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Abstract 

Background:  Neurological injuries such as stroke often differentially impair hand motor and somatosensory func-
tion, as well as the interplay between the two, which leads to limitations in performing activities of daily living. How-
ever, it is challenging to identify which specific aspects of sensorimotor function are impaired based on conventional 
clinical assessments that are often insensitive and subjective. In this work we propose and validate a set of robot-
assisted assessments aiming at disentangling hand proprioceptive from motor impairments, and capturing their inter-
relation (sensorimotor impairments).

Methods:  A battery of five complementary assessment tasks was implemented on a one degree-of-freedom end-
effector robotic platform acting on the index finger metacarpophalangeal joint. Specifically, proprioceptive impair-
ments were assessed using a position matching paradigm. Fast target reaching, range of motion and maximum 
fingertip force tasks characterized motor function deficits. Finally, sensorimotor impairments were assessed using a 
dexterous trajectory following task. Clinical feasibility (duration), reliability (intra-class correlation coefficient ICC, small-
est real difference SRD) and validity (Kruskal-Wallis test, Spearman correlations ρ with Fugl-Meyer Upper Limb Motor 
Assessment, kinesthetic Up-Down Test, Box & Block Test) of robotic tasks were evaluated with 36 sub-acute stroke 
subjects and 31 age-matched neurologically intact controls.

Results:  Eighty-three percent of stroke survivors with varied impairment severity (mild to severe) could complete all 
robotic tasks (duration: <15 min per tested hand). Further, the study demonstrated good to excellent reliability of the 
robotic tasks in the stroke population (ICC>0.7, SRD<30%), as well as discriminant validity, as indicated by significant 
differences (p-value<0.001) between stroke and control subjects. Concurrent validity was shown through moderate to 
strong correlations ( ρ=0.4-0.8) between robotic outcome measures and clinical scales. Finally, robotic tasks target-
ing different deficits (motor, sensory) were not strongly correlated with each other ( ρ ≤0.32, p-value>0.1), thereby 
presenting complementary information about a patient’s impairment profile.

Conclusions:  The proposed robot-assisted assessments provide a clinically feasible, reliable, and valid approach to 
distinctly characterize impairments in hand proprioceptive and motor function, along with the interaction between 
the two. This opens new avenues to help unravel the contributions of unique aspects of sensorimotor function 
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Background
At the level of the hand, somatosensory and motor func-
tion, as well as the interplay between the two, are essen-
tial for performing dexterous and skillful movements 
during activities of daily living (ADLs) [1–4]. For example 
when grasping a small object, proprioception is neces-
sary to sense the current position of the limb [5, 6]. This 
sensory input is then integrated by the central nervous 
system to shape the motor output, a process called sen-
sorimotor integration [7, 8]. Subsequently, the motor sys-
tem is responsible for eliciting and executing the planned 
movement [9].

Neurological injuries such as stroke often disrupt spe-
cific aspects of this process, which consequently prevents 
affected individuals from performing ADLs [10, 11]. 
Often the exact impairments that cause activity limita-
tions are unclear, although their detection would be a 
prerequisite to designing appropriate rehabilitation strat-
egies tailored to each patient’s impairment profile [12]. 
Most commonly reported are motor impairments, with 
80% of stroke survivors experiencing paresis [13–16]. 
However, some activity limitations that seem to originate 
from a motor function impairment may be caused by dis-
turbed proprioceptive feedback [7]. Somatosensory func-
tion is in fact frequently affected and has been shown to 
be associated with poor functional recovery and higher 
activity limitations, although the reporting prevalence 
varies between 23 and 67% [17–22].

The difficulty in accurately identifying each patients’ 
impairment profile originates, among others, from the 
lack of sensitive assessment methods [23, 24]. Most 
widely used clinical assessments are observer-based 
and subjective, not optimal for providing reproducible 
stimuli, and prone to floor/ceiling effects [24, 25]. Fur-
ther, many clinical methods focus on evaluating activity 
limitations (e.g. Action Research Arm Test, Box & Block 
Test [26, 27]), however there is a lack of tools that could 
help in understanding the underlying cause of decreased 
performance. Existing clinical assessments provide only 
a global measure of impairments (e.g. Fugl-Meyer Upper 
Limb Assessment [23]) and multiple assessments are 
needed to holistically evaluate sensorimotor impairment 
profiles, hence they are rarely performed at regular time 
intervals throughout rehabilitation [28]. As clinical meth-
ods typically do not assess somatosensory, motor and 
sensorimotor impairments through a single, standardized 

assessment setup, it is difficult to systematically compare 
those impairment modalities and understand how they 
change over time.

Technology-driven solutions provide a promising com-
plement to conventional clinical assessments [1, 12, 29]. 
Robot-assisted methods are objective (not relying on 
observer judgement), accurate (e.g. able to measure exact 
body position/force applied), as well as capable of deliv-
ering precise, reproducible stimuli (e.g. to assess sensory 
function or spasticity [30, 31]). Further, it becomes pos-
sible to evaluate different impairments with one single 
device through multiple robot-assisted assessment tasks, 
which results in a time-efficient and more comprehen-
sive overview of impairments. This also allows to com-
pare different impairment modalities (e.g. motor and 
sensory) with each other in a standardized way, poten-
tially providing new insights into upper limb impairment 
profiles. Even though they are promising, the existing 
robotic approaches aiming at concurrent sensory and 
motor assessment of the hand remain in their infancy. 
The methods proposed so far focus on proximal joints of 
the upper limb [32, 33], consist of tasks that target only a 
specific impairment modality (e.g. proprioception, with-
out the possibility to concurrently assess motor impair-
ment) [34–37], or fail to provide a detailed evaluation of 
clinimetric properties of their outcome measures (reli-
ability, measurement error, validity) [12, 38]. Reporting of 
test-retest reliability and measurement error is essential 
to understand the sensitivity of an assessment metric to 
capture different impairments and detect changes over 
time [38], while the study of concurrent validity is impor-
tant to relate a new technological approach to the com-
monly accepted assessment methods [39]. The current 
lack of standardized evaluations of reliability and validity 
in the target population makes new assessment technolo-
gies less likely to be clinically accepted and applied out-
side of research projects [40].

The objective of this work was to propose and evaluate 
a new set of assessments of hand proprioceptive, motor 
and sensorimotor impairments, implemented on a sin-
gle, previously described robotic platform (ETH  MIKE: 
Motor Impairment and Kinesthetic Evaluation) [41, 42]. 
This one degree-of-freedom end-effector device can pro-
vide well-controlled movement stimuli to the index fin-
ger metacarpophalangeal (MCP) joint and sensitively 
measure its kinematic and kinetic responses. The index 

in post-stroke recovery, as well as to contribute to future developments towards personalized, assessment-driven 
therapies.
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finger was selected due to its relevance in many ADLs 
(grasping, precision grip [43]). Furthermore, the ability 
to actively extend the MCP joint is often presented as an 
early predictor of functional recovery, as it is related to 
the degree of sparing of cortico-motoneuronal pathways 
after stroke [44, 45]. From a practical perspective, focus-
ing on a single joint allows to simplify the technology, 
which increases clinical usability. In this paper we pro-
pose a battery of five behavioural tasks and their outcome 
measures, three of which address motor impairments, 
one targets proprioception and one measures combined 
sensorimotor deficits. We investigate the reliability and 
validity of these robot-assisted assessments in a group 
of 36 participants with stroke and in an age-matched 
group of 31 neurologically intact controls. We hypoth-
esized that the newly proposed robot-assisted assessment 
metrics (i) are reliable due to the objective nature of the 
tasks, their repeatability and the standardized protocol; 
(ii) allow to distinguish stroke patients from control sub-
jects and identify different impairment profiles; (iii) can 
separately quantify proprioceptive, motor and sensori-
motor impairments and correlate with corresponding 
clinical scales.

This work aspires to contribute to the field of neurore-
habilitation by providing novel objective assessments, 
which aim at disentangling different aspects of sensori-
motor impairments in order to better understand the 
cause of observed activity limitations. In the long term 
the proposed robot-assisted assessments intend to help 
in designing more effective therapies, as well as in track-
ing and predicting recovery of patients after neurological 
injuries.

Methods
Subjects
Thirty-six participants with stroke were recruited for this 
study among the patients receiving an inpatient neuro-
logical rehabilitation at the Kliniken Schmieder Allens-
bach, Germany. Inclusion criteria were: above 18 years 
old, diagnosis of stroke (ischemic or hemorrhagic), and 
the ability to passively move the subject’s MCP joint by 
at least 20◦ . Exclusion criteria were: inability to under-
stand instructions and pain when moving the MCP joint. 
Moreover, we designed the study to include a maximum 
of 40% of subjects with intact proprioception as meas-
ured by a conventional clinical scale. This design choice 
was made to allow for validating the newly proposed 
measure of proprioception. In addition, thirty-one age-
matched neurologically intact control subjects were 
recruited. The inclusion criteria for this group were: 
right-handed and above 50 years old. The exclusion cri-
teria was any history of neurological, orthopaedic or 
rheumatologic disease affecting wrist or hand function. 

