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Abstract

Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host 

bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and 

public health. Bacteriophage capsids, which house and protect their nucleic acids, have been 

modified with a range of functionalities (e.g. fluorophores, nanoparticles, antigens, drugs) to suit 

their final application. Functional groups naturally present on bacteriophage capsids can be used 

for electrostatic adsorption or bioconjugation but their impermanence and poor specificity can lead 

to inconsistencies in coverage and function. To overcome these limitations, researchers have 

explored both genetic and chemical modifications to enable strong, specific bonds between phage 

capsids and their target conjugates. Genetic modification methods involve introducing genes for 

alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or 

capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification 

methods rely on reacting functional groups present on the capsid with activated conjugates under 

the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in 

both genetic and chemical bacteriophage capsid modification methodologies, identifies major 

strengths and weaknesses of methods, and discusses areas of research needed to propel 

bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
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1. INTRODUCTION

Bacteriophages (phages) have played an instrumental role in biotechnology since their 

discovery in the late 1890’s, including being utilized for antibacterial therapy, vaccines, and 

gene delivery vehicles.1,2 Phages are viruses that infect bacteria within a typically narrow 

host range, and are non-infectious towards non-bacterial cells. Following recognition of their 

host and injection of their genetic material, phages take over the host bacterium’s cellular 

machinery to propagate tens to thousands of more phages, lysing the host cell to release 

newly synthesized phage progeny into the environment. Due to this remarkable orders-of-

*Corresponding Author: snugen@cornell.edu.
Author Contributions
This manuscript was written through contributions of all authors. All authors have given approval to the final version of the 
manuscript.

HHS Public Access
Author manuscript
Bioconjug Chem. Author manuscript; available in PMC 2022 March 17.

Published in final edited form as:
Bioconjug Chem. 2021 March 17; 32(3): 466–481. doi:10.1021/acs.bioconjchem.1c00018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



magnitude replication cycle, phages are highly abundant (in fact, are reported to be the most 

abundant organism on Earth)3 and have adapted to survive in a variety of environments 

across the globe including marine waters,4–6 human bodies,7–9 and diverse soils.10–12 

Phages can be propagated with standard lab glassware and equipment or in bioreactors for 

large-scale production.13–15

Wild type phages are employed as therapeutics, bioreceptors, and biocontrol agents. Several 

recent cases have demonstrated that patients infected with multi-drug resistant bacteria 

including Staphylococcus aureus,16–18 Acinetobacter baumannii,19–21 and Pseudomonas 
aeruginosa22–24 have successfully recovered after phage administration. Commercial phage 

preparations can be applied to food products and contact surfaces to help control 

contamination by foodborne pathogens.25–27 Biosensors relying on phages as bacteria 

biorecognition elements have allowed for the rapid detection of pathogens such as 

Salmonella Typhimurium and Staphylococcus aureus.28,29

Although phages offer several benefits, biological limitations of phage structural features 

prevent permanent evasion from mammalian immune systems, bacterial phage resistance, 

and non-specific immobilization. Advances in bioinformatics,30–32 microscopy imaging,
33–35 and genetic engineering36–38 have created new opportunities for modifying phage 

structural features to overcome some limitations of current phage-based biotechnologies. 

Capsids are highly ordered proteinaceous structures utilized by phages to protect their 

genomes. Phages with the most frequently identified capsid shapes, filamentous and 

icosahedral,39 have been modified using genetic and chemical methods to functionalize 

phages with an array of organic and inorganic materials. For phage therapy applications, 

capsid modifications with polyethylene glycol have increased phages’ bloodstream half-life 

in vivo.40 To generate phage activated materials, site-specific capsid modifications have 

facilitated binding interactions with silica, cellulose, and magnetic particles to improve 

immobilized phages’ orientation, stability, and density.41–43 The potential of phage-based 

biotechnologies have expanded through the use of non-native proteins displayed on capsids 

to include applications of cell differentiation scaffolds,44–48 targeted imaging platforms,49–51 

vaccines,52–54 and nanocarriers.55–57 This review adds to the excellent reports of Büning58 

and Xu59 which largely focus on adenovirus capsid modification, where here advances in 

bacteriophage capsid engineering are highlighted. These genetic and chemical methods for 

modifying phage capsids can be applied to create a variety of phage-based biotechnologies 

including low-cost diagnostics, gene therapies, cell differentiation scaffolds, or vaccines.

