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SUMMARY

Forecasting pharmacokinetics (PK) for individual patients is a fundamental prob-
lem in clinical pharmacology. One key challenge is that PK models constructed
using data from one dosing regimen must predict PK data for different dosing
regimen(s). We propose a deep learning approach based on neural ordinary dif-
ferential equations (neural-ODE) and tested its generalizability against a variety
of alternative models. Specifically, we used the PK data from two different
treatment regimens of trastuzumab emtansine. The models performed similarly
when the training and the test sets come from the same dosing regimen. How-
ever, for predicting a new treatment regimen, the neural-ODE model showed
substantially better performance. To date, neural-ODE is the most accurate
PK model in predicting untested treatment regimens. This study represents
the first time neural-ODE has been applied to PK modeling and the results sug-
gest it is a widely applicable algorithm with the potential to impact future
studies.

INTRODUCTION

Determining the optimal dosing regimen for individual patients requires the construction of pharmacoki-

netics (PK) forecasting models that can extrapolate PK data for treatment regimens differing from those

used for model training sets (Sheiner et al., 1979) https://paperpile.com/c/QQNeAs/SoRKv. The popula-

tion approach to modeling clinical PK data is now well-established after decades of methodological and

application development, and it is the current standard for PK modeling in clinical settings (Ette and Wil-

liams, 2004). For this methodology, PK data from all patients within a population are described simulta-

neously using a nonlinear mixed effects (NLME) model (Bonate, 2011; Mold and Upton, 2013; Owen and

Fiedler-Kelly, 2014). The resulting population-PK (pop-PK) models have found a wide set of applications

within drug development (Aarons, 1991), ranging from determining the right dosage and dosing schedule

(Darwich et al., 2017) to therapeutic drug monitoring (McEneny-King et al., 2016). Despite the maturity of

the pop-PK modeling, several opportunities exist to further increase the impact of PK forecasting models

on drug development and individualized treatment. The construction of a final pop-PK model following an

exhaustive covariate search can be time consuming and labor intensive, which limits its ‘‘real-time’’ impact

on the increasingly fast paced drug development space. In addition, the ability to individualize patient

dosage and the timing thereof in a treatment context (McEneny-King et al., 2020) depends on the capability

of models to accurately forecast PK profiles based on sparsely observed, early PK data. As PK models are

increasingly critical for supporting dose and regimen decisions, such models should ideally have the ability

to predict PK profiles for different untested doses and regimens.

Recent advancements in machine learning (ML) and deesp learning (DL) for healthcare applications (Ngiam

and Khor, 2019) have led to a significant interest in applying these approaches to drug development and

regulation (Liu et al., 2020). For example, support vector machines and artificial neural networks (ANNs)

have been used to predict remifentanil concentrations in healthy populations (Poynton et al., 2009). Addi-

tionally, Tang et al. (Tang et al., 2017) has compared the performance for predicting the PK using multiple

learning regression, ANN, regression tree, multivariate adaptive regression splines, boosted regression

trees, SVM, random forest, Lasso and Bayesian additive regression trees. Furthermore, Liu et al. has

used a long short-term memory (LSTM) network to analyze the simulated PK/PD data of a hypothetical

drug (Liu et al., 2021).
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Emergent neural network-based approaches may enable development of new methodologies for real-

time, accurate prediction of PK profiles through direct generation of ordinary differential equation

(ODE) models from irregularly observed time series data (Chen et al., 2018; Rubanova et al., 2019; Sun

et al., 2020; Kelly et al., 2020). The development of such methodologies may overcome the hurdles asso-

ciated with the application of PK modeling to support drug development, including increasing the

throughput and accuracy of predictions.

In this work, we present the first use of neural-ODE for the automated construction of PK models directly

from clinical data. We also compared the proposed approach with alternative ML/DL methodologies and

traditional NLMEmodeling. We applied three ML/DL approaches for clinical PK prediction: a novel variant

of neural-ODE, LSTM neural network (Bianchi et al., 2017), and lightGBM (Ke et al., 2017). LSTM is a base

learner that was designed specifically for time course prediction tasks (Hochreiter and Schmidhuber, 1997).