In both groups, handedness was assessed using the Edin-
burgh Handedness Inventory, where stroke subjects were 
asked to evaluate their pre-stroke handedness retrospec-
tively. All subjects gave written informed consent before 
participating in the experiment. The study was approved 
by the ETH Ethics Committee EK 2019-N-108 and the 
Ethics Commission of Baden-Württemberg F-2016-126 
and retrospectively registered as a clinical trial1.

Robot‑assisted assessments
Apparatus
The ETH MIKE (Motor Impairment and Kinesthetic 
Evaluation)2 is a one degree of freedom end-effector 
robot, which can provide well-controlled stimuli to the 
index finger and sensitively measure subjects’ kinematic 
and kinetic responses [41, 42]. The end-effector has its 
center of rotation aligned with the MCP joint of the index 
finger. Subjects are seated in front of the device, the hand 
is placed grasping an easily exchangeable, 3D printed 
handle, and the index finger is stretched and attached to 
the end-effector via Velcro straps (Fig.  1a). For a natu-
ral and comfortable positioning, the hand of the subject 
is placed in the device with a 30◦ angle from the middle 
of the end-effector’s workspace (Fig. 1b, c). The device is 
suitable to test both hands, one hand at a time. A tablet 
computer with a touch screen is placed directly above 
the hand, displaying a Graphical User Interface (GUI) 
programmed in Unity (Unity Technologies, California, 
USA), that is used as a visual display during the assess-
ment tasks. To minimize cognitive load, the GUI displays 
a simple gauge with colored indicators for all assessment 
tasks (Fig. 1c).

The hardware of the robot consists of one actuator (a 
DC motor), as well as an incremental encoder, a tachom-
eter and a force sensor. The device is controlled by a real-
time embedded board (myRIO, National Instruments, 
Texas, USA) and programmed in LabVIEW (National 
Instruments, Texas, USA). The end-effector position, 
velocity and interaction force signals are recorded at a 
sampling frequency of 1 kHz. Velocity and force signals 
are smoothed in real-time using a 1st order Butterworth 
low-pass filter with 20 Hz cutoff frequency. Post-process-
ing is implemented in MATLAB (Mathworks Inc., Mas-
sachusetts, USA).

Robotic assessment battery
The battery of robot-assisted assessments consists of 
tasks targeting proprioceptive and motor impairments, 

1  https://​www.​drks.​de/​drks_​web/​navig​ate.​do?​navig​ation​Id=​trial.​HTML&​
TRIAL_​ID=​DRKS0​00186​81
2  ETH MIKE video: https://​youtu.​be/​jmWdw​J00onU

https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00018681
https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00018681
https://youtu.be/jmWdwJ00onU
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as well as the interplay between the two (sensorimo-
tor impairments). Specifically, there is one task for pro-
prioception assessment (gauge position matching), three 
tasks focused on motor impairments (range of motion, 
maximum force generation and fast target reaching). 
Additionally, one task is designed to evaluate the abil-
ity to integrate proprioceptive information to execute a 
complex movement, i.e. sensorimotor impairments (tra-
jectory following). All of these tasks are performed on the 
robotic platform ETH MIKE. A motivation from related 
literature, the task procedures, and sensor-based metrics 
extracted from each task are described below.

Gauge position matching task—assessment of pro-
prioceptive impairments: the objective of this assess-
ment is to evaluate the MCP joint proprioception, while 
minimizing possible confounds coming from motor 
impairments. The task is based on previous studies that 
optimized the gauge position matching task procedure 
[46, 47]. Compared to a 2 alternative forced choice para-
digm often used to evaluate somatosensory function [36, 
48], the gauge position matching task is faster and does 
not rely on subjects remembering and comparing posi-
tions. The task procedure is the following: after the tested 
finger has been passively moved to a target angle by the 
robot, the user is prompted to indicate the perceived 
finger position on the tablet screen, located directly 
above the hand, by moving a virtual gauge indicator to 
a position aligned with the tip of the tested index finger 
(Fig.  2a). Their view of the hand is constrained by the 
location of the tablet, hence subjects can not compen-
sate by visual feedback to complete the task. Every trial 
starts with the robot moving the finger from the neutral 

position ( 0◦ angle at the MCP joint) to one of 21 angles 
(integer values [ 10− 30

◦ ] in flexion from the neutral 
MCP joint position) within 3 seconds. In one assessment, 
each angle is presented once, in a random order. Previous 
work has shown that sampling each angle once is suffi-
cient to reliably assess proprioception, while minimizing 
the duration of the test [47]. There is no time constraint 
for the subjects to indicate the perceived position and 
no feedback is given about the subject’s performance. To 
ensure that the task assesses one hand only and does not 
rely on subject’s ability to indicate the perceived posi-
tion on the screen with the other hand, the experimenter 
helps the subject to point to the perceived finger posi-
tion on the screen. For all stroke and control subjects, 
the experimenter first asks if the gauge indicator on the 
tablet screen is below or above the reference position 
and then moves the gauge indicator slowly in that direc-
tion, by dragging it on the touch screen, until the subject 
says “stop”. Then the experimenter asks for confirma-
tion and allows for final adjustments. For each trial, the 
absolute error is calculated by taking the absolute value 
of the difference between the reported and the presented 
angle. The primary outcome measure is the mean value 
of this absolute error across all 21 trials, denoted Position 
Matching Absolute Error. The higher the absolute error, 
the worse the task performance.

Fast target reaching task—assessment of motor 
impairments (1): the objective of this task is to quantify 
subjects’ ability to produce fast ballistic target reaching 
movements. Target reaching has been used before as an 
assessment method of motor function deficits [49–52]. 
However, in contrast to target reaching tasks typically 

(b)(a) (c)
Fig. 1  Schematic of the robotic platform ETH MIKE. a Subjects are seated in front of the ETH MIKE robot, with their elbow supported on an arm rest. 
A wrist splint is worn to avoid any compensatory movements at the wrist. The device is inclined by 20◦ to minimize parallax errors. b The hand is 
wrapped around a handle, which is set up at the wrist neutral position ( 0◦ wrist flexion, 30◦ from the middle of the device’s workspace), ensuring a 
comfortable resting position for the wrist. The index finger is attached to an adjustable finger module by Velcro straps. The centre of rotation of the 
end-effector is aligned with the MCP joint. c A tablet computer is placed above the hand, removing visual cues from the tested hand and providing 
an interactive graphical user interface displaying a simple gauge with a red indicator
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implemented in literature [49–52], in the newly pro-
posed task the velocity is of interest and the accuracy of 
the movement is not considered. We designed the task 
in a way to minimize the involvement of somatosensory 
feedback in the movement generation, thereby rely-
ing on feedforward control. Subjects are instructed to 
move as fast as possible, in a single movement, from a 
starting position to a target, each displayed on the tab-
let computer screen as a red and green gauge indicator 
respectively. We therefore expect a ballistic movement, 
with minimal end-point correction since no visual feed-
back on the current position is provided and the finger 
is hidden under the tablet. The movement is performed 
either in flexion or in extension direction, in a random 
order. First, the tested finger is passively moved to a 
starting position by the robot ( −10

◦ from neutral joint 
angle as starting position for flexion and 30◦ for exten-
sion trials). Then, after a 3-second countdown, subjects 
are instructed to move as fast as possible to the target 
(displayed at 30◦ for flexion and at −10

◦ for extension tri-
als). Four seconds are given for all subjects to move to the 
target, which was chosen to standardize the protocol and 
ensure that subjects with a slower reaction have enough 
time to generate a movement. Subjects are instructed 
to remain at their position once they believe they have 
reached the target. One assessment consists of 20 trials 
(10 times each direction). The primary outcome measure 
is the mean of the three maximum velocity values (in ◦/s ) 
over all 10 trials per movement direction (denoted Maxi-
mum Velocity Flexion/Extension). The higher the velocity, 
the better the task performance. Representative velocity 
profiles are shown in Fig. 3a.