2. CAPSIDS OVERVIEW

Capsids encapsulate the tightly packed nucleic acids of the phage. Icosahedral capsid 

geometries having 20 triangular faces are the most frequently observed phage capsid 

structures.39 These capsids are typically composed of high numbers of repeating structures 

of a relatively few protein types. The triangulation number of the icosahedral capsid’s 

central body and two caps can be used to further classify the capsid as the uniform isometric 

shape or the elongated prolate form.60 These capsids vary in complexity and stability 

depending on the capsid subunits’ composition (pentameric or hexameric), copy number, 

and organization.61–63 Most icosahedral phages assemble utilizing scaffolding domains or 
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proteins to aid in proper formation of a stable procapsid shell intermediate which are 

subsequently removed from the mature capsid before or during genome packaging.64–66 

During the capsid maturation process, some phage capsids expand to reveal binding sites for 

decoration proteins67 that provide a fitness advantage such as increased capsid stability.68–71 

Mature capsids range in size from 43 to 160 nm in diameter.72,73 The spherical-like shape of 

these capsids has been utilized for protected delivery of therapeutic and imaging agents 

through internal modification of empty capsids.55,74–78

Filamentous phages from the Inoviridae family have a rod like capsid shape that can be 

800-2,000 nm long and 6.5-7.5nm in diameter.79 Filamentous capsids have a helical array 

which can be further identified as class I or class II based on having five-fold or one-fold 

rotational symmetry.80,81 These capsids are constructed by anchoring all five structural 

proteins to the inner membrane of the bacteria host and assembling the capsid around the 

genome as it is translocated into the inner membrane.82 The length of the capsid is dictated 

by the genome size and can be changed by adjusting the genome length.83,84 High density 

display of foreign molecules has been achieved by modifying the major capsid protein of 

filamentous phages that is present in thousands of copies in the capsid.85–87

Some phages utilize lipid envelopes derived from the phospholipids of the bacteria host to 

aid in protecting their genome.88–90 One such phage family which surround their capsids 

with an external lipid envelope is the Cystoviridae.91 Corticoviridae, Sphaerolipoviridae, and 

Tectiviridae phages contain a lipid membrane surrounding the genome on the inside of their 

capsid.92–94 To date, the Plasmaviridae phage MVL2 is the only phage to have a lipid 

membrane as the sole protection surrounding its genome.95 The structural characteristics of 

lipid-containing phages have enabled them to be used as surrogates for enveloped 

pathogenic human viruses including Ebola virus, severe acute respiratory syndrome (SARS) 

coronavirus, and human immunodeficiency virus (HIV).96–100

Phages of all capsid types can be noncovalently immobilized to charged materials via 

electrostatic adsorption. Important to note is that solution conditions can affect 

bioconjugation by simple charge-charge interactions, with pH and salt concentration 

affecting the charge state of capsid protein amino acid residues.101 Charged amino acid 

residues on phage capsids can be utilized to direct the orientation of phages during 

bioconjugation, with reported electrostatic adsorption onto modified silica,102,103 cellulose,
104–106 and gold103,107 to create bioactive materials. The charge of M13 phages has been 

exploited to create highly ordered phage monolayer films via electrostatic layer by layer 

technique.108 To enhance phage adsorption capabilities, commonly used materials can be 

modified with charged functional groups including amines, carboxylic acids, and glycols to 

facilitate adhesion.102,105,109,110 This immobilization method is simple, but the nonspecific 

nature can result in structural features crucial for infection to be interfered with during 

immobilization. An electric field can be incorporated into the process to properly orient 

phages during immobilization. This strategy has previously been used to increase the effect 

of charge during immobilization to direct bioconjugation of T4 phages by their negatively 

charged capsids during phage-based biosensor construction.107,111
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3. GENETIC MODIFICATIONS

There are numerous genetic engineering approaches that can be used to modify phage capsid 

genes. Some methods rely on incorporation of the foreign DNA sequence into the phage 

genome by flanking it with DNA sequences identical to the desired insertion site in the 

genome. This “Donor DNA” construct creates a template that can seamlessly incorporate the 

foreign sequence into the phage genome via homologous recombination (Fig 1A). 