LightGBM is a popular tree-based algorithm. Like most other traditional base learners, it takes in features

whose orders and relationships are considered unimportant; but the number of features for every example

must be of the same dimension.

It is an open question whether ML approaches can generalize PK predictions beyond training data despite

a general appreciation that the form of equations that underlie existing PK models and the associated

model parameters of biological relevance (such as the volume of distribution, clearance rates, and so

on) (Ette and Williams, 2004; Bonate, 2011; Mold and Upton, 2013; Owen and Fiedler-Kelly, 2014) enable

a reasonable extrapolation (within limits) to untested dosages and dosing regimens. Therefore, we focus

on the comparison of ML/DL approaches in their ability to learn from PK data generated from one dosing

regimen, to predict an unseen regimen.

This study utilized clinical PK data from trastuzumab emtansine (T-DM1), a conjugated monoclonal anti-

body drug that has been approved for the treatment of patients with human epidermal growth factor re-

ceptor 2 (HER2) positive breast cancers (Boyraz et al., 2013). The PK of various analytes (the T-DM1 conju-

gate, total trastuzumab, and the payload DM1) following infusions with T-DM1 are well-characterized and

described by a linear pop-PK model (Lu et al., 2014). T-DM1 has a narrow therapeutic window, and the

appropriate dose and schedule were identified after exposure-response analysis, as well as thrombocyto-

penia modeling (Chen et al., 2017; Bender 2016; Bender et al., 2020). Two dosing regimens have been

tested clinically: once every 3-week (Q3W, various doses, with the majority at the approved dosage of

3.6 mg/kg), as well as once weekly (Q1W, various doses) (Lu et al., 2014). We first tested the models’ per-

formance independent of treatment schedule by randomly selecting data based on patient ID. We then

trained and evaluated each model across the two regimens: that is, using data from patients on a Q3W

dosing regimen only and compared their ability to predict analyte PK concentrations in patients who

were treated on a Q1W dosing regimen, and vice versa. The results reveal key advantages for neural-

ODE over the other models when it comes to predicting PK for untested dosing regimens.

RESULTS

Data used to predict PK with first cycle observations

The models we developed for this study use first cycle PK observation (of T-DM1 conjugate) to predict subse-

quent PK concentration values. In a classical population-PK problem, patients are treated with a drug, and the

changesof theconcentrationof thedrug inside thebodyare affectedbya varietyof factors, suchasage,gender,

weight, and biomarkers. These factors can in turn inform PK response predictions. Because the drug is admin-

istered repeatedly, the first cycle data can also inform predictions of patient response in subsequent cycles.

We discarded patient data with only one cycle of dosing evaluation (39 individuals, all on Q3W dosing

schedules). The following features are included in the models (Figure 1): TFDS, the time in hours between

each dose; TIME, the time in hours since the start of the treatment; AMT, the dosing amount in milligrams;

CYCL, the current dosing cycle number. Additionally, the first cycle of the observation, PK_cycle1 is also

available as predictive features for the models. Using the information above, we sought to predict the

PK dynamics after the first cycle, i.e., after 168 hr for the Q1W data and after 504 hr for the Q3W data.

We used data from a total of 675 patients, which contained a total of 16,472 records of T-DM1 dosing and PK

measurements (observations below the minimum quantifiable concentration have been omitted from the

analysis (Lu et al., 2014)). The data included two distinct dosing schedules: dosing every week (Q1W, 28
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individuals, 2,086 records in total) and dosing every three weeks (Q3W, 647 individuals, 14,385 records in to-

tal). The two subsets differ in their dosing schedules, and theQ1Wdata has a greater number of measurement

points per patient, a greater number of dosing cycles, smaller doses, andmeasurements were collected over a

longer time period (See Table 1 and Figure S1 for an overview of the data.). These differences allowed us to

examine howwell themodels extrapolate data when trained on one type of schedule and tested on a different

type of schedule. The number of measurement points per patient ranges from 2 to 270, with an average of