Range of motion task—assessment of motor impair-
ments (2): the purpose of this task is to measure the 
range of motion of the index finger in flexion and exten-
sion direction. The range of motion is regularly evaluated 
in clinical settings to describe hand impairments [28, 53, 
54]. Stroke subjects often show limited range of motion 
and the ability to extend the finger early post-stroke has 
even been shown as a predictor of recovery [45]. In this 
task subjects are instructed to move the index finger 
(which is secured on the ETH MIKE finger interface) 
as far as possible first in flexion and then in extension 
direction. This is repeated three times. Subjects can see 
the visual feedback of their finger displayed on the tab-
let computer. Afterwards, the same task is repeated in a 
passive manner, meaning that the experimenter moves 
the subject’s finger in flexion (until the end of the range 
of motion of the robot or until the subject says “stop” due 
to discomfort) and then in extension (until the experi-
menter detects tension in subject’s finger by feeling 
some resistance against the movement or until the sub-
ject says “stop”), while the subject is instructed to relax 

his/her finger. Here, the tablet computer is removed so 
as to not obstruct the experimenter that induced the 
motion. For each repetition, the difference between the 
maximum position in flexion and the maximum posi-
tion in extension (measured in degrees) is calculated 
(denoted as Active/Passive Range of Motion – AROM/
PROM). The primary outcome measure is the mean value 
across three repetitions for both AROM and PROM. The 
higher the ROM, the better the task performance. Repre-
sentative position profiles are shown in Additional file 1: 
Fig. SM1a.

Maximum fingertip force generation task—assess-
ment of motor impairments (3): the objective of this 
task is to measure maximum fingertip force. Assessments 
of grip strength are often performed in clinical settings 
in patients after stroke [55, 56], as weakness is frequently 
present after stroke and is linked to the damage to the 
corticospinal tract [13]. In this task procedure the end-
effector is first blocked by a fixation mechanism, located 
at a 15◦ flexion angle at the MCP joint (with respect to 
a neutral position where all phalanges are aligned). The 
subjects are instructed to generate maximal force with 
their index finger for an indicated period of time (3  s), 
preceded by a 3 s preparation phase. No verbal or visual 
feedback related to the magnitude of the generated force 
is provided to the participants during the task. Three rep-
etitions are performed first in flexion and then in exten-
sion direction. The primary task metric is the mean of the 
maximum force over three trials for both the flexion and 
extension direction, measured in Newtons by the force 
sensor located at the end-effector (denoted Maximum 
Force Flexion/Extension). The higher the force, the better 
the task performance. Representative force profiles are 
shown in Additional file 1: Fig. SM2a.

Trajectory following task—assessment of senso-
rimotor impairments: the aim of this task is to assess 
finger dexterity, which relies both on proprioceptive 
function and motor execution. Trajectory following has 
been used previously to evaluate fine motor control [57–
59]. First, the index finger is passively moved to a starting 
position by the robot ( 15◦ flexion angle at the MCP joint). 
After a three second countdown, a trajectory is displayed 
on the tablet screen in the form of a moving gauge indi-
cator, which the subjects are instructed to follow as accu-
rately as possible. The vision of the actual finger position 
is not displayed on the screen, to ensure that subjects 
rely on proprioception to guide the motion. Two trajec-
tory scenarios are displayed (slow and fast) in order to 
diversify the task. Each trajectory consists of three super-
imposed sine waves, each of different frequency and the 
same amplitude ( 15◦ ). The slow trajectory consists of the 
following sine wave frequencies: 0.03  Hz, 0.07  Hz and 
0.13 Hz, while the fast trajectory is composed of 0.10 Hz, 
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0.20  Hz and 0.40  Hz. One trial lasts 30 seconds and in 
total there are six trials in one assessment (three times 
each trajectory, first 3 times slow, then 3 times fast). For 
each trial, the tracking error between the trajectory dis-
played on the screen and the performed motion is cal-
culated (Root Mean Squared Error RMSE [57]). The 
primary outcome measure is the mean across the three 
trials for the slow and the fast trajectory (denoted Track-
ing Error RMSE Slow/Fast). The higher the tracking error, 
the worse the task performance. Representative trajecto-
ries are shown in Fig. 4a.

Clinical assessments
The following clinical assessments were performed by a 
trained physiotherapist as a part of the study protocol. 
The kinesthetic Up-Down Test (kUDT) as part of the 
Nottingham Sensory Assessment (NSA) was chosen as a 
measure of proprioception (performed with the forearm 
fully pronated and the wrist in a neutral position) [60]. In 
order to keep the scoring system of the kUDT from the 
NSA consistent with the commonly used Erasmus modi-
fied Nottingham Sensory Assessment [61], scores 1 and 2 
were grouped together as score 1 and the best score was 
assigned the value 2. To clinically evaluate motor impair-
ments, the Fugl-Meyer Upper Limb Motor Assessment 
(FMA) was used [23]. The Box & Block Test of Manual 
Dexterity (BBT) was selected as an assessment of com-
bined sensorimotor function and activity limitations 
[27] and it was completed for both hands. To quantify 
cognitive function, the Montreal Cognitive Assessment 
(MoCA) was performed [62]. Finally, the Modified Ash-
worth Scale (MAS), performed at the MCP joint of the 
index finger, was used as a measure of spasticity [63].

Experimental protocol
Two testing sessions on two separate days were con-
ducted by the same experimenter to evaluate test-retest 
reliability of robotic task metrics in stroke subjects. Clini-
cal assessments were performed in a separate session. For 
the control subjects, the protocol consisted of only one 
experimental session with the robot.

Subjects were seated in front of the robotic device and 
the height of the chair and the armrests was adjusted to a 
comfortable seating position close to the robot (Fig. 1a). 
A wrist splint was used to ensure that the MCP joint was 
tested in isolation without any compensatory movements 
from the wrist. The elbow of the subjects was placed on 
the cushioned armrest and subjects were instructed to 
keep it close to their body and to avoid compensatory 
movements throughout the trial. The hand was strapped 
to the handle after ensuring optimal alignment of the 
forearm and the wrist joint with the orientation of the 
handle (neutral position of the wrist, 30◦ from the middle 

of the device workspace—Fig. 1b). The index finger was 
attached to the finger module. The robotic assessments 
were always started with the range of motion and maxi-
mum fingertip force generation tasks, as they were the 
least complex and helped subjects to get familiar with 
the device. The order of the other three tasks, as well as 
the starting hand were randomized. Afterwards, sub-
jects performed the assessments in the same order with 
the other hand. There was a familiarization round before 
each task. It consisted of a shortened version of the task, 
with only half the number of trials, and where subjects 
were instructed and encouraged to ask any questions 
they may have related to the task.

Data analysis
Descriptive statistics
The metrics of the robot-assisted assessments are 
reported as mean and standard deviation per hand per 
studied group. In order to analyze potential confounding 
effects on task outcome measures emerging from sub-
ject demographics and task protocol, linear mixed effect 
models (LME) were built based on the control subjects 
dataset, following the steps defined in Kanzler et al. [39]. 
The parameters suspected to have a confounding effect 
on robotic metrics and hence included in the model 
were age, gender, tested hand (left/right) and the task 
specific effect. The latter was considered since some of 
the robot-assisted tasks were performed multiple times 
under different conditions, for example in two directions 
(e.g. maximum force in flexion/extension) or at different 
speeds (e.g. slow/fast trajectory following). The statistical 
significance of these effects was tested using the t-statis-
tic (significance level of 0.05). In addition, the ability of 
the models to represent the experimental data (model 
quality) was analyzed according to the criteria C1 and C2, 
which characterize the mean absolute error of the model 
and its variability [39, 64] (moderate quality: C1 ≤ 15% 
and C2 ≤ 25%; good quality: C1 ≤ 10% and C2 ≤ 20%).

Test‑retest reliability
For a comprehensive evaluation of the reliability of the 
newly proposed robot-assisted assessments, different 
statistical measures were considered. First, the intraclass 
correlation coefficient ICC(A,k) was used to calculate 
absolute agreement between test and retest based on 
a two-way analysis of variance, taking into account all 
individual trials on test and retest [39, 65, 66]. This sta-
tistical method characterizes how well it is possible to 
discriminate between subjects across testing days (tak-
ing into consideration inter-subject and intra-subject 
variability). Acceptable ICC values are above 0.7 [39, 67]. 
Secondly, smallest real difference (SRD) and SRD% (% 
with respect to the range across all trials of a task) were 
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calculated. These measures describe how well it is pos-
sible to distinguish between measurement noise and 
an actual physiological change [68]. Previous work sug-
gested a cut-off of 30% for the SRD% to identify metrics 
without strong measurement error [39]. Further, to iden-
tify potential learning effects, the presence of possible 
systematic shifts between test and retest was analyzed. 
This was expressed as a mean difference between test and 
retest normalized with respect to the range of observed 
values [39]. Previous work suggested to consider a range 
of systematic shifts of [-6.35 and 6.35] to identify metrics 
without strong learning effects [39]. Bland-Altman plots 
were used as an alternative check for systematic bias [69]. 
Finally, as a general check of similarity between test and 
retest, Spearman rank-order correlations between test 
and retest were calculated. It is desired for the test and 
retest metrics for each task to be strongly correlated, 
since that shows that the task outcomes are comparable 
between test and retest.

