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Abstract 

Background:  Oral microbiota is considered as the second most complex in the human body and its dysbiosis can be 
responsible for oral diseases. Interactions between the microorganism communities and the host allow establishing 
the microbiological proles. Identifying the core microbiome is essential to predicting diseases and changes in environ‑
mental behavior from microorganisms.

Methods:  Projects containing the term “SALIVA”, deposited between 2014 and 2019 were recovered on the MG-RAST 
portal. Quality (Failed), taxonomic prediction (Unknown and Predicted), species richness (Rarefaction), and species 
diversity (Alpha) were analyzed according to sequencing approaches (Amplicon sequencing and Shotgun metagen‑
omics). All data were checked for normality and homoscedasticity. Metagenomic projects were compared using the 
Mann–Whitney U test and Spearman’s correlation. Microbiome cores were inferred by Principal Component Analysis. 
For all statistical tests, p < 0.05 was used.

Results:  The study was performed with 3 projects, involving 245 Amplicon and 164 Shotgun metagenome datasets. 
All comparisons of variables, according to the type of sequencing, showed significant differences, except for the 
Predicted. In Shotgun metagenomics datasets the highest correlation was between Rarefaction and Failed (r =  − 0.78) 
and the lowest between Alpha and Unknown (r =  − 0.12). In Amplicon sequencing datasets, the variables Rarefaction 
and Unknown (r = 0.63) had the highest correlation and the lowest was between Alpha and Predicted (r =  − 0.03). 
Shotgun metagenomics datasets showed a greater number of genera than Amplicon. Propionibacterium, Lactobacil-
lus, and Prevotella were the most representative genera in Amplicon sequencing. In Shotgun metagenomics, the most 
representative genera were Escherichia, Chitinophaga, and Acinetobacter.

Conclusions:  Core of the salivary microbiome and genera diversity are dependent on the sequencing approaches. 
Available data suggest that Shotgun metagenomics and Amplicon sequencing have similar sensitivities to detect the 
taxonomic level investigated, although Shotgun metagenomics allows a deeper analysis of the microorganism diver‑
sity. Microbiome studies must consider characteristics and limitations of the sequencing approaches. Were identified 
20 genera in the core of saliva microbiome, regardless of the health condition of the host. Some bacteria of the core 
need further study to better understand their role in the oral cavity.
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Background
Metagenomic is a technique for accessing non-cultivable 
microorganisms DNA from environmental samples [1]. 
Since the development of New Generation Sequencing 
(NGS), this technique has been widely used in a number 
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of scientific studies [2–4]. However, one of the chal-
lenges in metagenomics is to work with a large volume 
of data generated by sequencing and analysis. In bioin-
formatics, sequencing data must be deposited in a pub-
lic database for wide access to be published in a scientific 
article. Therefore, since 2008 several specialized data-
bases have allowed the deposit of raw and analyzed data 
from metagenomics projects [5, 6]. One of the pioneers 
in storage platforms for metagenomic data analysis is the 
public access portal MG-RAST [6].

The MG-RAST portal has deposited projects gener-
ated from different metagenomics approaches: Amplicon 
sequencing, Shotgun metagenomics and Metatranscrip-
tomic. Amplicon sequencing (or metabarcoding) is done 
using the products of the polymerase chain reaction 
(PCR) that amplify the marker genes, such as 16S rRNA, 
23S rRNA and 18S rRNA. Shotgun metagenomics has 
been used for total DNA sequencing from environmen-
tal samples while Metatranscriptomic has been used for 
sequencing all RNA extracted from investigated samples.

