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Abstract

Background: Advantages of digital clock drawing metrics for dementia subtype classification 

needs examination.

Objective: To assess how well kinematic, time-based, and visuospatial features extracted from 

the digital Clock Drawing Test (dCDT) can classify a combined group of Alzheimer’s disease/

Vascular Dementia patients versus healthy controls (HC), and classify dementia patients with 

Alzheimer’s disease (AD) versus vascular dementia (VaD).

Methods: Healthy, community-dwelling control participants (n= 175), patients diagnosed 

clinically with Alzheimer’s disease (n= 29), and vascular dementia (n= 27) completed the dCDT 

to command and copy with hands to 10 after 11”. Thirty-seven dCDT command and 37 copy 

dCDT features were extracted and subjected to Random Forest machine learning analysis.

Results: When HC participants were compared to participants with dementia, optimal area under 

the curve was achieved using models that combined both command and copy dCDT features 

(AUC= 91.52%). Similarly, when AD versus VaD participants were compared, optimal area under 

the curve was, again, achieved with models that combined both command and copy features 

(AUC= 76.94%). Subsequent follow-up analyzes of a corpus of 10 variables of interest complied 

using a Gini Index found that groups could be dissociated based on kinematic, time-based, and 

visuospatial features.

Conclusions: The dCDT is able to operationally define graphomotor output that cannot be 

measured using traditional paper and pencil test administration in older health controls and 
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participants with dementia. These data suggest that kinematic, time-based, and visuospatial 

behavior obtained using the dCDT may provide much needed neurocognitive biomarkers that may 

be able to identify and tract dementia syndromes.
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Introduction

Alzheimer’s disease (AD) and vascular dementia (VaD) are two common types of dementia. 

Current diagnostic studies for the diagnosis and classification of AD and VaD include 

cerebrospinal fluid assays, neuroimaging studies of degenerative alterations, and 

comprehensive neuropsychological testing. Yet, these methods can be expensive, invasive, 

and time-consuming, which limits their potential utility of widespread screening for 

neurodegenerative disease [1, 2]. A short, noninvasive test that can identify and screen 

patients at risk for neuropsychological impairment associated with these dementia disorders 

could help with diagnostic decision-making; and may be useful for treatment planning as 

disease-modifying medication becomes available.

Previous research has investigated how the Clock Drawing Test (CDT) can detect underlying 

neurocognitive impairment in dementia [3–6]. The traditional CDT is comprised of two 

conditions. In the command condition, the patient is asked, “to draw the clock face, put in all 
of the numbers and set the hands to read 10 after 11.” This is followed by the copy condition 

where patients are asked to copy a model clock [7]. Regarding dementia identification, the 

standard paper and pencil administration of the clock drawing test has high specificity, but 

low sensitivity [6, 8]. Recently, Spenciere and colleagues (2017) examined a multitude of 

paper and pencil clock scoring systems and concluded that many scoring systems are able to 

distinguish between clinical groups. However, many paper and pencil scoring systems are 

difficult to operationalize, and there is no consensus regarding optimal clock drawing 

criteria. This latter observation is illustrated by comparing the scoring systems used by 

Rouleau et al [9], Royal et al [10], and Cosentino et al. [11]. These clock drawing systems 

differ with respect to administration procedures, scoring criteria, and the clinical groups that 

were assessed. Nonetheless, all three studies show meaningful between-group differences 

that are able to define neurocognitive constructs that underlie dementia syndromes[12].

Over the past decade, a digital version of the clock drawing test (dCDT) has been introduced 

by the Clock Sketch Consortium [13]. Digital clock drawing protocols use inexpensive 

digital pen technology. This obviates many of the problems associated with traditional pencil 

and paper clock drawing scoring systems. Moreover, this technology is able to capture a 

multitude of behaviors that cannot otherwise be extracted using traditional pen and paper 

tests. For example, all pen strokes are time stamped and latencies between pen strokes are 

recorded. This results in precise measurement of all constructional elements such as size, 

length, pen pressure, and drawing velocity throughout the entire test. The richness of this 
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information allows for a very detailed analysis of process and errors [14, 15] that can inform 

researchers and clinicians regarding the underlying neurocognitive impairment.

