross-
ancestry genetic heterogeneity observed in certain phenotypic
domains may be related to polygenic adaptation mechanisms
not reflected by the measures tested (52).

Although our investigation provides comprehensive evidence
regarding how genetic variation across human populations
affects the predisposition to complex traits, there are limitations
to acknowledge. Our analysis is based on the UKB cohort,
which presents a strong ancestry imbalance (>90% British of
European descent). This permitted us to provide information
mainly regarding the differences between European populations
and other ancestry groups, and the loci and phenotypic
classes identified are those with very large heterogeneity.
A better representation of human genetic variation would
have permitted us to detect heterogeneous signals across
non-European populations and to increase our power to
detect loci with a lower degree of heterogeneity. For the
same reason, we did not attempt to model cross-ancestry
heterogeneity in the context of polygenicity. More diverse
genome-wide datasets will support the investigation of genetic
heterogeneity with respect to how the polygenic architecture of
complex traits varies across human populations. Additionally,
increased population diversity among functional studies of
gene regulation across human tissues and cells will permit
to test the mechanisms underlying the cross-ancestry het-
erogeneity observed in each of the loci identified. Another
important limitation is owing to the fact that our analysis
was conducted only on the UKB cohort because this was
the only large-scale resource publicly available at that time.
Although UKB includes mainly British individuals of European
descent, a consistent cross-replication between the genetic
effects observed in UKB and those derived from independent
non-British cohorts of European descent (53–59) has been
reported, supporting that UKB findings can be generalized
to other populations of European descent. Comparing cross-
ancestry heterogeneity generated from independent cohorts
will permit us to generalize our findings and to understand
how the sample characteristics and recruitment strategies
affect the gene discovery of complex traits across worldwide
populations. Finally, our positional mapping approach did
not permit us to investigate independent loci within the
same genomic regions. The modeling of multiple ancestry-
specific LD reference panels may increase the ability to uncover
independent loci with cross-ancestry heterogeneity within the
same genomic regions. To our knowledge, current methods can
calculate the ancestry-specific posterior probability with respect
to an association identified in a multi-ancestry GWAS (60).
However, this analysis should be conducted with respect to each
phenotype investigated, complicating the scaling to large-scale
multi-ancestry phenome-wide investigations.

In conclusion, this study provided novel evidence regarding
the predisposition to complex traits in the context of human
genetic variation. We observed that loci with heterogeneous
effects across ancestries are enriched for traits shaped by
human demographic history and natural selection. Both inter-
population differences in allele frequencies and LD tagging of

regulatory elements affect the genotype–phenotype associa-
tions both qualitatively and quantitatively (effect direction and
effect size, respectively). However, we showed how the strongest
genetic heterogeneity (i.e. discordant effect direction) was
mainly driven by the differences between European and African
populations, while loci with heterogeneous but concordant
effects were mainly affected by the differences of European
ancestry with respect to populations with a complex genetic
makeup (e.g. AMR and MID). Finally, although our data contribute
to increasing our knowledge regarding how cross-ancestry
genetic diversity affects the predisposition to complex traits,
they strongly highlight that there is an urgent need for greater
population diversity in GWAS and functional studies of gene
regulation.