The oral microbiota refers to the collection of microor-
ganisms that inhabit the oral cavity in different locations, 
such as the tongue, saliva and teeth [7]. Saliva has been 
shown to be a biological material capable of reflecting the 
dynamics of health conditions and metabolic, immuno-
logical or infectious diseases, reflecting dysbiosis of local 
and systemic origin, as observed in dental caries, peri-
odontal diseases, diabetes, rheumatoid arthritis [8], can-
cer and, more recently, SARS-COV-2 [9, 10]. Obtaining 
salivary samples is simple, easy to perform, non-invasive, 
does not cause discomfort to the patient, is inexpensive, 
and representative of the oral environment. Saliva, like 
other biological fluids, contains DNA, RNA, proteins, 
and metabolic products, which are components of the 
host and its microbiota and their interactions. Despite 
the ease of its collection, knowledge of the behavior of 
the salivary microbiota and other constituents is still a 
challenge. Studies using sophisticated analysis such as the 
NGS, allow the investigation of differences in the bacte-
rial profile in patients with oral diseases, such as caries 
and periodontitis, compared to healthy individuals [11].

The oral human microbiome, considered as the second 
most complex, is composed of more than 700 species 
[12] of which 54% are cultivable, 14% cultivable but uni-
dentifiable, in addition to 32% of microorganisms unable 
to be cultured and identified [13].

Recent studies have proven the existence of an intrin-
sic relationship between the environment conditions and 
microbiome profiles [3, 13, 14]. Oral microbiota dysbio-
sis can be responsible for oral diseases, such as caries, 
plaque and periodontics [15–17]. Host-microbiological 
interactions allow establishing differences in microbiome 
profiles due to physiological and pathological conditions 

[18]. During the last decades, the development of meth-
odologies and analyses for the identification and charac-
terization of microbiomes has made it possible to predict 
diseases associated with changes in the environment and 
their reflexes in the microbiota, particularly those that 
share the same niche [19].

Description of microorganisms that share the same 
niche is called a core [19]. Identifying the core microbi-
ome is essential to define how “healthy” this environment 
is [19]. The literature points out that the 10% prevalent 
microorganisms in the core must be considered domi-
nant. On the other hand, the 65% less predominant 
should be considered rare [20].

Therefore, the relationship of this core with the envi-
ronment, predicting diseases, and changes in environ-
mental behavior from microorganisms not belonging to 
the core need further investigation [19].

Main text
Methods
This study aimed to investigate the core of the oral micro-
biome in saliva samples, regardless of host conditions by 
using the MG-RAST portal database.

Identifiers of metagenomes deposited between 2014 
and 2019, containing as keyword the term "saliva" in the 
Material variable (material = ’SALIVA’) were selected 
for the study. A python in-house script was developed 
to extract, transform and load metadata from selected 
metagenomes to be filtered and analyzed. In order to 
assess the differences between sequencing approaches, 
only metagenomic projects that contained Amplicon 
sequencing and Shotgun metagenomics approaches 
were used in this study. In addition, only projects that 
had more than 3 metagenomes in each of the approaches 
were used due to statistical inferences.

Metagenomes were analyzed according to quality 
(Failed) and taxonomic prediction (Unknown and Pre-
dicted). In addition, metagenomes were analyzed accord-
ing to species richness (Rarefaction) and species diversity 
(Alpha) (Table 1). Taxonomic data were recovered from 
the projects selected for the study of the core of the 
microbiome. Genus level was chosen for the analysis 
because Amplicon sequencing approach is more consist-
ent for this taxonomic level [21].

All data were checked for normality and homosce-
dasticity by Shapiro–Wilk test. Amplicon sequencing 
and Shotgun metagenomics data were compared using 
the Mann–Whitney U test. Associations among Failed, 
Unknown, Predicted, Alpha, and Rarefaction were per-
formed by Spearman’s correlation. Microbiome cores 
were obtained and analyzed by Principal Component 
Analysis (PCA), to evaluate the most representative 



Page 3 of 10Oliveira et al. BMC Oral Health          (2021) 21:351 	

organisms of Amplicon sequencing and Shotgun 
metagenomics.