While previous studies have evaluated the use of the traditional clock drawing test for the 

detection and classification of dementia subtypes [9–11], the advantages of the dCDT have 

yet to be fully explored for this purpose. A previous research study conducted by Muller and 

colleagues used several digitally-obtained features measuring kinematic behavior such as 

pen pressure and drawing velocity extracted from digital pen data. Logistic regression 

analyses were able to differentiate patients with amnestic mild cognitive impairment (aMCI) 

versus mild Alzheimer’s dementia (mAD) [16]. Subsequent research [17] using machine-

learning models were able to differentiate patients with memory impairment, vascular 

cognitive disorders, and healthy individuals. In a third study, researchers extracted 350 

features from digital clock drawings from 163 patients. Neural networks and information 

theory-based feature selection methods were able to classify 91.42% of AD versus non-MCI 

patients [18].

In the present study, we evaluated how well machine learning analysis using Random Forest 

[19] models can differentiate between dementia patients diagnosed with Alzheimer’s 

Disease (AD), Vascular Dementia (VaD) associated with MRI evidence of subcortical white 

matter alterations, and non-demented elder controls.

Methods

Participants.

Data were acquired from two prospective research investigations approved by the University 

of Florida’s Institutional Review Board; and, from an investigation conducted at Rowan 

University. Written informed consent was obtained from all participants with all 

investigations conducted in accordance with the Declaration of Helsinki.

Healthy Control (HC) Participants.

Inclusion criteria were: age 55 or older, English as primary language, intact instrumental 

activities of daily living (IADLs), and baseline neuropsychological testing negative for 

cognitive impairment per Diagnostic and Statistical Manual of Mental Disorders – Fifth 

Edition [20]. Exclusion criteria were: the presence of neurodegenerative disorders; major 

medical illness including head trauma or heart disease that could induce encephalopathy; 

major psychiatric disorders; documented learning disabilities; a seizure disorder or other 

significant neurological illness; less than a sixth-grade education, and history of substance 

abuse. The Telephone Interview for Cognitive (TICS) Status [21] was used to screen for 

dementia. An in-person appointment was completed where neuropsychological and clock 

drawing protocols were administered along with an assessment of medical comorbidities 

(Charlson Comorbidity Index [22]). The presence of anxiety, depression, and ADL/IADL 

abilities were also assessed. Data were reviewed by a licensed clinical neuropsychologist, 

double scored, and double data entered for accuracy.
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Dementia Participants.

Individuals with dementia were evaluated at the New Jersey Institute for Successful Aging 

(NJISA), Memory Assessment Program, School of Osteopathic Medicine, Rowan 

University. Individuals were seen by a neuropsychologist, psychiatrist, and social worker. 

Inclusion criteria included age 55 and up, with exclusion criteria the same as that for HC 

participants except neither the TICS nor the Charlson Comorbidity Index were administered. 

In addition to neuropsychological assessment, all dementia participants were evaluated with 

the Mini Mental State Exam [23], serum studies, and an MRI scan of the brain. Additional 

exclusion criteria included vitamin B12, folate, or thyroid deficiency. Individuals with AD 

and VaD associated with this study have been described in prior research studies [24]. As 

described in prior reports [25, 26], these individuals were diagnosed with either AD (n= 29) 

or VaD (n= 27) using standard diagnostic criteria, respectively.

Digital Clock Drawing Test (dCDT) Parameters.

The dCDT yields a corpus of over 2000 variables. In the current research 37 dCDT features 

were used for classification. This corpus of dCDT variables was chosen based on prior 

research [18] demonstrating the capacity of these variables to dissociate between clinical 

groups (Table 1).

Clock face area was [27] calculated with the formula (pi*(average of two radii)^2). The 

presence of anchor digits [28] was determined whether participants initially drew the digits 

12, 3, 6, and 9 inside the clock face before drawing the remaining digits. Kinematic 

parameters including mean pen pressure, and the ratio of mean pen pressure divided by 

mean drawing velocity. All dCDT features described in Table 1 were extracted from the 

digitally acquired drawings from both the command and the copy test conditions. When a 

feature could not be calculated (e.g., the ratio of the hour hand length and minute hand 

length when a hand is missing) the feature was classified as missing. We handled missing 

data using Multivariate Imputation by Chained Equations (MICE) [29].

Machine Learning Analysis.