Materials and Methods
UK Biobank

UKB is a large population-based prospective study to explore dif-
ferent life-threatening disorders using information about envi-
ronmental factors and genes in order to improve diagnosis and
treatment (9). A wide variety of phenotypic information, includ-
ing socio-demographic and lifestyle factors, electronic health
records data and physiological conditions, have been collected
for more than 500 000 UKB participants (30). UKB genetic data
were used to generate genome-wide association datasets that
can be employed to explore the genetics of complex traits.
In our study, we used the Pan-UKB genome-wide association
statistics generated from the analysis of six ancestries (AFR
N = 6636; AMR N = 980; CSA N = 8876; EAS N = 2709; EUR N =
429531; MID N = 1599). Pan-UKB data are available at https://pa
n.ukbb.broadinstitute.org/downloads. A detailed description of
the methods used to generate these data is available at https://
pan.ukbb.broadinstitute.org/. Briefly, the ancestry assignment
of UKB participants was conducted with respect to combined
reference data from the 1000 Genomes Project (1KG) (61) and
the Human Genome Diversity Project (HGDP) (62) using a two-
stage approach: (i) assign continental ancestries and (ii) prune
ancestry outliers within continental groups. The top six prin-
cipal components (PCs) from the reference data were used to
train a random forest classifier that was then applied to the
UKB PC data. UKB participants were assigned to an ancestry
group based on a random forest probability >50%. Individuals
with a probability of <50% were excluded from the analysis.
The genetic association analysis investigated variants with an
imputation INFO score > 0.8 and a minimum allele count of 20.
Phenotypes analyzed included binary, ordinal and continuous
traits. For binary traits, a minimum of 50 cases were required
in each ancestry group with the exception of the European
ancestry sample where at least 100 cases were required. To
investigate cross-ancestry heterogeneity, we analyzed 843 traits
(Supplementary Material, Table S1) that were assessed across all
six ancestry groups available in the UKB cohort. Within each
ancestry, the genome-wide association analysis was conducted
using the Scalable and Accurate Implementation of GEneralized
(SAIGE) mixed model (63) and including a kinship matrix as a
random effect and covariates as fixed effects. The covariates
included age, sex, age × sex, age2, age2 × sex and the top 10
within-ancestry PCs. The ancestry-specific genome-wide asso-
ciations were meta-analyzed using a fixed-effect inverse vari-
ance weighted method, and a Cochran’s Q heterogeneity test of
the cross-ancestry meta-analysis was also performed. The code

https://pan.ukbb.broadinstitute.org/downloads
https://pan.ukbb.broadinstitute.org/downloads
https://pan.ukbb.broadinstitute.org/
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used for the trans-ancestry meta-analysis is available at https://
github.com/atgu/ukbb_pan_ancestry.

Positional mapping to identify independent loci

To identify the number of independent signals, we decided to
apply a conservative approach based on positional mapping of
the variants showing genome-wide significance (P < 5 × 10−8) in
both the trans-ancestry meta-analysis and the heterogeneity
test. We did not use LD information because the cross-
ancestry meta-analysis was generated from six ancestry
groups with different LD patterns. Accordingly, we defined
independent blocks considering a pairwise distance of 10 Mb.
Specifically, we applied a two-variant window and assigned
variants to the same block if closer than 10 Mb; a novel
block is defined when two variants are more distant than
10 Mb. The 10 Mb window was defined based on previ-
ous strategies to identify GWS associations with negligible
residual LD (64).

Regulome LD tagging properties across ancestry groups

To investigate how the LD structure across worldwide pop-
ulations affects the ability of the GWAS index variants to
tag functional elements in the surrounding regions, we
leveraged 1KG reference superpopulations (61) and information
regarding regulatory variants from RegulomeDB (65). We used
LD information from the 1KG reference panel instead of the
UKB cohort because 1KG data generated from whole-genome
sequencing are more informative of LD tagging variability than
the UKB data generated from the GWAS array plus imputation.
Additionally, UKB genetic data have been imputed using 1000
Genomes phase 3 as one of the reference panels specifically
to help with non-European ancestry UKB participants (30).
Using LDlink (66,67), we tested the effect of the LD structure
variability across ancestry groups on the ability of variants to
tag (measured as LD R2) functional variants in the surrounding
regions (±500 Kb). The 1KG reference superpopulations include
AFR, AMR, EAS, EUR and South Asian. UKB CSA sample was
defined by combining 1KG South Asian and HGDP South/Central
Asian reference data. Accordingly, we refer to the 1KG South
Asian reference panel as CSA hereafter. RegulomeDB (65) was
used to score the regulatory effect of the tagged variants
on the basis of high-throughput, experimental datasets as
well as computational predictions and manual annotations.
RegulomeDB scoring scheme ranges from 1 (highest number
of known and predicted data regarding regulatory function)
to 7 (lowest number of known and predicted data regarding
regulatory function). To quantify the ancestry-specific ability of
the GWAS index variants to tag regulatory elements in their
surrounding regions, we defined an LD–RTS for each GWAS
index variant calculated as:

∑m
j=1R2

j × 1/S2
j , where j is a genetic

polymorphism in m polymorphisms within ±500 Kb of the
GWAS index variant, R is the LD correlation coefficient between
the polymorphism j and the GWAS index variant, and S is the
RegulomeDB score of the polymorphism j. LD–RTS scores were
calculated for each GWAS index variants with respect to the
LD information available from each of the 1KG reference super-
populations. Owing to the lack of a 1KG MID superpopulation,
LD–RTS was not calculated for this group. The ancestry differ-
ences of LD–RTS distribution (Supplementary Material, Fig. S1)
reflect variant densities (Supplementary Material, Fig. S2)
and LD patterns (Supplementary Material, Figs S3 and S4)
present in the ancestries investigated. Accordingly, LD–RTS

was not normalized with respect to the LD structure and
variant density to model fully the differences between the
ancestries.

Non-parametric regression analyses

To understand the relationship between the heterogeneity
observed in the trans-ancestry meta-analysis and genetic
variation among worldwide populations, we conducted non-
parametric regression analyses. We decided to apply non-
parametric tests to avoid assumptions related to the distribution
of the variables investigated and to apply normalization
procedures to the variables of interest. Because of the much
larger UKB EUR sample, the trans-ancestry GWS associations
were mostly driven by EUR-specific results. Accordingly, the
heterogeneity observed in the UKB trans-ancestry meta-analysis
should be mainly owing to the genetic differences of EUR
populations with respect to the other ancestry groups. For this
reason, we considered the differences of the allele frequency
and LD–RTS (�AF and �LD, respectively) of European populations
with respect to the other ancestries investigated. These variables
were entered in the non-parametric regression models by
considering the degree of heterogeneity as the outcome of
interest. The latter was quantified as the negative of the
base-10 logarithm of the P-values obtained from the trans-
ancestry meta-analysis heterogeneity test. Initially, we applied
the MBLM approach (available at https://cran.r-project.org/we
b/packages/mblm/index.html) to investigate the relationship
of the degree of heterogeneity with each of the �AF and �LD,
e.g. − log10pheterogeneity ∼ EUR.AFR�AF. Then, we entered the
significant MBLM variables in a multivariate regression applying
the LOESS process (available at https://www.rdocumentatio
n.org/packages/stats/versions/3.6.2/topics/loess) and testing
it using the GAM approach (available at https://cran.r-proje
ct.org/web/packages/gam/index.html). Similarly to a previous
study (68), we applied this two-stage approach to screen the
relevant variables to avoid affecting the statistical power of the
multivariate regression.

Enrichment analyses

To test whether there is an over-representation of certain
phenotypic classes among the associations presenting cross-
ancestry heterogeneity, we calculated the significance of the
phenotypic enrichment applying the cumulative distribution
function of the hyper-geometric distribution to the propor-
tions of the phenotypic classes associated with the GWAS
index variants investigated with respect to the proportion of
phenotypic classes across the overall phenotypic spectrum
investigated (Supplementary Material, Table S1). Additionally,
we also verified whether the GWAS index variants were enriched
for evolutionary signatures. We selected three evolutionary
measures: iHS (31), CMS (32) and Neanderthal LA (33). Similarly to
previous studies (68), these were converted to binary annotations
as bins of the top 2% of the scores genome-wide. Using
the cumulative distribution function of the hyper-geometric
distribution, we compared the proportions observed in the
GWAS index variants (Supplementary Material, Table S7) with
those obtained from the variants matched by MAF (±5%),
gene density (±50%), distance to the nearest gene (±50%) and
LD independence (R2 = 0.5, ±50%). The matched variants were
identified using SNPsnap (69).
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