Recombination rates of phages with plasmid vectors containing a Donor DNA construct 

occur at very low frequencies ranging from 10−10 to 10−4, 112–114 but increasing the length 

of the flanking DNA sequences identical to the insertion site can be used to increase 

recombination frequency.115 Bacteria hosts used for genetically modified phage synthesis 

can be altered to increase recombinant phage generation. 116 The in vivo recombineering 

method utilizes an Escherichia coli strain containing an extra set of temperature inducible 

recombination genes to help facilitate homologous recombination.117,118 This E. coli strain 

is infected with a wild type phage to deliver the phage genome into the cell, heated to induce 

recombination gene expression, and introduced with a single or double stranded Donor DNA 

construct that is delivered into the cell via electroporation, typically yielding 0.5-2% phage 

recombinants.118 Bacteriophage recombineering of electroporated DNA (BRED) method 

utilizes a bacteria strain containing a plasmid encoding recombination genes that promote 

high levels of recombination.116 A wild type phage genome and a double stranded Donor 

DNA construct are simultaneously delivered into the bacteria cell via electroporation which 

typically results in recombinant phage generation at a frequency of 10-15%.116 Bacteria can 

be equipped with clustered regularly interspaced palindromic repeats (CRISPR) and 

CRISPR-associated proteins (Cas) to form a CRISPR/Cas system within the cell, which 

were originally derived from a bacteria defense mechanism able to identify and cleave 

foreign nucleic acids that invade the bacteria cell.119 This system has been adapted into a 

genetic engineering tool that can be programmed to cleave a targeted gene at a specific 

location.120 The genes required for the CRISPR/Cas system to function can be incorporated 

directly into the bacteria’s genome or encoded on a plasmid that is maintained in the cell. 

CRISPR/Cas systems have been programmed to cleave wild type phage genes resulting in a 

selection of recombinant phages from a mixed pool.121 CIRSPR/Cas systems can also be 

used in combination with a plasmid containing a Donor DNA construct to improve 

recombination rates with the cleaved gene, due to DNA repair mechanisms activated when 

there is a double stranded DNA break. This method has resulted in a rate of recombination 

of 99% for some T4 phage genes.36

Genetic engineering approaches relying on a bacterial host can be limited by the destruction 

rate of the host during the lytic phage infection cycle that results in bacteria cell lysis. To 

overcome the limited rection time, phage genome recombination can be performed in a yeast 

cell intermediate, Saccharomyces cerevisiae, before insertion of the phage genome into the 

bacteria host via electroporation.122 DNA sequences overlapping with a shuttle plasmid 

compatible in yeast and bacteria are incorporated into the ends of the phage genome to allow 

for genome transport between organisms using the shuttle plasmid123 This method has been 

successful in engineering multiple phages from the T7-family.122 In vitro phage genome 

assembly is another recombination method that is performed independent of the bacteria 
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host. DNA fragments are synthesized with overlapping ends via polymerase chain reactions 

(PCR) that can hybridize to form the desired recombinant genome sequence with the aid of 

enzymes.124,125 The recombinant genome is then introduced into the bacteria host via 

electroporation to allow for generation of a functional phage This approach has been used to 

assemble full genomes of a ϕX174 phage and a T7 reporter phage.126,127 However this 

method has a higher chance of introducing mutations through PCR errors and can be 

challenging when transforming large phage genomes into the bacterial host.126 Gram 

positive bacteria’s thick cell wall make it challenging to deliver DNA into the cell via 

electroporation, limiting in vitro genome assembly applications for phages with gram 

positive bacteria hosts. To overcome this limitation, cell wall deficient (L-form) bacteria 

cells can be used to uptake large molecules of DNA.128 This approach has been used with L-

form Listeria monocytogenes cells to uptake genomes of Listeria, Bacillus, and 

Staphylococcus phages via PEG mediated transfection.129

3.1. PHAGE DISPLAY

The well-established “Phage Display” method is used in combination with a genetic 

engineering method to construct a modified phage capsid.130–132 Phage display involves 

genetically fusing a DNA sequence encoding for a foreign amino acid, peptide, or protein to 

a phage capsid gene that results in a phage displaying the recombinant capsid protein 

(Figure 1B). Modified capsid genes can be incorporated into the phage genome or 

exogenously expressed from a plasmid vector. Synthesis of genetically modified capsid 

proteins occurs in one production step within the bacteria cell. A mixture of modified and 

unmodified capsid proteins can be synthesized by incorporating a wild type and a modified 

capsid gene into the system to improve modified capsid stability.133–135 Inducible promoters 

can be used to alter the percent of modified proteins displayed in mixed display systems.
136,137. This method can be used on multiple capsid genes to create a multifunctional phage.
86,138 Phage display is time intensive upfront for proper design and development of the 

initial modified plasmids and genomes, but once established aliquots can be readily 

propagated and maintained for use in subsequent production batches.