24.40 (median = 20). For Q1W, the number of measurement points per patient ranges from 8 to 270, with

AugmentaƟon on train

Individuals Train ValidaƟon Test Train ValidaƟon Test

Origin TIME < 1008 hrs ValidaƟon TestTIME < 2016 hrsTIME < 1512 hrsQ3W cycle 1 observaƟons
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e

intervals
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LightGBM

Neural-ODE
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Figure 1. Data preprocessing

(A) T-DM1 trials consist of patients treated every three weeks (Q3W) and patients treated every week (Q1W). Input data includes time since initial treatment

starting point, dosing amount, treatment cycle number, time since the last dosing, and first cycle PKmeasurements. Patient data that have beenmarked with

non-missing values in the ‘‘C’’ columns have been removed from the analysis. The training target is the PK measurements in later cycles. Three methods were

tested in this work: lightGBM, LSTM and neural-ODE. Models were evaluated either in a cross-regimen approach, or using five-fold cross-validation.

(B) In cross-regimen validation of LSTM and neural-ODE, data from individuals treated by Q3W are split into the training set and validation set, in which the

latter is used to call back the best epoch of the former. Data from individuals treated Q1W is used as the test set to evaluate the performance. In five-fold

cross-validation, Q1W and Q3W are mixed to produce the train, validation and test set. Augmentation was applied to the training set by truncating the

observation time at different lengths. We repeated the split of train-validation set five times using different random seeds, and trained five models. The final

prediction is the average of the five models.
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an average of 74.5 (median = 51.5). For Q3W, the number of measurement points per patient ranges from 2 to

99 with an average of 22.23 (median = 20). The number of dosing cycles ranges from 1 to 39, with an average of

9.1 (median = 8). For Q1W, the number of dosing cycles ranges from 1 to 32, with an average of 9.89 (median =

7). For Q3W, the number of dosing cycles ranges from 1 to 39, with an average of 9.06 (median = 8). Doses

range from 19.0 mg to 510.0 mg, with an average of 237.1 mg (median = 234.0 mg, Figure S1). For Q1W,

the dose ranges from 81.6 mg to 212.0 mg, with an average of 139.3 mg (median = 144.2 mg); the dose for

Q3W ranges from 19.0 mg to 510.0 mg, with an average of 248.4 mg (median = 241.2 mg). Patient data

was collected over a time period ranging from 1.75 to 19,487.00 hr, with an average, per patient measurement

period of 4,301.81 hr (median = 3528.42). Patients with only the first cycle of data were discarded. The treat-

ment duration for Q1W patients ranged from 239.25 to 17,043.02 with an average total treatment duration of

5,122.62 hr (median = 3195.15), while the treatment duration for Q3W patients ranged from 1.75 to

19,487.00 hr with an average total treatment duration of 4,266.28 hr (median = 3528.50).

LightGBM, LSTM, neural-ODE, and NLME model construction

Wedesigned a variety of machine learningmodels and their corresponding feature engineeringmethods that

were potentially capable of predicting prospective PK dynamics and patient PK response. We selected

lightGBM (Ke et al., 2017) (Figure 2A), LSTM (Figure 2B), and neural-ODE. Below, we will describe the feature

engineering andmodel constructionmethods that we used to build PKproblems into the abovebase learners.

The base features we used for the lightGBMmodels are TFDS, TIME, AMT, and CYCL at the current time point.

Additionally, we flattened the time and the PK observations of the first dosing. Thus, for Q1W, any observations

Table 1. Demographic summary of the data.