As stated above, our primary goal was to use Random Forest as a classification model to 

determine how well dCDT features from the three data sets (1) command, (2) copy, and (3) 

combined command/copy test conditions) could classify individuals into their respective 

diagnostic categories based upon two binary classification problems, e.g., (1) all dementia 

participants versus HC classification, and (b) AD versus VaD (Figure 1). Random Forest is a 

machine learning algorithm that has shown strong performance in public health studies [30, 

31]. Random Forest models generally do not make any assumption about the attribute of 

distributions and also consider the interactions between the attributes. Unlike logistic 

regression models, Random Forest models are not limited to learning linear decision 

boundaries. Additionally, their ensemble and boosted approach can accommodate 

overfitting.

We used nested cross-validation for the development of Random Forest classifiers and five-

fold cross-validation for both inner and outer folds in classifying dementia versus HC. Due 

to the modest sample size, we used three-fold cross-validation for both inner and outer folds 
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to classify AD versus VaD. In addition to accuracy, we reported several other performance 

metrics including area under the ROC curve (AUC), sensitivity, specificity, and the F1 score, 

since accuracy alone is not sufficient to reflect the performance of the model for imbalanced 

datasets. We repeated the experiments 50 times and reported confidence intervals for all 

performance metrics. We also reported the ranking of variables’ importance in the final 

models in terms of mean decrease in Gini index. The Gini index was used to express the 

probability that a random element in a data set is randomly and incorrectly labeled according 

to the distribution of the labels. Thus, the importance of variables are ranked based on how 

much they each decrease the Gini index in splitting trees in a random forest model.

Descriptive Statistics.

Chi-Square analyses or t-tests were used to compare groups on demographic and the top-ten 

clock variables selected using variable importance from Random Forest models. 

Significance was set at p< 0.05. Bonferroni correction was applied to account for multiple 

comparisons. All analyses were performed using R version 3.5.2.

Results

Demographic and Clinical Data.

Our final dataset comprised 231 individuals (56 dementia, 175 HC; Table 2). Dementia 

individuals were older (dementia age = 80.04, HC age = 68.37; p< 0.001); had fewer years 

of education (dementia = 12.75, HC= 16.39, p< 0.001); and scored lower on the MMSE 

(dementia total = 22.35, HC total = 28.81, p< 0.001). The AD and VaD dementia groups did 

not differ for age. However, the VaD group was comprised of more female individuals 

(female/male in VaD: 85.18%, in AD: 51.72%; p< 0.016) with fewer years of education 

(VaD= 11.85 vs. AD= 13.61; p< 0.033; Table 3).

Machine Learning Analysis: HC versus dementia.

None of the participants produced perseverations when drawing digits; or drew digits past 

the number 12, or a single line connecting the numbers 11 and 2 (i.e., the ten-eleven stroke). 

These errors, along with missing hands and more-than-two hands variables were excluded 

because they were absent or occurred very infrequently (command= 2.16% and 0.43%; 

copy= 0% and 1.30%, respectively). Random Forest classifiers were developed using clock 

features extracted from command clocks, copy clocks, and combining command and copy 

clocks. All three models performed similarly in detecting dementia versus HC participants. 

However, models developed using data from both the command and copy test condition 

performed best; e.g., area under the curve medians differentiating between HC and dementia 

were command (89.76%), copy (87.54%), and command/copy (91.52%; Table 4).

Machine Learning Analysis: AD versus VaD.

The models performed similarly in classifying AD and VaD patients. Models developed 

using both the command and copy test conditions performed slightly better than models 

developed using data from command or copy clocks (AUC medians - command= 74.82%, 

copy= 73.70%, and command & copy= 76.94%; Table 5). Figures 2 and 3 show the median 

and 95% confidence interval of the top five variables for models using a single clock 
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condition; and the top 10 variables for models using both clock conditions according to their 

Gini index (ranked based on the median value).

Clock Features of Interest: HC versus Dementia.

Figure 2 shows the median and 95% confidence interval of the 10 top variables of interest 

for models using both command and copy features according to their Gini index (ranked 

based on the median value). Table 6 displays between-group analyses for these 10 variables. 

Features that statistically differentiated between HC versus all dementia participants were 

approximately equally represented between the two clock drawing test conditions 

(command= 4; copy= 3). As displayed in Table 6, groups were differentiated based on a 

combination of features measuring kinematic operations, decision-making latency, and the 

location of features within the clock face. Pen pressure (command & copy) was greater for 

HC compared to dementia. Post-clock face latency was slower for dementia as compared to 

HC. Finally, precision regarding the location of the hour and minute hands in relation to the 

clock face, center dot was more accurate for HC compared to dementia.