Discriminant validity
In order to define if the robotic metrics are capable of 
capturing abnormal task performance and thus impair-
ments, the task metrics were compared between the 
stroke and the control group. This comparison was per-
formed using three statistical methods. Firstly, control 
subjects were compared to the affected and the less-
affected side of stroke subjects using the Kruskal-Wallis 
test (Bonferroni corrected). The same group compari-
son was also performed using the Area Under the Curve 
(AUC) of the Receiver Operating Characteristic [39]. 
This method defines true positive/true negative rates of 
classifying subjects into two groups (stroke/control). A 
metric can well discriminate between the two groups if 
AUC is above 0.7 [39]. Finally, z-score normalization was 
implemented to find the percentage of stroke subjects 
performing worse than the 95th percentile of control 
subjects, thereby allowing to identify individuals that are 
impaired according to a specific outcome measure. To 
avoid comparing, for example, maximum fingertip force 
generated by an older female to a control population that 
is on average younger and gender-mixed, potentially con-
founding effects were removed based on the LME analy-
sis proposed by Kanzler et al. [39]. Specifically, the effect 
of age, gender, tested hand, trial number, as well as the 
task-specific effect (e.g. the effect of movement direction 
for the fast target reaching task) on the outcome meas-
ures of the ETH MIKE were removed. The removal of 
these potentially confounding effects is essential to avoid 
bias when comparing data from patients with a control 
population. This procedure was only implemented for the 
z-score normalized robotic metrics within the motor cat-
egory, as only these metrics were found to be significantly 

affected by the majority of the identified confounds 
(Additional file  1: Table  SM1). The less and the more 
affected sides of stroke subjects were compared using 
AUC (group level comparison) and a paired-sample t-test 
(per-subject comparison between the body sides).

Concurrent validity
To determine if the newly proposed tasks are able to cap-
ture impairments they were designed to assess, each task 
outcome measure was correlated with the clinical score 
that was expected to best reflect the underlying physi-
ological construct. Namely, Spearman correlation was 
used to find the relationship between each task metric 
and the three clinical assessments: BBT, FMA and kUDT. 
The correlation strength was defined as: ρ < 0.1 negli-
gible, 0.1 < ρ < 0.39 weak, 0.4 < ρ < 0.69 moderate, 
ρ > 0.7 strong [70]. Further, the classified impairments 
based on the ETH MIKE metrics were compared to the 
impairments detected by the corresponding clinical 
scores. This was implemented on per-subject basis, lead-
ing to an overall agreement between the subjects classi-
fied as impaired according to the robotic and the clinical 
measures. The clinical scores used for classifications were 
FMA and kUDT, as both of these measures have clearly 
defined impairment classification thresholds (impaired 
defined as FM < 60 [71] and kUDT < 2 [61]).

Independence of task outcome measures
Partial Spearman correlation was calculated between 
the outcome measures of tasks that aim to characterize 
different impairments (proprioceptive, motor, sensori-
motor), in order to determine if the proposed battery of 
tasks presents complementary information. If a task con-
sisted of two metrics (e.g. Maximum Velocity Flexion and 
Extension in the fast target reaching task), only the one 
with the highest reliability and validity was chosen for 
this analysis. This is motivated by the fact that, by design, 
the two metrics within the same task are likely correlated, 
while the objective of this analysis was to find possible 
relationships between different domains (e.g. fast target 
reaching and gauge position matching).

Results
Out of the recruited 36 subjects with stroke, 34 success-
fully completed the two sessions of robot-assisted assess-
ments. Two stroke subjects dropped out of the study (ID 
10 and 20—Additional file  1: Table  SM4), because they 
both felt fatigued/unwell during the first robotic assess-
ment session and decided not to participate in the second 
session. Additionally, three participants (ID 4, 23 and 31) 
had missing data in one of the robotic assessments. The 
reason was either data saving malfunction or because 
they had another urgent appointment in the clinic and the 
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full robotic assessment protocol could not be completed. 
Finally, one subject (ID 9) had severe problems with task 
comprehension and was not able to correctly follow the 
robotic task instructions. Altogether 30 stroke subjects 
were included in the data analysis, aged 64.50± 14.02 
years, 19 males, 4 left-handed before stroke, 12 with left 
hemispheric stroke, 21 with ischemic and 9 with hem-
orrhagic stroke. All except one (chronic, 98 weeks post-
stroke) were sub-acute ( 8.17± 4.56 weeks post-stroke), 
as summarized in Table 1. The number of days between 
test and retest was 1.97± 0.18 . The group of stroke sub-
jects that completed the protocol had a diverse range of 
impairments, from severe (FMA=4 and kUDT=0) to 
mild (FMA=65, kUDT=3). The average result of FMA 
was 34.43± 22.22 and of kUDT 1.20± 0.83 . The time 
to perform the robotic assessment protocol (excluding 
instructions and setup) was 13.74 ± 4.55 min on test and 
12.34 ± 2.98 min on retest on the affected side (details in 
Tables 3 & SM3). It took a comparable amount of time to 
complete the tasks on the less affected side ( 14.09± 3.32 
min test and 13.03± 2.30 min retest). Thirty-one age-
matched control subjects were recruited in this study. 
None were excluded from the statistical analysis. Their 
average age was 66.87± 7.92 years, 20 were male and all 
were right-handed (Table 1).

Descriptive statistics results (mean and standard devia-
tion) of each task metric for the affected side are reported 
in Table 2, for the less affected side in Additional file 1: 
Table  SM2 and for control subjects in Additional file  1: 
Table  SM1. The outcomes of the LME are shown in 
Additional file 1: Table SM1. Overall, model quality was 
moderate to good for all tasks except for the position 

matching task. The maximum fingertip force generation 
task was significantly affected by age (t=−2.83 , DF=366, 
p-value=0.0049). The outcome measure of that task was 
also affected by gender (t=−5.00 , p-value<0.001), which 
was also a confounding effect for the fast target reaching 
task (t=−3.73 , p-value<0.001). The effect of the tested 
hand was significant for all three tasks within the motor 
impairment category. All metrics were significantly influ-
enced by the task-specific effect. Most interestingly, the 
position matching error was influenced by the presented 
angle magnitude. The larger the angle to which the sub-
ject’s finger was passively moved, the larger was the 
matching error.

Test‑retest reliability
All task metrics had sufficient test-retest reliability 
according to the defined criteria for the affected side of 
stroke subjects (Table  2). Specifically, ICC was good to 
excellent (ranging from 0.86 for Tracking Error RMSE 
Fast to 0.98 for Maximum Velocity Extension), the meas-
urement error was small (SRD%<30% for all tasks) and 
the systematic shift was within the defined range (the 
smallest value of −3.63 for Position Matching Abso-
lute Error was still above the threshold of −6.35 ). Simi-
larly, no systematic bias was detected in Bland-Altman 
plots, as the datapoints were equally distributed above 
and below the mean (Additional file  1: Fig.  SM3–SM7). 
Test and retest were strongly correlated for all tasks 
on the affected side ( ρ ranging from 0.74 to 0.97). On 
the less-affected side, ICC and SRD% were within 
required thresholds for all task metrics except for Maxi-
mum Velocity Flexion (ICC=0.59, SRD%=40.40%), as 

Table 1  Participants information

These results only consider subjects that were included in the data analysis (i.e. does not consider subjects that were excluded due to missing data, drop-outs etc.). 
Acronyms—LHS: Left Hemispheric Stroke; RHS: Right Hemispheric Stroke; FMA: Fugl-Meyer Upper Limb Motor Assessment; kUDT: kinesthetic Up-Down Test; BBT: 
Box& Block Test; MoCA: Montral Cognitive Assessment; MAS: Modified Ashworth Scale

Stroke subjects Control subjects

N 30 31

Age (mean ± SD) 64.50 ± 14.02 66.87 ± 7.92

Male  Female 19  11 20  11

Handedness 4 Left Right only

LHS  RHS 12  18

Ischemic  Hemorrhagic 21  9

Weeks since stroke 8.17 ± 4.56 (range [2.57, 20.86])

FMA [0-66] 34.43 ± 22.22 ([4, 65])

kUDT [0-2] 1.20 ± 0.83 ([0, 2])

BBT affected side [#/min] 20.90 ± 20.16 ([0, 74])

BBT less affected side [#/min] 60.30 ± 11.27 ([44, 80])

MoCA [0-30] 22.00 ± 5.84 ([6, 30])

MAS [0-6] 0.10 ± 0.55 ([0, 3])
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summarized in Additional file 1: Table SM3. Further, the 
systematic shift was equal to 7.27 for Maximum Force 
Extension and −7.24 for Tracking Error RMSE Fast. It 
was also possible to observe a negative shift in the mean 
difference between test and retest scores in the Bland-
Altman plots for these two tasks (Additional file  1: 
Figs. SM6, SM7). For all other tasks, systematic shift was 
within ±6.35 . There was a moderate to strong significant 
correlation between test and retest for all tasks on the 

less affected side ( ρ ranging from 0.44 to 0.78). Graphical 
representations of the test-retest reliability of one exam-
ple task per category (proprioception, motor and sensori-
motor) for both affected and less affected sides are shown 
in Figs. 2c–4c.