Total

Whole population Q1W Q3W

675 28 647

Race American Indian

or Alaska Native

6 NA 6

Asian 73 NA 73

Black 49 NA 49

Hispanic 22 3 19

Native Hawaiian

or Pacific Islander

2 NA 2

White 523 25 498

Region Asia 58 NA 58

Europe 147 NA 147

Other 66 NA 66

United States 404 28 376

Sex Female 671 28 643

Male 4 NA 4

Age Max 84 75 84

Mean 52.90 52.86 52.90

Median 53 53 53

Min 27 28 27

Height Max 188 177.80 188

Mean 161.98 163.22 161.93

Median 162.60 163.50 162.60

Min 128.28 146 128.28

Weight Max 137.40 135 137.40

Mean 70.51 73.91 70.37

Median 68 69.55 67.95

Min 37.72 47.20 37.72
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of TIME<168 are included; and forQ3W, any observations of TIME <504 are included.We iterated TIME and PK

values from the first time point to the last time point during the first cycle, and padded the vector to 20 elements

long with zeros: TIMEt1, PKt1, TIMEt2, PKt2, TIMEt3, PKt3,.,. Next, for the current time point that we wish to pre-

dict, we have an additional set of TFDS, TIME, AMT, and CYCL values. Concatenating the 20-element-long vec-

tor and these four values resulted in 24 features as the input of lightGBM.

The input features for the LSTMmodel includedTFDS, TIME,CYCL, AMT, and PK_cycle1, a feature copied from

thePKobservations, and the values with TIMER 504 or 168were replaced to 0. Timepoints where AMTwas not

present (i.e. non-dosing times) were filled with 0. The data were then fed into a 2-layer LSTM architecture with

128 hidden units on each layer. Outputs of the LSTM layers were concatenated with the 20-long flattened first

dosing features consisting of the PK observations and TIME as described in the lightGBM version. They were

then fed into a fully connected layer with a linear activation to generate the predictions. We masked out the

time points without PK observation (i.e., dosing times without PK records) in model training.

We used the same data preprocessing for neural-ODE and LSTMmodels. The general structure of the neu-

ral-ODE model consists of a recurrent neural network (RNN) encoder (GRU unit), an ODE solver, and a

decoder. The encoder encodes an initial status for the ODE solver; the ODE solver solves the system

A

C

B

Figure 2. Feature preprocessing in (A) lightGBM, (B) LSTM, and (C) neural-ODE models

(A) To generate a specific training example, or a test data point, we incorporate first cycle time and PK information as well as the current data point TFDS,

ATM, TIME, CYCL information as feature data.

(B) In the LSTM model, TFDS, TIME, CYCL, AMT and PK cycle 1 observation padded with zero are input as five channels in the model.

(C) Neural-ODE shares similarly with LSTM in the encoder part that TFDS, TIME, CYCL, AMT and PK cycle 1 observation are used as the input in the encoder

part. Then ODE solvers are used to incorporate dosing information into the time sequence before the decoder generates the predictions.
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over time intervals between doses; and the decoder generates the predictions from the output of the

ODE solver and the first dosing observations. In the encoding step, a GRU layer with 128 hidden units

scans through the whole time series (5 channel input, TFDS, TIME, CYCL, AMT, and PK_cycle1, as in

LSTM model) reversely (i.e., from the end to the start) following the neural-ODE official sample codes

(Chen, 2018). It encodes the information to a length-12 array. These numbers can be changed without

affecting the results.

Following the concept of the variational autoencoder, the 12-element array in the ODE solver output de-

fines the mean and standard deviation of the latent state distributions, where we sample the latent vari-

ables zt0 of the same size as the initial status for the ODE solver. Specifically, 6 elements of the 12-element

arrays are used to estimate the mean values and the other 6 were used to estimate the variance. zt0 (of

dimension 6) is drawn from the Gaussian distribution derived from this mean and standard deviation. Start-

ing from zt0 , the ODE solver functions integrate the dosing information and the time interval. Specifically,

for each time point ti under consideration, we first add the dosing amount to the zti�1
, if there is a dosing

event at ti-1. Then, both zti�1
and the time interval from the previous time point ti-ti-1 are fed into the

ODE solver function, which is a four layer fully connected network, each layer with 16 hidden dimensions.

The output of the ODE function is the zti , which is then circulated back to the next time point. From the

above steps, we generate a series of zt , which are fed into a decoder, containing one fully connected layer

of 32 hidden units, and outputs a series of predictions, corresponding to the each zt ’s.