To allow a comparison between the results obtained 
in this study and the current literature, representative 
data of the oral microbiome from the expanded Human 
Oral Microbiome Database (eHOMD) [22] were used. 
eHOMD data were retrieved using the Taxon Table avail-
able at http://​www.​homd.​org/?​name=​HOMD. After set-
ting the Body Site filter field by checking only the Oral 
option, the text file was downloaded. Only the informa-
tion in the Genus column was considered. Then the 
redundancies were removed and the remaining gen-
era were considered the microbiome core of eHOMD. 
Microbiome cores obtained in the Amplicon sequenc-
ing and Shotgun metagenomics were compared with the 
microbiome core of the eHOMD by Venn diagram.

Statistical analysis was performed using the software 
R v3.6.1 [23]. The libraries dplyr, ggplot2, reshape2, and 
data.table were used in the descriptive analysis and cor-
relation study. The factoextra library was used in the 
PCA. The value of p < 0.05 was used in all tests.

Python and R scripts are available on GitHub (https://​
github.​com/​rodri​gojar​dim/​mgrast-​search).

In order to obtain more information about the selected 
projects, a search was carried out on PUBMED using the 
information of the principal investigator and the descrip-
tion of the project, both available on MG-RAST.

Results
The survey in MG-RAST identified 621 metagenomes. 
Python script recovered 476 metagenomes, distributed in 
12 sequencing projects, of which 332 metagenomes were 
Amplicon sequencing, 142 Shotgun metagenomics, and 
2 Metatranscriptomes. The remaining 145 metagenomes 
had no metadata available and were discarded, as well as 
the recovered metatranscriptomes.

Projects that contained metagenomes from both 
sequencing approaches were selected. In addition, 1 
project that had only 1 metagenome for each approach 
was discarded. In this way, 3 projects with 245 Amplicon 
sequencing metagenomes and 164 Shotgun metagenom-
ics metagenomes were used in this study (Table 2).

Figure 1 shows the results of the descriptive analysis of 
the numerical variables. For the Amplicon sequencing 
datasets there was no sequence with quality problems. 
All variables of both approaches had a non-Gaussian 
distribution, with the exception of the Alpha in Shotgun 
metagenomics. All comparisons of variables, according 
to the sequencing approaches, showed significant differ-
ences (p < 0.05), except for the Predicted (p = 0.4307).

Correlation study of the five variables showed diver-
gences between sequencing approaches (Fig. 2). Most of 
the correlations of the variables in Amplicon sequencing 
datasets were positive, in contrast to what was observed 
in Shotgun metagenomics. In Shotgun datasets, the 
highest correlation was between Rarefaction and Failed 
(r =  − 0.78) and the lowest between Alpha and Unknown 
(r =  − 0.12). In Amplicon datasets, Rarefaction and 
Unknown (r = 0.63) had the highest correlation and the 
lowest was between Alpha and Predicted (r =  − 0.03).

Table 1  Variables recovered in MG-RAST

The variables Failed, Unknown, Predicted, Alpha, and Rarefaction were used 
in the descriptive and correlation analyses. Type represents the sequencing 
approaches (Amplicon sequencing and Shotgun metagenomics). The Taxonomy 
variable contains the genera found in the samples that were used in the 
Principal Components Analysis

Variable Description MG-RAST name

Failed Low quality sequences QC failed

Unknown Unrecognized sequence in public 
databases

QC unknown

Predicted Sequence with inferred taxonomy QC predicted

Alpha Alpha diversity by Shannon index ALPHA

Rarefaction Max value of rarefaction curve RAREFACTION

Type Sequencing approaches Sequence type

Taxonomy Taxonomy at genus level Taxonomy

Table 2  Number of metagenomes by project and sequencing 
approaches

Project Approaches Number of 
metagenomes

mgp3474 Amplicon 95

mgp4843 Amplicon 97

mgp7236 Amplicon 53

mgp3474 Shotgun 8

mgp4843 Shotgun 73

mgp7236 Shotgun 83

(See figure on next page.)
Fig. 1  Descriptive analysis. Boxplot shows the data distribution of Failed, Unknown, Predicted, Alpha and Rarefaction variables, comparing (a) 
Amplicon sequencing and (b) Shotgun metagenomics approaches. Normality analysis was performed using the Shapiro Wilk test and the Mann–
Whitney U test evaluated the differences of the variables between the sequencing approaches. All variables showed a significant difference 
(p < 0.05) between Amplicon sequencing and Shotgun metagenomics, except Predicted. Note that Failed did not present any data in the Amplicon 
sequencing