Discriminant and concurrent validity
Summary results of discriminant and concurrent valid-
ity for each task metric are shown in Tables  3 (for the 

(c) (d)

(a) (b)

Fig. 2  Gauge position matching task for the assessment of proprioceptive impairments. a The index finger is first passively moved to a target angle, 
and the subject then needs to indicate the perceived finger position on the tablet screen (no visual feedback is provided). The outcome measure is 
the error between indicated angle and target angle. Note that on the Fig. the screen is shown as semi-transparent for illustration purpose. During 
the assessment, patients cannot see the assessed finger, which is located underneath the tablet. b There is a high agreement (70%) in impairment 
classification between the gauge position matching task metric and the clinical measure of proprioception (kUDT). c The task metric has good 
(ICC> 0.75 ) reliability on the less affected and excellent reliability (ICC> 0.90 ) on the affected side. d The box plot indicates a trend of increasing 
position matching absolute error with increasing proprioceptive impairment (according to kUDT). There is a significant difference between 
control (N=62) and all stroke impaired sub-groups (kUDT=2: N=14, kUDT=1: N=8, kUDT=0: N=8). Acronyms - LA: less affected, A: affected, kUDT: 
kinesthetic Up-Down Test, ICC: intraclass correlation coefficient, SRD: smallest real difference. Statistical significance: p-value<0.05: *, p-value<0.01: **, 
p-value<0.001: ***
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more affected side) & SM3 (for the less affected side). A 
graphical representation of group differences (with sever-
ity subgroups within the affected side of stroke subjects) 
are shown for one outcome measure per task in Figs. 2d–
4d & SM1d-2d. Details on the classification agreement 
are provided in the form of a matrix (Figs.  2b–4b & 
SM1b-2b).

Position Matching Absolute Error allowed to discrimi-
nate between controls and the affected side of stroke 

subjects (p-value<0.001; AUC=0.95), as well as between 
controls and the less-affected side of stroke subjects 
(p-value<0.001; AUC=0.82). There was no significant dif-
ference between the affected and the less affected side of 
stroke subjects (t-stat=1.84, p-value=0.077; AUC=0.61). 
66.67% of subjects were classified as impaired on their 
affected and 56.67% on their less affected side. Posi-
tion Matching Absolute Error correlated moderately 
with the clinical measure of proprioception ( ρ=−0.48 , 

(a)

(c)

(b)

(d)
Fig. 3  Fast target reaching (extension) task for the assessment of motor impairments. a Subject are instructed to move their index finger as fast 
as possible from a starting position (30◦ flexion from the MCP joint neutral position) to a target position (10◦ extension from the MCP joint neutral 
position) in a single, ballistic movement. The outcome measure is the maximum velocity reached during that movement. b The task has good 
reliability (ICC> 0.70 ) on the less affected and excellent reliability (ICC > 0.90 ) on the more affected side. c There is a high agreement (80%) in 
impairment classification between the task metric and the clinical measure of upper-limb motor impairments FMA. d The box plot indicates a 
tendency of decreasing robotic task performance with increasing stroke severity (mild: FMA>= 54 , moderate: 54 >FMA>= 35 , severe: FMA< 35 ). 
There is a significant difference between control (N=62) and all stroke sub-groups—severe (N=14), moderate (N=8) and mild (N=8). Acronyms 
- D: dominant, LA: less affected, A: affected, FMA: Fugl-Meyer Upper Limb Motor Assessment,  ICC: intraclass correlation coefficient, SRD: smallest real 
difference. Statistical significance: p-value<0.05: *, p-value<0.01: **, p-value<0.001: ***
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p-value=0.007). Further, there was a weak significant 
correlation between the robotic task score and the BBT 
( ρ=−0.37 , p-value=0.046) and no significant correlation 
with the FMA. The agreement between impairment clas-
sification by robotic and clinical measure was 70.00%.

There was a significant difference between control 
group and the affected side of stroke subjects for all 
task outcome measures within the motor impairments 

assessment category, although Passive Range of Motion 
AUC was just below the threshold (p-value=0.007; 
AUC=0.69). Further, on a group-level stroke sub-
jects performed significantly worse also on their less 
affected side comparing to controls in the fast tar-
get reaching task (Flexion: p-value<0.001; AUC=0.85, 
Extension: p-value<0.001; AUC=0.85). Additionally, 
all task outcomes within motor category, except for 

(a) (b)

(c) (d)
Fig. 4  Trajectory following (slow) task for the assessment of sensorimotor impairments. a Subjects need to actively follow with their index finger 
a target trajectory displayed on the tablet screen. Control subjects can follow the target more accurately, while stroke subjects are further away 
from the target and their movement is more fragmented. b There is a high agreement (70%) in impairment classification between this task 
metric and the clinical measure of proprioception (kUDT). c The task has good reliability on both the less affected and on the more affected side 
(ICC > 0.70 ). d The box plot indicates increasing tracking error RMSE with increasing proprioceptive impairment (according to kUDT). There is a 
significant difference between controls (N=62) and all stroke sub-groups on the affected side (kUDT=2: N=14, kUDT=1: N=8, kUDT=0: N=8), as 
well as between less affected side of stroke subjects (N=30) and the group with the most severely impaired proprioception (N=8). Acronyms - D: 
dominant, LA: less affected, A: affected, kUDT: kinesthetic Up-Down Test, ICC: intraclass correlation coefficient, SRD: smallest real difference. Statistical 
significance: p-value<0.05: *, p-value<0.01: **, p-value<0.001: ***
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Maximum Velocity Flexion (t-stat=1.93, p-value=0.064; 
AUC=0.62), could discriminate between the less and the 
more affected sides of stroke subjects. Across all motor 
assessment tasks, 23.33-90.00% of subjects were classi-
fied as impaired on their affected side, and 3.33-60.00% 
on the less affected side. Strong significant correlations 
were found between all tasks within the motor category 
and the FMA ( ρ ranging from 0.74 to 0.85, p-value<0.001, 
details in Table 3), except for the Passive Range of Motion 
( ρ=0.58, p-value<0.001). Further, all task outcome meas-
ures were moderately to strongly correlated with the BBT 
(from ρ=0.54, p-value=0.0013 to ρ=0.77, p-value<0.001). 
None of the outcomes correlated significantly with the 
kUDT. For most tasks in the motor category there was 
a high level of agreement between subjects classified as 
impaired according to the FMA threshold and accord-
ing to z-scores of the robotic metrics—Maximum Force 

Flexion, Active Range of Motion, as well as Maximum 
Velocity Flexion and Extension reached classification 
agreement of 80.00%, 83.33%, 76.67% and 80.00%, respec-
tively. For Maximum Force Extension and Passive Range 
of Motion the agreement was lower—50.00 and 47.67%.