As described above, the models of LSTM and neural-ODE share similar structure in terms of the five chan-

nels, TFDS, TIME, CYCL, AMT and PK_cycle1, as well as input of the first dosing PK observations and time in

either the decoder part or the last layer of LSTM network. Neural-ODE also contains an RNN layer as the

encoder. The main difference between the neural-ODE and LSTM models is the ODE solver in the former

that addresses uneven time sampling of the data. Neural-ODE also explicitly incorporates dosing data into

A B

Figure 3. Performance comparison of NLME, lightGBM, LSTM and neural-ODE models

(A) Performance in five-fold cross-validation.

(B) Performance using Q3W as the training data and Q1W as the test data. The box plots with center lines indicate the

25th, 50th and 75th percentiles of 5-fold cross-validation results, with the mean values shown as green triangles and the

minimum and maximum values indicated by the whiskers. The outliers in the box plots are shown as diamonds. The p-

values shown correspond to comparisons between performance metrics obtained using the various algorithms.

ll
OPEN ACCESS

6 iScience 24, 102804, July 23, 2021

iScience
Article



the model, unlike other machine learning algorithms presented in this study. As we discuss below these

properties contribute to the robust performance of neural-ODE when tested across treatment regimens.

Neural-ODE, lightGBM, and NLME perform similarly when the training data and testing data

come from the same treatment regimens, but neural-ODE outperforms other algorithms

when generalizing to new dosing regimens

We first examined algorithms’ performance at traditional PK prediction by randomly partitioning the data

into training set and testing set regardless of their treatment schedule. We partitioned the data by patient

IDs and carried out five-fold cross-validation to evaluate the algorithm performance. Overall, we found very

similar results using different machine learning algorithms (Figure 3A). For neural-ODE, we obtained an

average root mean squared error (RMSE) of 13.50, an R2 score of 0.88, and a Pearson’s correlation of

0.94. For lightGBM, we obtained an RMSE of 13.78, an R2 score of 0.87, and a Pearson’s correlation of

Figure 4. Visualization of time course predictions

The vertical lines denote dosing events.

(A) Visualization of interpolated prediction points for patient #5012.

(B) We artificially stopped dosing after 2500 hr for patient #5012 and used the trained models to predict PK values.

(C) We artificially stopped both dosing and TIME after 2500 hr for patient #5012 and used the trainedmodels to predict PK

values.
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0.93. For LSTM, we obtained an RMSE of 13.34, an R2 score of 0.88, and a Pearson’s correlation of 0.94. For

NLME, we obtained an RMSE of 18.64, an R2 score of 0.79, and a Pearson’s correlation of 0.89. None of the

differences are statistically different (n = 10,000) except for the RMSE, R2 score and Pearson’s correlation of

the NLME model based on the bootstrap hypothesis test (Table S2).

We then compared the performance by separating the data into training and testing according to treat-

ment schemes in order to study the models’ ability to generalize to new treatment regimens. As discussed

above, the T-DM1 data set contains two treatment schedules: Q1W (28 individuals) and Q3W (647 individ-

uals). We used Q3W as the training set and the Q1W as the test set. In this cross-regimen validation

scheme, we observed that neural-ODE demonstrated substantial advantage in making meaningful predic-

tions. For neural-ODE, we obtained an average root mean squared error (RMSE) of 10.61, an R2 score of

0.76, and a Pearson’s correlation of 0.89. For lightGBM, we obtained an RMSE of 18.50, an R2 score of

0.27, and a Pearson’s correlation of 0.80. For LSTM, we obtained an RMSE of 19.56, an R2 score of 0.15,

and a Pearson’s correlation of 0.62. For NLME, we obtained an RMSE of 15.21, an R2 score of 0.68, and

a Pearson’s correlation of 0.83. Thus, across all evaluations, neural-ODE performed the top (Figure 3B).

Applying the bootstrap hypothesis test, the p values comparing other algorithms and Neural-ODE are

all statistically significant (p < 0.05, n = 10,000) (Table S2).