http://www.homd.org/?name=HOMD
https://github.com/rodrigojardim/mgrast-search
https://github.com/rodrigojardim/mgrast-search


Page 4 of 10Oliveira et al. BMC Oral Health          (2021) 21:351 

(B)

(B)

(B)

(B)

(B)

(A)

(A)

(A)

(A)

(A)
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In the PCA, microbiome cores with different genera 
were found between Amplicon sequencing and Shot-
gun metagenomics. Number of genera obtained by the 
Shotgun dataset was greater than that observed in the 
Amplicon dataset. The top 10 genera showed that only 
Prevotella and Streptococcus are representative in cores 
of both approaches. Propionibacterium, Lactobacillus 
and Prevotella were the most representative genera in 
Amplicon sequencing. On the other hand, Escherichia, 
Chitinophaga, and Acinetobacter (Figs. 3 and 4) were the 
most representative genera in Shotgun metagenomics. 
The genera present in the microbiome core of both Shot-
gun and Amplicon are listed in Additional file 1: S1.

By comparing Shotgun metagenomics, Amplicon 
sequencing and eHOMD datasets a common or shared 
microbiome core containing 20 genera was found 
(Table 3). eHOMD and Shotgun metagenomics datasets 
share a microbiome core composed of 39 genera, and 
eHOMD and Amplicon sequencing share a core with 
only 9 genera. Shotgun and Amplicon datasets share a 
core containing 7 genera (Fig.  5). The complete genera 
names sharing the different microbiome cores is in Addi-
tional file 2: S2.

Search in PUBMED identified 12 articles published 
between 2011 and 2015, with the PMIDs: 25994215, 
25861745, 25020228, 24981669, 24903519, 24846382, 
24646696, 23598790, 22583485, 2254158393, 21149389, 
and 205478343.

Discussion
Bacteria are highly prevalent microorganisms in the 
microbiota and play an important role in oral homeo-
stasis [41]. The abundance of some bacteria may indicate 
dysbiosis of the oral microbiome [25, 35]. Identification 
of the core is inferred from the study of different micro-
biomes and allows to reveal the conditions of the hosts 
according to the presence/absence or predominance of 
some species over others. However, there is a set of bac-
teria that, regardless of the condition of the host, can be 
part of the core of all these microbiomes. Similar to the 
concept of housekeeping genes, which conceptualize the 
genes essential to the life of an organism, a set of bacteria 
from the oral microbiome, regardless of the health status 
of the host, can be inferred as that essential to the sym-
biosis between the microorganisms of the oral cavity.

In this study, 20 genera of bacteria were found in more 
than 450 metagenomes (Fig. 5) deposited in public data-
bases and which, regardless of the health condition of the 
host, are present in the core of the oral microbiome.

In both Amplicon sequencing and Shotgun metagen-
omics cores, genera of bacteria already associated with 
caries and periodontal diseases were found, such as 
Streptococcus, Lactobacillus and Prevotella [10, 42].