Clock Features of Interest: AD versus VaD.

Figure 3 shows the median and 95% confidence interval of the 10 top variables of interest 

for models using both clock conditions together according to their Gini index (ranked based 

on the median value). In this analysis, there were perhaps, more features from the copy as 

compared to the command test condition that differentiated between groups (copy= 4; 

command= 2). As displayed in Table 7 groups were differentiated based on a combination of 

features measuring kinematic operations and drawing speed. Pen pressure for both test 

conditions was greater for VaD compared to AD patients. The ratio of pen pressure and 

drawing velocity was greater for VaD compared to AD consistent with reduced pen pressure 

along with slower drawing speed. Finally, total drawing time was slower for VaD compared 

to AD in the copy test condition.

Discussion

The purpose of the current research was to examine how well features from the dCDT 

analyzed with machine learning using Random Forrest could correctly classify HC versus 

AD/ VaD dementia patients; and, patients diagnosed clinically with AD versus VaD. It is 

widely believed as symptoms and behavior suggesting either MCI or dementia emerge 

decades before sufficient functional and neuropsychological impairment occurs that would 

permit a clinical diagnosis. At such time that disease-modifying medication is available, the 

putative target population will most certainly be individuals early in the course of their 

illness. An important question revolves around the neuropsychological methods or 

techniques that are able to identify emergent AD/ VaD syndromes.

The MMSE and MoCA are commonly administered neuropsychological tests used to screen 

for neurocognitive impairment. The problems associated with the MMSE and MoCA 

include the lack of granularity of the behavior that can be assessed and scored. The dCDT 

obviates this problem. The time necessary to administer the test is very reasonable; and, as 

shown above, a large corpus of highly nuanced behavior can be measured. As compared to 
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prior digital clock drawing research, the data described above achieved comparable or better 

rates of classifying HC versus dementia individuals [15, 25]. Our classification rates are also 

comparable to prior research comparing HC versus individuals diagnosed with MCI 

recruited from a memory clinic [18].

Differences between Healthy Control and Dementia Participants -

From the entire corpus of approximately 2000 dCDT features, a circumscribed corpus of 37 

command/ copy dCDT features were selected and assessed with machine learning analyses. 

Ten variables of interest emerged. The decision to use the corpus of the 37 features 

described above was guided by the fact that these variables measure very common and 

necessary behavior for successful test performance.

In the analysis classifying HC versus all dementia individuals, features that were able to 

dissociate between groups included kinematic parameters that measured command and copy 

pen pressure. In both clock drawing test conditions, pen pressure was lower when dementia 

patients were compared to HC participants. These data are consistent with prior clock 

drawing research [15]. These data are also similar to prior research associating reduced pen 

pressured among patients with Parkinson’s disease (PD) versus HC [32] when PD patients 

were asked to draw an Archimedean spiral. Accurate output using a pen requires the 

production of comparatively gross strokes such as the clock face, and the production of 

discrete strokes such as digits and the clock hands [33]. The current research was able to 

only analyze mean pen pressure for the entire drawing. However, it is possible that greater 

between-group differences would have emerged to the extent pen pressure data could have 

been obtained from each portion of the drawing (i.e., clock face, number placement, time 

setting).

Time-Based dCDT Parameters -

In the copy condition only, participants with dementia produced lower Post-Clock Face 

Latency (PCFL). PCFL is one of a number of decision-making latencies obtained from the 

dCDT [34] and measures the time necessary to transition from one portion of the test to the 

next portion of the test. Most often PCFL measures the time between the completion of the 

clock face and drawing either the center dot or the number 12. Slower PCFL for dementia 

versus HC participants in the copy test condition might suggest the need for greater scanning 

back and forth from the clock model to the patient’s drawing. If this is true, then slower copy 

PCFL suggests that copying a model of a clock might not be as automatized as expected. 

Concomitant measures of visual scanning behavior while patients are drawing would help 

disambiguate this issue. Also, in the copy condition only dementia, as compared to HC 

individuals were less accurate in drawing both hands in relation to the center dot.

AD versus VaD Patients -

Many of the variables of interest described above also dissociated AD versus VaD patients. 

Patients with AD obtained lower scores for command/ copy pen pressure compared to VaD. 

However, participants with VaD, relative to AD, appeared to exert greater pen pressure in the 

context of slower velocity. VaD patients also produced slow total time to completion in the 

copy test condition compared to AD patients. Both of these findings are consistent with 
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previous research showing that VaD patients produce less output as a function of time [35]. 