It was possible to distinguish between the affected 
side of stroke subjects and control subjects scores in 
the assessment of sensorimotor impairments (Tracking 
Error RMSE Slow: p-value<0.001, AUC=0.91 and Fast: 
p-value<0.001, AUC=0.92). Stroke subjects scored com-
parably to controls on their less affected side when fol-
lowing the slow trajectory (p-value=0.061; AUC=0.66), 
but significantly worse when following the fast trajectory 
(p-value=0.026, AUC=0.70). There was a significant dif-
ference between the affected and the less-affected side 
of stroke subjects (Slow: t-stat=5.40, p-value<0.001; 
AUC=0.81 and Fast: t-stat=4.82, p-value<0.001; 
AUC=0.80). 73.33% of stroke subjects were classified 

Table 2  Test-retest reliability results for all task metrics on the affected side

AE: Position Matching Absolute Error, Vel. Flex./Ext.: Maximum Velocity Flexion/Extension, AROM/PROM: Active/Passive Range of Motion, Force Flex./Ext.: Maximum 
Force Flexion/Extension, RMSE Slow/Fast: Tracking Error RMSE Slow/Fast, T1: Test, T2: Retest, ICC: Intraclass Correlation Coefficient, SRD: Smallest Real Difference, SRD%: 
Smallest Real Difference as a percentage of the range of values across all trials, Shift: Systematic Shift,  Correlation: Spearman Correlation between Test and Retest. The 
defined thresholds for reliability were: ICC>0.70, SRD%<30%, Shift<|6.35  (where negative shift means improvement on retest and positive means worse performance 
on retest). Statistical significance was defined as: p-value<0.05: *, p-value<0.01: **, p-value<0.001: ***

Category Metric Mean±SD T1 Mean±SD T2 Mean±SD T2-T1 ICC(A,k) SRD SRD(%) Shift Correlation

Sensory AE [deg] 14.63 ± 6.43 13.71 ± 6.24 2.68 ± 2.94 0.90 (0.88–0.91) 9.12 14.65 -3.63 0.74***

Motor Vel. Flex. [deg/s] 314.94 ± 180.30 315.16 ± 162.50 0.22 ± 107.56 0.89 (0.84-0.93) 159.54 17.83 -0.003 0.84***

Vel. Ext. [deg/s] 149.06 ± 146.27 149.80 ± 144.74 0.74 ± 43.80 0.98 (0.97-0.98) 60.68 11.62 -0.15 0.97***

AROM [deg] 43.89 ± 36.20 42.11 ± 32.29 -1.78 ± 11.16 0.97 (0.96–0.98) 15.58 12.77 1.47 0.92***

PROM [deg] 83.88 ± 10.48 85.41 ± 7.95 1.53 ± 5.89 0.89 (0.83–0.93) 8.83 16.57 -3.02 0.83***

Force Flex. [N] 11.64 ± 11.55 10.72 ± 10.08 -0.91 ± 3.44 0.97 (0.96–0.98) 4.88 10.92 2.07 0.94***

Force Ext. [N] 4.12 ± 4.52 3.55 ± 3.67 -0.57 ± 1.93 0.94 (0.91–0.96) 2.80 16.72 3.80 0.93***

Sensorimotor RMSE Slow [deg] 21.09 ± 8.68 21.03 ± 9.40 -0.06 ± 6.12 0.87 (0.81–0.92) 9.19 25.72 -0.17 0.81***

RMSE Fast [deg] 21.45 ± 7.80 22.06 ± 9.06 0.60 ± 5.87 0.86 (0.79–0.91) 8.82 24.75 1.95 0.82***

Table 3  Validity and feasibility results for all task metrics on the affected side

AE: Position Matching Absolute Error, Vel. Flex./Ext.: Maximum Velocity Flexion/Extension, AROM/PROM: Active/Passive Range of Motion, Force Flex./Ext.: Maximum 
Force Flexion/Extension, RMSE Slow/Fast: Tracking Error RMSE Slow/Fast, FMA: Fugl-Meyer Upper Limb Motor Assessment, kUDT: kinesthetic Up-Down Test, BBT: Box 
& Block Test, AUC: Area Under the Curve of the Receiver Operating Characteristic, % impaired: % of stroke subjects classified as impaired according to z-scores, % 
class. agree.: % classification agreement as compared to clinical scores, Corr.: Spearman correlation of robotic metric with a clinical score. The defined threshold for 
discriminant validity was: AUC>0.7. Statistical significance: p-value<0.05: *, p-value<0.01: **, p-value<0.001: ***

Category Metric AUC​ % impaired % class. agree. Corr. FMA Corr. BBT Corr. kUDT Time T1 [min]

Sensory AE [deg] 0.95 66.67 70.00 (kUDT) -0.32 -0.37* -0.48* 3.52 ± 1.82

Motor Vel. Flex. [deg/s] 0.91 60.00 76.67 (FMA) 0.74*** 0.62*** -0.13 3.25 ± 0.55

Vel. Ext. [deg/s] 0.94 90.00 80.00 (FMA) 0.76*** 0.66*** -0.07

AROM [deg] 0.80 60.00 83.33 (FMA) 0.85*** 0.77*** 0.14 1.67 ± 0.46

PROM [deg] 0.69 23.33 47.67 (FMA) 0.58*** 0.56** 0.27

Force Flex. [N] 0.93 83.33 80.00 (FMA) 0.82*** 0.69*** 0.08 1.50 ± 0.89

Force Ext. [N] 0.80 40.00 50.00 (FMA) 0.81*** 0.73*** 0.21

Sensorimotor RMSE Slow [deg] 0.91 73.33 70.00 (kUDT)  76.67 (FMA) -0.33 -0.39* -0.44* 3.80 ± 0.83

RMSE Fast [deg] 0.92 46.67 70.00 (kUDT)  63.33 (FMA) -0.43* -0.45* -0.39*
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as impaired on their affected and 23.33% on the less 
affected side when following the slow trajectory. There 
was a moderate significant correlation between Tracking 
Error RMSE Slow and kUDT ( ρ=−0.44 , p-value=0.016), 
as well as a weak significant correlation between this 
metric and the BBT ( ρ=−0.39 , p-value=0.035), but it 
did not significantly correlate with the FMA. Track-
ing Error RMSE Fast was moderately correlated with 
the BBT ( ρ=−0.45 , p-value=0.014), as well as with the 
FMA ( ρ=−0.43 , p-value=0.017) and weakly with kUDT 
( ρ=−0.39 , p-value=0.0347). Impairment classification 
according to the task z-scores was compared to both the 
kUDT and FMA, since this task was designed to involve 
both proprioceptive and motor function components. 
For both slow and fast trajectories, agreement between 
robotic z-score and the kUDT classification was 70.00%. 
When comparing the robotic z-scores classification to 
the one obtained with the FMA, Tracking Error RMSE 
Slow and Fast resulted in an agreement of 76.67 and 
63.33%, respectively.

Independence of task metrics
Partial Spearman correlations between the five different 
robotic tasks are shown in Table  4. There was a mod-
erate significant correlation between tasks within the 
motor category (Maximum Force Flexion, Active Range 
of Motion, Maximum Velocity Extension), ρ reached 
0.42, 0.45, 0.47 and p-values were equal to 0.030, 0.019 
and 0.013. Further, there was a moderate significant cor-
relation between Position Matching Absolute Error and 
Tracking Error RMSE Slow ( ρ=0.50, p-value=0.007). No 
significant correlations were found between the proprio-
ception assessment task and the tasks from the motor 
category. Likewise, tasks from the motor category were 
not significantly correlated with the assessment of senso-
rimotor impairments.

Discussion
The aim of this study was to propose and validate a set 
of robot-assisted assessments of the hand, implemented 
on a 1-DOF robotic platform, in a group of 36 stroke and 

31 control subjects. We demonstrated that the novel set 
of robotic task metrics has good to excellent clinimetric 
properties (reliability, discriminant and concurrent valid-
ity) and can independently inform of proprioceptive, 
motor and combined sensorimotor impairments. Taken 
together, the presented robot-assisted assessments pro-
vide quantitative insights into different aspects of senso-
rimotor function deficits at the level of the index finger 
MCP joint. The proposed robotic assessment approach 
might contribute to the understanding of patients’ 
impairment profiles and, in the future, allow to better 
track and predict recovery after neurological injuries, as 
well as personalize therapies.

Test‑retest reliability
Overall, the newly proposed robot-assisted assessments 
were reliable, did not show strong measurement error 
and were not confounded by strong systematic shift/
learning effects. Demonstrating the reliability of the pro-
prioception assessment (gauge position matching task) 
is an important contribution, since it is a long-stand-
ing challenge to reliably evaluate proprioceptive hand 
impairments in neurological patients, using either con-
ventional or robotic methods [24, 36]. Good reliability 
was achieved while sampling each presented angle only 
once, which reduced overall assessment duration and 
hence contributed to clinical feasibility. The effect of 
angle magnitude on position matching error, which is in 
line with previous research [47, 72, 73], was consistent 
for all measurements, thereby not affecting reliability.