Neural-ODE generates continuous PK profiles and produces correct patterns in artificially

simulated experiments

We applied the models to the test set and visualized the predictions. Compared to lightGBM and LSTM,

with neural-ODE we observed smoother prediction values after each dosing (Figures 4 and S2–S4), likely

because the time variable for neural-ODE is input as a continuous value directly to the decoder. This is

an important characteristic that is expected for real-world PK observations.

We also simulated a hypothetical situation, where dosing was stopped in the middle of the treatment

course. In this case, we expect PK to fall to zero after dosing stops. However, both LSTM and

lightGBM models continue to make positive value predictions of PK, which likely results from the

model remembering the pattern of training patients (Figure 4B). Conversely, neural-ODE is able to detect

and reflect the stop of the treatment and correctly predicts zero after dosing stops. This desirable behavior

of neural-ODE likely comes from the direct incorporation of dosing into the model. When stopping dosing

and TIME all together, LSTM and lightGBM show the expected behavior (Figure 4C), suggesting that both

models are learning from TIME rather than explicit dosing information.

DISCUSSION

Modelingpopulation-PKdata is a primary goal of clinical pharmacology. PKmodeling enables the selectionof a

dosage and dosing regimen that balances efficacy with safety and the extrapolation of PK data to different pa-

tient populations. However, predicting analyte concentration changes in an untested dosing regimen using

models trained on a separate dosing regimen remains the major challenge of PK modeling. We developed

and compared three types of machine learning models that had potential for addressing this challenge. We

found that the neural-ODEmodel demonstrated excellent generalizability to new treatment schemes and per-

formed substantially better (evaluated using predictive performance metrics) than both alternative machine

learning models, as well as NLME— a commonly used methodology in the pharmacometrics field.

In the clinical pharmacology field, drug dosing and PK measurements in patients are rarely performed at

regular intervals, making it essential to consider the sampling variability in this problem. The advantage

of the neural-ODE model may come from its ability to deal with unevenly sampled data points. The alter-

native deep learning models such as LSTM tend to assume even sampling. Neural-ODE directly incorpo-

rates dosing and timing data into themodel at the decoder stage, which also likely contributes to the stable

performance when adopting a model trained on one treatment regimen to a different treatment regimen.

The currentwork only considers PKpredictions related todosage anddosing regimen.However, neural-ODE

has the potential for impact in several underdevelopedmethodological areas and applications. For example,

the development of ML/DL models for applications such as cross-species prediction and in vitro-in vivo

extrapolation (IVIVE), as well as the evaluation of the relativemerits of variousmodel formulations is an impor-

tant area that remains to be further explored.ML could be applied to physiologically based pharmacokinetic

(PBPK)modeling (Jones and Rowland-Yeo, 2013; Reddy et al., 2005; Zhao et al., 2011), which is currently used
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to project the clinical dose for First-In-Human studies. In contrast to ‘‘classical’’ PK models, PBPKmodels are

parametrized using known physiology and enable IVIVE. Amongst the many uses of PBPK models is cross-

species prediction, whereby data generated from preclinical species is used to predict human PK using a

learn-confirm-refine paradigm (Jones and Rowland-Yeo, 2013). Clinical PK extrapolation to different patient

populations also remains unaddressed. This includes PK extrapolations from adults to children using allome-

tric scaling or PBPKmodeling (Maharaj and Edginton, 2014; Mahmood, 2014; Yellepeddi et al., 2019;Wu and

Peters, 2019), or from healthy volunteers to patients with organ impairment (Heimbach et al., 2020). Another

limitation is that deep learning suffers fromoverfittingwhen the sample size is small. In initial phases of clinical

trials, wemay only have around 100 individuals.Methods that leverage the pre-training of neural-ODEon his-

torical drugs can potentially overcome this barrier. Given the ever-increasing accumulation of PK data across

molecule types and in patient populations, we expect there to be ample future opportunities for applying

ML/DL techniques in a wide range of clinical research settings.

Limitations of the study

This work is based on the PK data collected from patients treated with a conjugated monoclonal antibody

drug. The effectiveness of the proposed methodology to predict PK data for small molecule drugs remains

to be further evaluated.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information should be directed to James Lu (email: lu.james@gene.com)

Materials availability

This study did not generate new unique reagents.