Prior research has argued that the neurocognitive constructs underlying clock drawing to 

command and clock are complimentary but not identical. These observations are consistent 

with the data described above showing that optimal classification was achieved using a 

combination of command and copy features. Finally, a question that needs to be addressed 

revolves around the practicality of extracting the behavior described above. Does the 

analysis of nuanced graphomotor output truly offer a clinical advantage? The data described 

above appears to answer this question in the affirmative. However, we acknowledge that 

additional research examining other clinical groups needs to be undertaken.

The current research is not without weakness. First, we recognize the need for replication in 

larger samples and correction for age/education differences between dementia and the HC 

participants. There is a small but statistically significant group difference in education. It is 

possible that lower education may negatively impact clock drawing performance; education 

is considered neuroprotective against the emergence of dementia [36, 37]. There is also an 

age difference between dementia and HC, with the HC group younger. A post-hoc analysis 

showed us, however, a similar model (lower AUC, 87.89 for command and copy; 87.24 

command; 86.16 copy) for participants age 70 and up (67 HC, and 52 dementia). Although 

dementia groups did not differ for age, this is another factor that can potentially influence 

clock drawing behavior between and within dementia participants. Second, while we opted 

to use Random Forest classification models because of their overall strong performance in 

other health domain studies, the performance of other machine learning models needs to be 

evaluated. While Random Forest model performance is not affected significantly by 

collinearity among variables, variable importance will, nonetheless, be impacted; the 

reported variable importance values need to be interpreted with caution. Because of the 

modest and uneven sample size, weighting the outcome classes and under-sampling/

oversampling techniques may also improve the performance of the models. Third, 

marginally different recruitment procedures were used to recruit healthy control and 

dementia participants (e.g., the HC group did not complete laboratory measurements 

examining vitamin B12, folate, or thyroid deficiency, that may have resulted in exclusion). 

Finally, most of the participants in the current research were white and right-handed, 

suggesting the need to replicate the findings reported above with participants from other 

ethnic/demographic communities.

Despite these limitations, the current research has several strengths including data from two 

common dementia subtypes and the analysis of features that measure kinematic behavior. 

These data suggest that machine learning analyses of digitally acquired output using the 

dCDT could provide much needed neuropsychological biomarkers that might be used to 

identify and monitor changes in cognition over time for dementia syndromes. Future studies 

need to examine dCDT variables for validity and cross comparison across different test 

modalities (pen capture versus tablet) and dCDT variable value for differentiating HC from 

neurodegenerative diseases including those with and without dementia (e.g., PD; [36])
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Figure 1. 
Analysis flow. The analysis in the study included preprocessing the raw pen movement data, 

extracting features, and developing and testing classifiers.
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Figure 2. 
Ranking of the top ten variables ranked based on their median in 50 runs for Random Forest 

models for classification of dementia vs HC using A) command data, B) copy data, and C) 

command and copy data together.
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Figure 3. 
Ranking of the top ten variables ranked based on their median in 50 runs for Random Forest 

models for classification of dementia subtypes using A) command data, B) copy data, and C) 

command and copy data together.
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Table 1.

Digital Clock Drawing Test Feature description.

Variable Name Variable Description

Total number of strokes Total number of strokes used in drawing all components of this clock

Total completion time (sec) Total time to draw all clock components

Clockface number of strokes Total number of strokes used to draw the clockface

Clockface total time (sec) Time to draw the clockface

Clockface overshoot distance (mm) The minimum distance between start of the longest clockface stroke and the end, divided by 
the total length of the stroke. Gives a normalized measure of how far apart or overlapped the 
closest points near the end of the stroke are

Clockface overshoot angle (degrees) Number of degrees between the start and end of the longest stroke in the first clockface, 
measured from the center of the ellipse. Positive: end of stroke goes past the start, negative: 
end does not go past the start

Hour Hand length (mm) Distance from innermost to outermost point on the hand

Hour Hand distance from center (mm) Distance from inner end of hour hand to center of ellipse

Hour Hand difference from ideal angle 
(degrees)

Difference between hour hand angle and the perfect angle

Minute Hand length (mm) Distance from innermost to outermost point on the hand

Minute Hand distance from center (mm) Distance from inner end of minute hand to center of ellipse

Minute Hand difference from ideal angle 
(degrees)