The reliability results obtained for the motor and senso-
rimotor task are in line with the ones previously reported 
in literature (ICC 0.7-0.9 for metrics of good quality) 
[12, 74–76], although it is challenging to directly com-
pare these, as some studies were performed with control 
subjects instead of the target population. Compared to 
conventional clinical assessments, the proposed robotic 
assessments generally result in higher measurement error 
(e.g. FMA 10% [77], our robotic assessments between 15 
and 25%). This could partially be explained by the precise 
sensing capability of the robotic method, which is more 

Table 4  Partial Spearman correlation coefficient ρ between 5 different robotic task metrics on the affected side

AE: Position Matching Absolute Error,Vel. Ext.: Maximum Velocity Extension, AROM: Active Range of Motion, Force Flex.: Maximum Force Flexion, RMSE Slow: Tracking 
Error RMSE Slow. Statistical significance: p-value<0.05: *, p-value<0.01: **

Motor Sensorimotor

Vel. Ext. AROM Force Flex. RMSE Slow

Sensory AE 0.32 − 0.25 − 0.11 0.50**

Motor Vel. Ext. 0.47* 0.42* − 0.20

AROM 0.45* − 0.02

Force Flex. 0.09

Sensorimotor RMSE Slow
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sensitive at detecting behavioural variability than clinical 
scales [76]. Given that the observed SRD% were relatively 
low, we could further hypothesize that, in the future, 
the metrics might be able to responsively capture longi-
tudinal changes in impairments. The overall satisfying 
test-retest reliability results obtained in this study could 
be explained by the objective and sensitive nature of the 
measurement method. The robotic platform can deliver 
exact and repeatable stimuli and objectively measure 
the corresponding response, hence ensuring reproduc-
ibility of this method. Another factor contributing to 
the positive reliability results on the affected side is the 
large inter-subject variability of the stroke participants 
recruited in this study (severe to mild motor and proprio-
ceptive impairments according to clinical assessments) 
[66]. Lower inter-subject variability and higher intra-
subject variability could be observed on the less-affected 
side of stroke subjects, leading to overall lower intraclass 
correlation coefficients (although still within moderate to 
good reliability). This is because more subjects may score 
within the same range of values, however those values are 
more prone to some subject-specific confounds, such as 
mood, fatigue or motivation, since there is a wider spec-
trum of outcomes each subject can potentially achieve 
on their less affected side [66]. A systematic shift was 
detected for two robotic task metrics on the less affected 
side. Maximum Force Extension was on average lower at 
retest. This was likely influenced by three outliers (Addi-
tional file  1: Fig.  SM6d), that might have had a slightly 
different finger positioning in the device at retest, which 
could have resulted in a lower fingertip force generated. 
The performance on the trajectory following task system-
atically improved on the retest on the less affected side. 
This task is the most challenging in the assessment bat-
tery in terms of motor skills, as it requires subjects to 
accurately follow a fast trajectory, which might explain 
the presence of some learning effect. Taken together, the 
positive reliability results achieved in this study lay out 
the foundation for integrating the robotic assessments in 
longitudinal studies to sensitively monitor the recovery of 
post-stroke subjects at the level of the hand.

Discriminant validity
On the group level, stroke subjects performed signifi-
cantly worse on the most affected side compared to 
age-matched control subjects in all robot-assisted assess-
ments. This confirms that the robotic metrics capture 
abnormalities in task performance that can be related 
to specific post-stroke impairments. In addition, it is 
clinically relevant to provide information about exist-
ing impairments on a subject-by-subject basis. From 
the percentage of subjects classified as impaired, we see 
that not all stroke subjects scored worse than controls, 

depending on their impairment profile. In addition, from 
the graphical representation of different severity groups 
(Figs. 2d–4d & Additional file 1: SM1d-2d), a clear trend 
of decreasing task performance with increasing impair-
ment severity can be observed. These results indicate 
the capability of the robotic assessments to discriminate 
between different impairment severities.

In more detail, according to Position Matching Abso-
lute Error, 66.7% of stroke subjects were classified as 
impaired on their affected side according to the z-scores. 
This result is aligned with previous findings (robotic 
assessments 57-67% [22, 35], clinical—21–54% [21]). 
However, it should be noted that, in this work, we set 
an inclusion criterion to ensure that maximally 40% of 
recruited subjects had no proprioceptive deficits (as 
measured by the kUDT), hence the resulting prevalence 
might be higher than expected for an overall stroke sub-
ject population [15]. Position Matching Absolute Error 
was found to be significantly higher on the less affected 
side of stroke subjects than in control participants. Pre-
vious work has shown similar trends of proprioceptive 
deficits often occurring on both sides after stroke [35, 
78]. Some of the possible physiological explanations 
for proprioceptive impairments being present on both 
sides include interhemispheric transfer of propriocep-
tive information [35, 79], as well as ipsilateral disinhibi-
tion due to central reorganizations after brain injury 
[80]. However, one should also consider that the gauge 
position matching task might, to some extent, be influ-
enced by cognitive impairments, which could affect task 
performance on both sides. Indeed, we observed a weak 
significant correlation ( ρ=0.386,p-value=0.0039, Addi-
tional file  1: Fig.  SM8a) between the Position Match-
ing Absolute Error (both sides) and MoCA (excluding 
patients presenting aphasia with MoCA<15, N=3), likely 
reflecting the cognitive requirements that are necessary 
to perform the task. In general, it is challenging to design 
a robotic assessment of proprioception that is com-
pletely free of confounds. Other existing approaches are 
influenced by attention deficits [36], memory [37], slow 
reaction time [35] or motor impairments [32]. However, 
in contrast to other work, we observed only a weak sig-
nificant correlation in the Position Matching Absolute 
Error between the less and the more affected body sides 
( ρ=0.364, p-value=0.048, Additional file  1: Fig.  SM8b). 
This suggests that our paradigm is only minimally con-
founded by cognitive impairments, as one would expect 
a stronger correlation between the body sides in case of 
a strong influence of cognitive impairments on the task 
outcome.

Secondly, it is interesting to observe that in the motor 
impairment assessments targeting finger extension (e.g. 
Maximum Velocity Extension), the difference between 
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severely affected and moderately-mildly affected sub-
jects was particularly noticeable and statistically signifi-
cant in the case of AROM (Additional file 1: Fig. SM1d). 
Voluntary extension of the index finger is typically more 
impaired in the severely affected subjects [81], a measure 
which has been shown useful as a predictor of functional 
recovery and is hence recommended as a routine clini-
cal assessment [45]. Therefore, the ability of our method 
to precisely capture limitations in finger extension early 
after stroke could aid clinical decision making. The per-
centage of subjects classified as impaired on their affected 
side varied between 23.3% and 90.0% depending on the 
motor task metric, which indicates that each task may be 
sensitive to a different aspect of a patient’s motor impair-
ments. Similar trends were observed on another robotic 
platform, where depending on the task metric, different 
percentages of subjects were classified as impaired (19–
81% [50]), despite the fact that over 80% of stroke sub-
jects typically have some level of motor impairment [15, 
16].

Finally, results of the sensorimotor impairment assess-
ment are in line with previous findings indicating 
decreased upper limb/hand dexterity post-stroke [57, 82, 
83]. However, such high-level group comparison analy-
sis does not inform on the reasons for decreased perfor-
mance in this task, i.e. whether subjects could not follow 
the trajectory due to weakness, impaired sensory feed-
back or both. A more refined picture can be obtained by 
considering severity subgroups, here created according 
to the clinical measure of proprioception (Fig. 4d). Some 
subjects within the group with no proprioceptive impair-
ment as reported by the clinical test (kUDT = 2) showed 
high Tracking Error RMSE. This can be explained by the 
nature of this task, which not only measures propriocep-
tion, but the combination thereof with motor function. 
Therefore, these subjects most likely could not follow 
the trajectory due to weakness, although it is also possi-
ble that the process of integrating sensory input to gen-
erate motor output was affected [7]. This indicates that 
the results of the trajectory following task can be best 
interpreted when considered together with the two other 
categories of tasks, in order to understand the different 
components of the impaired performance.

Concurrent validity
Moderate to strong significant correlations were found 
between the outcome measures of the tasks from each 
category (i.e. proprioceptive, motor, sensorimotor assess-
ments) and their corresponding clinical scores, which 
indicates the capability of robotic metrics to capture 
specific impairments. In more detail, a moderate sig-
nificant correlation was found between Position Match-
ing Absolute Error and the kUDT, confirming that this 