Data and code availability

The clinical data used in this study is not made available due to reasons of patient privacy, but is available

upon reasonable request from the authors with the approval of Genentech. All original code is available in

this paper’s supplemental information. It has also been deposited at Github and is publicly available as of

the date of publication. DOIs are listed in the key resources table. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

METHODS DETAILS

Data summary

The PK data includes 9934 serum concentration values of T-DM1 conjugate from 671 patients with HER2+

breast cancer from the TDM3569g, TDM4258g, TDM4370g, TDM4374g and TDM4450g clinical trials (Table

1). In all studies, T-DM1 was administered via intravenous injection. TDM3569g was a Phase 1, dose-esca-

lation study in patients with HER2-positive MBC that had progressed on prior trastuzumab therapy, where

patients were treated with either 0.3-4.8 mg/kgQ3W (once every 3 weeks) or with 1.2-2.9 mg/kgQ1W (once

every week) of T-DM1. In all the other studies, patients were treated with 3.6 mg/kg Q3W of T-DM1, either

as a monotherapy or in combination with other therapeutic agents. The full details of the study design is

described in the Supplementary Material 1 of (Lu et al., 2014). Note that the majority of the patients

were treated with the Q3W dosing regimen, with the exception of 28 of the patients in TDM3569g who

were treated with Q1W. See (Lu et al., 2014) for further details regarding the patient population, PK sam-

pling, and bioanalysis as well as results of pop-PK modeling of the data.

LightGBM model training parameters

The lightGBMmodel is trained as a regression problem, with boosting_type = gbdt, learning_rate = 0.005,

num_leaves = 30, num_trees = 1000. We used early stopping with a 50 rounds cutoff of non-improvement

and RMSE as the metric to call back best models. These parameters were selected through grid search and

minor changes of the parameters do not substantially alter performance.

LSTM model training parameters

The LSTM architecture starts with two LSTM layers. The first one with an input length of 5 and output length

of 128. The second one with an input length of 128 and output length of 128. Both activation functions are

Tanh. The 128-length vector is connected to the 20-length vector which is the first cycle TIME and PK. Then

the 148-length vector is fed into the decoder with two fully connected layers. The first fully connected layer

has an output length of 128 with ReLU activation, and the second fully connected layer has an output length

of 1 with linear activation, generating the prediction values.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Torchdiffeq Chen et al., 2018 https://github.com/rtqichen/torchdiffeq

Lightgbm Ke et al., 2017 https://github.com/microsoft/LightGBM

Nlmixr Fidler et al., 2019 https://nlmixrdevelopment.github.io/nlmixr/

Neural-ODE for PK modeling This paper https://zenodo.org/badge/latestdoi/

377988539
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In training the LSTM model, we used a batch size = 1 due to different length of the input time course data,

initial learning rate = 0.00005 with Adam optimizer (Dash et al., 2019) and L2 regularization = 0.1, RMSE loss.

We used normal distribution N(0, 0.1) for weight initialization. The Bias initialization value is 0. We trained

for a total of 30 epochs. These parameters were selected through grid search. We implemented the model

with Pytorch.

Neural-ODE model training parameters

The encoder part of the Neural-ODE structure has an input length of 5 and an output length of 128, with

activation function Tanh. Then it is connected to two fully connected layers. The first fully connected layer

has an input length of 128, and an output length of 128, and an activation function of ReLU. The second fully

connected layer has an input length of 128 and output length of 12, with linear activation. The ODE function

part of the Neural-ODE structure has four fully connected layers, with an input length of 6 (sampled from the

12). Each of the middle fully connected layers has an output length of 128. The last fully connected layer has

an output length of 6. This 6-length vector is concatenated to the TIME and PK values in the first cycle (a 20-

length vector). The decoder part of the Neural-ODE has two fully connected layers with an input length of

26. The first fully connected layer has an output length of 32. The second fully connected layer has an output

length of 1, which is the prediction value.