Difference between minute hand angle and the perfect angle

Hour Hand length/Minute Hand length Represents the ratio of hour hand length the minute hand length

Post-Clock Face Latency (PCFL) (sec) Delay between finishing the last stroke in the clockface and whatever is drawn next

Pre-First Hand Latency (PFHL) (sec) Delay between whatever was drawn before the first clock hand and starting to draw that clock 
hand

Pre-Second Hand Latency (PSHL) (sec) Delay between whatever was drawn before the second clock hand and starting to draw that 
clock hand

Total Drawing time (sec) Total time with the pen drawing on the paper

Drawing length (mm) Summation of total ink length of the drawn components

Average digit height (mm) Average height of the bounding boxes for all numbers on the clock

Average digit width (mm) Average width of the bounding boxes for all numbers on the clock

Average digit distance from circumference 
(mm)

Average distance from each digit to the nearest point on the clock face

Average digit misplacement (degrees) A summation of each digit’s distance from ideal placement, divided by the number of digits

Clockface area (mm2) Area of a circle fitted to the drawn clockface

Symmetry Measure of how circular or oblong the clockface is, using horizontal and vertical dimensions

Velocity (mm/sec) Drawing length/Drawing time

Average pen pressure Average pressure of the pen on the paper during the entire test

Standard deviation of pressure Standard deviation of pressure of the pen on the paper during the entire test

Average pressure/velocity Average pressure/Velocity

Any digit missing Any digits not appearing on the clock

Any digit outside Any digits placed outside the clockface

Any digit perseveration Any digits repeated

Anchoring Anchoring
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Variable Name Variable Description

Any hand missing Any of the hour hand or minute hand missing

More than one for each hand More than one hour-hand or more than one minute-hand

Hand crossed Out Any of the hands crossed out

Any digit over 12 Any digits over 12 drawn

Ten-eleven stroke Single line drawn connecting the numbers 11 and 2
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Table 2.

Participants Demographic/ Clinical Characteristics.

Variable All (n=231) Dementia (n=56) HC (n=175) p-value

Age, mean (SD) 71.20 (7.72) 80.04 (6.28) 68.37 (5.76) <0.0001

Female, N (%) 118 (51.08%) 38 (67.86%) 80 (45.71%) 0.0063

Race: white N (%) 223 (96.54%) 55 (98.21%) 168 (96.00%) 0.7122

Handedness 218 (94.78%) 56 (100.00%) 162 (93.10%) 0.0943

Education, mean (SD) 15.52 (3.09) 12.75 (3.07) 16.39 (2.54) <0.0001

MMSE, mean (SD) 27.33 (3.16) 22.35 (2.71) 28.81 (1.07) <0.0001
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Table 3.

Demographic and Clinical Characteristics of Dementia Patients.

Variable All (n=56) AD (n=29) VaD (n=27) p-value

Age, mean (SD) 80.04 (6.28) 80.34 (6.03) 79.72 (6.65) 0.7163

Female, N (%) 38 (67.86%) 15 (51.72%) 23 (85.18%) 0.0167

Race: white N (%) 55 (98.21%) 28 (96.55%) 27 (100.00%) 1

Handedness 56 (100.00%) 29 (100.00%) 27 (100.00%) -

Education, mean (SD) 12.75 (3.07) 13.61 (2.81) 11.85 (3.12) 0.0330

MMSE, mean (SD) 22.35 (2.71) 22.24 (3.35) 22.44 (2.02) 0.7931
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Table 4.

Model performance reported for the dementia vs. HC classification – AUC: Area under the ROC curve.

Model: Dementia vs. 
Healthy

Accuracy AUC Specificity Sensitivity F1 score

Command 90.48 (85.91, 93.74) 89.76 (84.22, 93.92) 97.71 (94.86, 98.86) 69.64 (52.19, 82.14) 77.95 (64.66, 86.32)

Copy 89.18 (84.18, 92.54) 87.54 (81.54, 92.83) 96.57 (93.84, 98.29) 66.07 (51.79, 78.17) 73.84 (61.35, 83.13)

Command & Copy 91.34 (87.64, 94.71) 91.52 (86.74, 95.17) 97.71 (96.0, 99.43) 71.43 (57.95, 83.53) 80.21 (69.61, 88.37)

J Alzheimers Dis. Author manuscript; available in PMC 2021 July 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Davoudi et al. Page 20

Table 5.