The saliva of individuals with high caries experience is 
associated with a high salivary abundance of Streptococ-
cus and countless species of Lactobacillus in addition to 
other bacteria capable of degrading sugars and forming 
extracellular polysaccharides [18]. Samples from healthy 

Fig. 2  Correlation analysis. The Spearman’s test evaluated the associations between Failed, Unknown, Predicted, Alpha, and Rarefaction variables of a 
Amplicon sequencing and b Shotgun metagenomics. All associations were positive in Amplicon sequencing. In the Shotgun metagenomics, Failed 
and Unknown were negatively associated with Predicted, Alpha, and Rarefaction 
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Fig. 3  Principal Components Analysis. Bi-plot showing the representativeness of the genera present in the core of both approaches: a Amplicon 
sequencing and b Shotgun metagenomics. Graphs show the dimensions with greatest variance.
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individuals with low caries experience were associated 
with a greater abundance of the genera Neisseria, Hae-
mophilus, and Fusobacterium, of which most species of 
this genera only ferment sugar slightly [43]. According 
to Tanner et al. [18], the composition of saliva in the oral 
cavity is one of the main risk factors associated with car-
ies. Biofilm dysbiosis results in an increase in acidogenic 
and aciduric species, capable of modulating the core 
components in the biofilm. While in cases of gingivitis, 
the increase in the amount of plaque around the gingival 
margin induces the inflammatory response in the host, 
leading to increased levels of anaerobic bacteria, includ-
ing Gram-negative proteolytic species, especially those 
belonging to the Prevotella, Porphyromonas, Tannerella, 
Fusobacterium and Treponema genera [44].

Identification of Corynebacterium, Escherichia, Pseu-
domonas and Shigella suggests that genera with patho-
genic potential may also be part of the core of the oral 
microbiome obtained by salivary samples. Chitinophaga 
was a recently described taxon and was observed only in 

Shotgun metagenomics. This genus was highly represent-
ative, as well as Escherichia, Acinetobacter, Streptococ-
cus, and Shigella (Fig. 3). The pathogenic potential of the 
genus Chitinophaga has already been reported [45, 46]. 
However, its role in the oral microbiome is still unknown.

Amplicon sequencing metadata analysis showed incon-
sistent behavior (Fig. 2). Only Rarefaction and Unknown 
had correlation greater than 0.50 (r = 0.63). The expected 
behavior was of inverse correlation. The greatest number 
of non-inferred sequences determines the smallest num-
ber of potentially discovered organisms.

On the other hand, Shotgun metagenomics presented 
results as expected, which can be exemplified by inverse 
correlation between Failure and Rarefaction. The larg-
est number of sequences with quality failure determines 
the smallest number of sequences to be inferred, which 
affects the rarefaction curve. This was exactly the behav-
ior observed in Shotgun metagenomics for these vari-
ables (r =  − 0.78).

Fig. 4  Top 10 bacteria in the human saliva microbiome. Contribution of the main genera in dimensions 1 and 2 of the Principal Component 
Analysis (PCA) of the Amplicon sequencing and Shotgun metagenomics approaches. Amplicon sequencing: a dimension 1 and b dimension 2. 
Shotgun metagenomics: c dimension 1 and d dimension 2
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These behaviors in different approaches certainly influ-
enced the comparative study between them (Fig. 1). Fur-
thermore, it was observed in the Amplicon sequencing 
dataset that all projects did not present sequences with 
quality failures (Failed = 0). This result was unexpected. 
Even Amplicon sequencing can have quality failures in 
the sequencing process. However, the Predicted was 
the only one that did not show difference between the 
approaches, showing results similar to those observed by 

[47], who investigated the microbial composition of the 
human intestine.

Results obtained by Shotgun metagenomics allowed 
a more complex characterization of the microbiome, 
with the identification of greater diversity and at the 
taxonomic level of species, when compared to Amplicon 
sequencing which uses regions of the gene with variabil-
ity to identify down to the genus level [48].

According to the literature [47, 49], the PCA identified 
a greater number of representative genera in the Shotgun 
dataset than in the Amplicon dataset (Fig. 3). The differ-
ences between them may explain the findings. In Shot-
gun metagenomics, the DNA of all the organisms in the 
sample is extracted and sequenced directly. On the other 
hand, in Amplicon sequencing, only the DNA fragments 
that were aligned to the primer will be sequenced. The 
choice of primer seems to be a crucial factor to avoid bias 
in taxonomic analysis [50].