In training the Neural-ODE model, we used a batch size = 1 due to different length of the input time course

data, initial learning rate = 0.00005 with Adam optimizer and L2 regularization = 0.1, RMSE loss, ODE solver

tolerance = 0.0001. We trained for a total of 30 epochs. We used normal distribution N(0, 0.001) for weight

initialization. The Bias initialization value is 0. The ODE function bias initialization value is 0.5. These param-

eters were selected through grid search. We implemented the model with Pytorch and torchdiffeq (Chen

et al., 2018).

Augmentation

Deep learning is prone to overfitting, and we applied augmentation to prevent overfitting. We applied

timewise truncation to increase the number of training examples. For each training example, in addition

to the original example, we also truncated the examples at 1008 hr, 1512 hr, and 2016 hr and generated

and added a set of new examples to the training examples.

Nonlinear mixed effects modeling (NLME)

We applied NLME modeling (Fidler et al., 2019). We implemented a two-compartment model with first-

order absorption and first-order elimination (Strauss and Bourne, 1995), and initialized the parameters

(Lu et al., 2014). This system can be described by the following first-order differential equations:

dX0

dt
= � ka � X0

dX1

dt
= ka � X0 �

�
CL+Q

V2

�
� X1 +

Q

V3
� X2

dX2

dt
=

Q

V2
� X1 � Q

V3
� X2

where the X0, X1, and X2 are the drug amounts in the dosed compartment, the central compartment and the

peripheral compartment. The initial values of X1 and X2 are both 0. The parameters include: ka the absorp-

tion rate constant; CL the elimination clearance rate; theQ is the distribution clearance rate; and the V2, V3

represent the central volume and peripheral volumes of distribution, respectively.

The initial values and the bounds for the parameters are listed in Table S1. The final values and the bounds

for the parameters of all NLME models are listed in Tables S3–S12. Visual predictive checks for the cross-

regimen NLME models are presented in Figures S5–S9. The five models in cross-regimen analysis are

generated with different random seeds during the EM inference.

Evaluation metrics

We used R2 score, and Pearson correlation in this study. Correlation gives an intuitive estimation of the

concordance between the predictions and ground truth, while R2 also takes into account whether the over-

all scale of the predictions is correct.
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The initial values and the bounds for the parameters are listed in Table S1. The final values and the bounds

for the parameters of all NLME models are listed in Tables S3–S12. Visual predictive checks for the cross-

regimen NLME models are presented in Figures S5–S9. The five models in cross-regimen analysis are

generated with different random seeds during the EM inference.

QUANTIFICATION AND STATISTICAL ANALYSIS

To test the significance of the performance between two models, we used the bootstrap hypothesis test

with the following steps:

1. Select two models M1 and M2, and evaluate the performances xM1; xM2for each fold based on the

predictions from these two models. The length of this example we denote it as N.

2. Calculate the absolute difference between the averages of xM1; xM2: t = jxM1 � xM2j
3. Draw B samples of size 2N with replacement from the concatenation of xM1; xM2. Regard the first N

values as the performances of M1 (xbM1), and the remaining as the performances of M2 (xbM2) in each

sample.

4. Calculate the absolute difference between the averages of xbM1; x
b
M2: t

b =
���xbM1 � xbM2

���
5. The p value comes from the numbers of tbRt in the B samples: p� value = #ftb Rtg=B

ll
OPEN ACCESS

iScience 24, 102804, July 23, 2021 13

iScience
Article


	ISCI102804_proof_v24i7.pdf
	Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing  ...
	Introduction
	Results
	Data used to predict PK with first cycle observations
	LightGBM, LSTM, neural-ODE, and NLME model construction
	Neural-ODE, lightGBM, and NLME perform similarly when the training data and testing data come from the same treatment regim ...
	Neural-ODE generates continuous PK profiles and produces correct patterns in artificially simulated experiments

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Methods details
	Data summary
	LightGBM model training parameters
	LSTM model training parameters
	Neural-ODE model training parameters
	Augmentation
	Nonlinear mixed effects modeling (NLME)
	Evaluation metrics

	Quantification and statistical analysis