Model performance reported for the VaD vs. AD subtype classification – AUC: Area under the ROC curve.

Model: Dementia 
subtypes

Accuracy AUC Specificity Sensitivity F1 score

Command 74.11 (53.57, 85.31) 74.82 (53.39, 85.70) 72.41 (55.17, 86.21) 74.07 (48.15, 95.46) 74.58 (51.07, 85.19)

Copy 73.21 (58.93, 85.31) 73.70 (59.08, 85.31) 79.31 (62.07, 89.66) 66.67 (48.15, 58.19) 72.00 (53.86, 84.70)

Command & Copy 76.78 (60.71, 87.10) 76.94 (60.75, 87.48) 79.31 (55.17, 88.87) 74.07 (56.39, 92.59) 76.00 (58.54, 87.38)
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Table 6.

Ranking of the top ten command and copy clocks variables - All dementia patients versus HC participants

Variable All (n=231) Dementia (n=56) HC (n=175) t-value df p-value

1. Mean pressure (command) 95.16 (32.23) 52.14 (40.95) 108.93 (7.54) 10.322 56.197 <0.0001*
D<HC

2. Standard deviation of pressure (command) 23.27 (5.87) 19.38 (9.00) 24.51 (3.68) 4.1556 60.976 0.0001*
D<HC

3. Mean pressure (copy) 97.61 (29.99) 57.31 (38.02) 110.51 (6.46) 10.425 56.021 <0.0001*
D<HC

4. Average pressure/velocity (command) 3.03 (1.82) 2.90 (3.02) 3.07 (1.21) 0.42607 60.738 0.6716
ns

5. Average pressure/velocity (copy) 3.33 (2.03) 3.30 (3.51) 3.35 (1.24) 0.10497 59.47 0.9168
ns

6. Post clockface latency (PCFL) (copy) 1.50 (1.48) 2.23 (2.57) 1.27 (0.76) −2.7643 58.095 0.0076
D>HC

7. Minute hand difference from ideal angle (copy) −2.19 (12.30) −0.34 (20.96) −2.79 (7.73) −.85617 59.861 0.3953
ns

8. Hour hand distance from center (copy) 3.26 (2.51) 3.98 (2.58) 3.04 (2.45) −2.4081 88.833 0.0181
D>HC

9. Total completion time (copy) 30.86 (14.43) 42.50 (21.68) 27.14 (8.32) −5.1806 60.265 <0.0001*
D>HC

10. Minute hand distance from center (command) 4.51 (4.56) 6.12 (4.97) 4.03 (4.33) −2.7389 75.445 0.0077
D>HC

means and standard deviations;

*
signifies variables that remain significant after Bonferroni correction

J Alzheimers Dis. Author manuscript; available in PMC 2021 July 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Davoudi et al. Page 22

Table 7.

Ranking of the top ten command and copy clocks variables comparing AD and VaD participants

Variable AD (n=29) VaD (n=27) t-value Df p-value

1. Average pressure (command) 21.57 (31.56) 84.98 (17.66) 9.3618 44.575 <0.0001*
AD<VaD

2. Average pressure (copy) 30.23 (29.89) 86.39 (19.99) 8.3175 49.15 <0.0001*
AD<VaD

3. Average pressure/velocity (copy) 1.26 (1.31) 5.48 (3.83) 5.438 31.606 <0.0001*
AD<VaD

4. Average pressure/velocity (command) 0.92 (1.28) 5.01 (2.93) 6.6897 34.974 <0.0001*
AD<VaD

5. Average digit height (command) 5.67 (1.47) 5.15 (1.33) −1.385 53.959 0.1718
ns

6. Total drawing time (copy) 14.36 (6.68) 20.73 (9.32) 2.922 46.872 0.0053
AD<VaD

7. Standard deviation of pressure (copy) 18.36 (7.18) 23.63 (4.27) 3.3576 46.153 0.0016*
AD<VaD

8. Clockface overshoot angle (command) 2.29 (1.50) 3.17 (3.05) 1.4703 40.065 0.1828
Ns

9. Hour hand distance from center (command) 5.85 (4.79) 7.25 (6.00) 0.9462 47.838 0.3488
Ns

10. Hour hand distance from center (copy) 3.37 (2.41) 4.63 (2.64) 1.861 52.598 0.0683
ns

mean and standard deviation;

*
signifies variables that remain significant after Bonferroni correction
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