robotic task is able to assess proprioceptive deficits. 
These observed correlations are in the expected range 
[12] given the limitations of the reference clinical score 
(ordinal scale, 0-2 points only [24, 36]). It would be of 
interest to further investigate concurrent validity using 
more accurate measures of somatosensory impairment, 
e.g. somatosensory evoked potentials [84], which pre-
cisely and objectively measure the strength and latency 
of somatosensory responses. Moreover, a weak signifi-
cant correlation was found with the BBT, which may 
indicate the important role of proprioceptive feedback in 
the execution of dexterous activities of daily life involv-
ing the hand [14]. The fact that this robotic metric was 
not correlated with the FMA (motor subsection only, as 
the sensory subsection of FMA was not administered) 
suggests that this task might be able to assess proprio-
ception independently of motor impairments. Further, 
Maximum Force, Active Range of Motion, as well as 
Maximum Velocity showed strong significant correla-
tions with the FMA and no significant correlations with 
the kUDT. It is therefore likely that these robotic tasks 
reflect impairments in basic motor execution [13, 14]. In 
particular, we designed the fast target reaching task and 
its metrics to focus on feedforward control (rather than 
feedback, which could partially confound the motor out-
comes in the presence of sensory impairments). Indeed, 
the peak velocity of the ballistic movement to the target 
occurred at 160 ± 57 ms from movement onset for stroke 
and 122 ± 22 ms for control subjects (average over all 
trials and subjects), which is a timeframe representative 
of feedforward control during movement execution [85, 
86]. Given that the motor tasks correlated moderately 
to strongly with the BBT, it can be claimed that each of 
the kinematic and kinetic subcomponents of movement 
generation described by these robotic tasks (i.e. ability to 
displace the finger, generate force and fast motion), are 
necessary to produce the functional behaviour of grasp-
ing and holding an object. Finally, the trajectory follow-
ing task resulted in slightly different correlations for the 
slow and fast movement trials. Slow trials follow a similar 
pattern to the position matching task—there is a moder-
ate significant correlation between Tracking Error RMSE 
and the kUDT and weak significant correlation with the 
BBT. This would indicate that successful completion of 
this task primarily requires intact proprioceptive func-
tion. The lack of strong correlation with the FMA may 
indicate that this task relies on dexterity, which has been 
shown to be dissociated from basic motor function, like 
strength, for mildly to moderately impaired stroke sub-
jects [14, 87]. Fast trials show moderate correlation to 
the BBT and the FMA, yet only a weak correlation with 
the kUDT, but all significant. It suggests that this task 
might integrate both motor and sensory components of 
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movement execution. Stronger relation to motor scores 
in the fast trials can be explained by higher engagement 
of the motor system to generate faster movements, while 
slow movements require more dexterity. Overall, the 
proposed battery of assessments provides functionally 
relevant information about patients’ capabilities by dis-
secting different subcomponents of motor control (i.e. 
proprioception, strength, speed, sensorimotor function), 
which are necessary to execute activities of daily living 
(e.g. as in the BBT—grasping and lifting small objects).

Independence of robotic task metrics
The fact that correlations between robotic assessments 
were at most moderate indicates that each task, to some 
extent, presents independent information. Interest-
ingly, Tracking Error RMSE was correlated with Position 
Matching Absolute Error, but to none of the metrics in 
the motor impairment assessment category. Possibly this 
task requires fine motor control which is not needed in 
the simple motor execution-based tasks. Here the choice 
of the task metric for the sensorimotor task is crucial, 
given that if we chose, e.g., the range of motion during 
trajectory following instead of tracking error, the task 
outcome would have likely been correlated with motor 
metrics. However, we purposely chose Tracking Error 
RMSE by hypothesizing that this error-based metric 
could best describe the utilization of proprioceptive feed-
back in motor execution [57]. Both trajectory following 
and gauge position matching tasks assess some aspects 
of proprioception; one involves active (kinesthesia) and 
the other passive trajectory/position matching (position 
sense), hence some relationship between the two was 
expected [88, 89]. Although given the complex trajectory, 
the active following scenario resulted in higher errors. 
The lack of correlation between the tasks from motor 
and proprioceptive assessment categories indicated that 
these tasks, as desired, are capable of evaluating these 
types of impairments separately. This result is in line with 
previous findings, which highlighted the independence 
of motor and somatosensory deficits [33]. Overall, differ-
ent tasks in the proposed battery of robotic assessments 
complement each other in providing a detailed charac-
terization of each patient’s impairment profile at the level 
of the index finger MCP joint.

Clinical feasibility
The protocol was completed by the majority of the 
recruited stroke subjects (only 2/36 subjects dropped out 
of the study and in total 30/36, that is 83% of recruited 
participants were included in data analysis) that had a 
broad range of different impairments (severe to mild 
impairments on the FMA and the kUDT). Hence, this 
assessment protocol is feasible to be performed by a 

majority of patients in the early stage of stroke reha-
bilitation, which could provide insights for designing 
appropriate therapy programs and predicting recovery. 
Further, the duration of the assessments was acceptable 
(recommended is less than 15 min per tested side [90]). 
However, taking together assessments of both sides, set-
up, explanation and rest, the average session per patient 
was close to 1 hour, which is at the limit of feasibility for 
more severely affected patients. Reducing the number of 
trials in some of the tasks could help decrease the over-
all assessment time, only if such reduction doesn’t affect 
reliability of the task metrics. Analysis of the effect of 
trial number reduction on metric reliability will be done 
as future work in order to optimize the study protocol for 
prospective studies. Finally, we received positive feedback 
from the experimenters performing the assessments on 
the ETH MIKE, which is important, as their role is crucial 
in executing the robot-assisted assessments (instructing 
and assisting the patients throughout the protocol). The 
workload of the experimenters was reduced compared to 
performing standard clinical assessments, as many of the 
tasks were automatised (e.g. passive movement of the fin-
ger in the gauge position matching task). Therefore, the 
proposed assessments are clinically feasible also from the 
point of view of the clinicians operating the platform.

Limitations
While the results of this study underline the ability of our 
metrics to identify specific aspects of hand sensorimo-
tor impairments, several limitations need to be consid-
ered. The first limitation relates the device’s workspace 
constrained to ±90

◦ (Fig.  1). From MCP joint neutral 
position, the setup allowed maximally 60◦ flexion move-
ment, which is smaller than full range of motion achiev-
able by the index finger [91]. This particularly affected 
the fast target reaching task, in which some subjects 
overestimated their position with respect to the target 
and instead of naturally decelerating, were stopped by 
the device’s mechanical stop. That in turn affected reli-
ability of that task, especially on the less affected side, 
where subjects were able to reach higher velocities. The 
solution is to expand the range of motion of the device 
by approx. 15◦ for future studies. Another limitation con-
cerns some of the task metrics. In the trajectory follow-
ing task, subjects that could not move at all (N=4/30) 
scored better in Tracking Error RMSE than subjects that 
moved “randomly” (e.g. due to impaired proprioceptive 
feedback but good enough motor function to extend/
flex the finger). This is not necessarily desired, because 
such a scoring system does not encourage subjects to do 
their best, since staying stationary may provide a better 
outcome. Similarly, in the gauge position matching task, 
subjects that always indicated the starting position as 
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where they thought their finger was, because they did 
not perceive their finger position at all (N=2/30), scored 
better than those that tried to perform the task but were 
clearly off the target. These are shortcomings of how the 
metrics themselves are calculated. A possible solution 
could be to modify scores of subjects that did not move 
their finger or did not move the gauge indicator from 
the starting position, by e.g. assigning the worst possible 
score achieved by all other stroke subjects + 1 standard 
deviation, as has been done in other studies [33]. This 
method was not used in this study in order to allow ana-
lyzing clinimetric properties of the proposed metrics in 
their purest form, without the introduction of an arbi-
trary ceiling effect. As another limitation, it needs to be 
noted that hemispatial neglect or vision deficits were not 
systematically evaluated as a part of this study and could 
have had an effect on robotic task performance, since 
vision is crucial to correctly follow task instructions and 
perform the gauge position matching on the tablet. In 
future work, a detailed evaluation of hemispatial neglect 
e.g. with the Bell Test [92] should be added to the experi-
mental protocol. Finally, this study only considered the 
index finger and it remains to be investigated how well 
these results generalize to the whole hand somatosensory 
and motor impairments. However, correlations of robotic 
motor assessments with clinical assessments targeting 
the whole upper limb observed in this study suggest that 
the index finger function is indeed essential for perform-
ing daily life activities (i.e., grasping objects as in the 
BBT) and it may be related to impairments in other parts 
of the upper limb (i.e., as shown through the strong cor-
relations of some robotic tasks with the FMA), which is 
in agreement with findings from previous studies involv-
ing individual finger movements [93]. Previous research 
has reported high levels of agreement in somatosensory 
impairments of the same modality in adjacent body areas 
(especially hand and wrist) [17, 94]. This can potentially 
be explained by the presence of some interactions within 
representations of the neighbouring body areas in the 
primary somatosensory cortex [95]. It could therefore be 
expected that the results of our proprioception assess-
ment may be translatable to other distal joints (e.g. other 
fingers). However, this would need to be verified in a ded-
icated study.

Conclusions
In conclusion, this work successfully proposed and 
validated a set of robot-assisted assessments targeting 
proprioceptive, motor, and combined sensorimotor 
impairments in the hand. This contributes to address-
ing a long-standing gap in the neurorehabilitation 
domain, as such a comprehensive impairment pro-
file of the hand could not be established in a reliable, 

valid, and clinically feasible manner before. Building a 
fine-grained picture of patients’ deficits is important to 
sensitively track rehabilitation progress and effectively 
adapt therapies. Generally, this work addresses a strong 
need for more sensitive, accurate and objective assess-
ments, which could positively impact therapy planning 
and outcomes.
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