The specificity of primers may restrict the set of micro-
organisms found in studies of Amplicon sequencing. 
Thus, the choice of the sequencing method as well as the 
selection of primers are important characteristics to be 
considered in the analysis of microbiome studies [51].

Microbiome studies comparing the two sequencing 
methods for the same samples suggest that their results 
might be comparable. In this study, we observed that 
the data produced by Shotgun metagenomics of salivary 
samples available on the MG-RAST platform can provide 
the identification of a greater number of genera, evidenc-
ing the complexity of the oral microbiome, either by the 
diversity of genera or by the role they may play in the sali-
vary microbiome [50].

These results should be interpreted with caution, since 
only the presence of the genera does not determine the 
condition of the host. Other characteristics such as abun-
dance and interaction between genera have a relevant 
role in the association of the microbiota with the condi-
tion of the host [12].

Metagenomics projects deposited in public databases 
such as eHOMD and MG-RAST do not always provide 
information on the health conditions of the host, DNA/
RNA extraction techniques or other information that 
might infer microbiome-host relationships.

Studies identified using the information of the princi-
pal investigator suggest that they correspond to the data 
obtained in the MG-RAST. However, it is not possible to 
specify whether such articles refer to data investigated in 
this study. According to the MG-RAST pipeline guideline 
(https://​help.​mg-​rast.​org/​user_​manual.​html), it is not 
possible to carry out analyses of eukaryotes or viruses, 
which suggests that the DNA/RNA extraction method 
of the selected projects allows inferring the bacterial 
microbiota.

Table 3  Bacteria genera of human saliva microbiome core and 
their relationship with oral diseases

Gram staining Genus Relation with oral disease

Gram-negative Acinetobacter Oral squamous cell carcinoma [24]

Delftia Geographic tongue [25]

Dialister Sjøgren’s syndrome [26]

Enterobacter Denture stomatitis [27]

Haemophilus Squamous cell carcinoma [28]

Moraxella Peri-implantitis [29]

Neisseria Healthy periodontal conditions [30]

Prevotella Periodontal disease [30]

Pseudomonas Oral cancer [31]

Ralstonia Periodontitis [32]

Sphingomonas Recurrent aphthous ulcer [33]

Gram-positive Actinomyces Dental caries [34]

Bacillus Dental caries [35]

Corynebacterium Biofilm formation [36]

Lactobacillus Dental caries [34]

Micrococcus Lysozyme activity [37]

Mycobacterium Dental infections [38]

Rothia Dental caries [39]

Staphylococcus Acute sialadenitis [40]

Streptococcus Dental caries [34]

Fig. 5  Core of saliva microbiomes. Venn diagram showing 
microbiome cores shared among Amplicon sequencing, Shotgun 
metagenomics, and eHOMD

https://help.mg-rast.org/user_manual.html
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Conclusions
This study demonstrated that in the microbiota repre-
sentative of human saliva, genera of pathogenic bacteria 
observed in oral diseases were identified, but not limited 
to them.

Core of the salivary microbiome and genera diversity 
are dependent on the sequencing approaches. Available 
data suggest that Shotgun metagenomics and Amplicon 
sequencing have similar sensitivities to detect the taxo-
nomic level investigated, although Shotgun metagen-
omics allows a deeper analysis of the microorganism 
diversity.

The choice of metagenomics approaches must consider 
their characteristics and limitations. Shotgun metagen-
omics sequencing can provide a great contribution to the 
knowledge of the composition of the salivary microbiota, 
identification of markers for diagnosis and identification 
of profiles capable of defining health or disease condi-
tions. On the other hand, Amplicon sequencing can be 
an efficient and low-cost choice in studies in which the 
microorganism of interest is already known. It can also 
be used for further verification of results obtained by 
Shotgun metagenomics.
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