Phage display libraries composed of a multitude of uniquely modified phage capsids can be 

subjected to bio-panning for identification of modified phages that best suit the desired 

application. Phage genotype and phenotype are linked, enabling traceback to reproduce the 

high preforming strains. Libraries can be randomly generated or specifically altered to elicit 

specific modification characteristics on the capsid. For example, cyclic peptide modified 

capsid libraries can be generated by intentionally incorporating cysteine residues to facilitate 

disulfide bond formation in all strains.139,140 Bicyclic peptide libraries can be generated by 

genetically incorporating three cystines into the capsid gene followed reaction with a reagent 

containing three thiol-reactive groups after phage capsid assembly.141–145 Forming peptides 

with nonreducible bonds has been achieved in libraries by utilizing enzymes to catalyze 

peptide crosslinking146 or non-canonical amino acids that can undergo specific covalent 

reactions.147,148 In vitro bio-panning assays have been used to identify modified phages with 

affinity to a variety of biological and inorganic substances including single-crystal 

semiconductors,149 silica,150 streptavidin,151 cellulose,152 and cell surface receptors.153,154 

In vivo bio-panning assays have been developed to identify modified phages that hone 
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specific tissues in mouse155–157 and human158 models. Co-display systems of enzymes and 

substrates have been developed to identity catalytically active modified capsids during bio-

panning.159–165

3.2. AMINO ACIDS

Single amino acids can be added or substituted in capsids to modify the number of 

functional groups present in side chains capable of reacting in downstream chemical 

modification steps (Figure 2A).166–168 By substituting a single amino acid for lysine in the 

major coat protein of M13 phage, Tridgett et al. were able to conjugate an additional 520 

exogenous molecules to the phage via amine conjugation compared to the wild type.169 In 

another study, a M13 phage displayed protein was modified to leave only one reactive 

cystine to increase site specificity of the subsequent thiol conjugation.170 A similar method 

can be used to incorporate single unnatural amino acids that contain functional groups 

uncommon in nature to expand reaction capabilities.171–175 Rare, nonsense, quadruplet, or 

reassigned amino acid codons can be added to a gene’s sequence to create a site for 

unnatural amino acid incorporation by the corresponding unnatural amino acid specific t-

RNA and t-RNA synthetase.176 Unnatural amino acid modification reduces the potential for 

reacting unintended parts of the capsid but requires a more complex synthesis process that 

typically results in significantly lower yields compared to wild type protein synthesis.177,178 

This method was used in a phage-based biosensor to modify capsids of T4 phages for 

immobilization to ensure tail fibers crucial for infection were not altered.171

3.3. PEPTIDE MOTIFS

Peptide motifs are short structural regions conserved among different proteins that can often 

be linked to a particular biological function.179 Peptide motifs that can recognized by 

enzymes can be displayed on the capsid to create a specific site for enzymatic modification 

after phage capsid assembly (Figure 2B). Protease cleavage sites have been added to T4 

capsid gene constructs to allow for an affinity peptide to be displayed for chromatography 

purification of phage preparations that can be subsequently removed.180 M13 and P22 phage 

nanocarriers containing protease cleavage sites have been used to facilitate enzyme driven 

release of contents.49,181 Biotin ligase enzymes can utilize ATP to conjugate biotin to biotin 

carboxyl carrier protein (BCCP) via an amide linkage to one of BCCP’s lysine residues. The 

components of this system can be used to biotinylate BCCP displaying phages in vitro.182 

Biotinylating can also occur in vivo during normal phage propagation, if a biotin ligase 

enzyme gene is present in the bacteria host or genetically incorporated into the phage or 

bacteria host.183,184 BCCPs have been incorporated into T4, M13, and T7 phages to allow 

for site specific biotin addition.57,185–188 Several commercially available biotin and 

streptavidin functionalized materials offer a diverse array of applications for BCCP tagged 

phages.

Sortase enzymes (those which modify surface proteins) can be incorporated into phage 

display systems to catalyze covalent bond formation between the N terminus of a substrate 

peptide or peptide conjugate to the C terminus of a cleaved sortase recognition motif.189 

Commonly used sortase A transpeptidation systems rely on a five amino acid long 

recognition motif and two-five amino acid long substrates.190–192 This method has been 
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utilized to conjugate green fluorescent proteins and influenza antigens to P22 capsids.189 

Sortase motifs derived from different organisms have been used in the same system on 

different M13 capsid proteins to create multifunctional modified phage capsids.193,194 After 

reacting for 3 hours, 56-74% of the M13 minor capsid proteins were attached with green 

fluorescent protein or biotin via sortase ligation.193 Sortase catalyzed modification is 

advantageous for facilitating attachment of large complex proteins that may disrupt stable 

capsid assembly if fused directly to the phage capsid gene. This system is limited by the 

inefficiency of ligation by the sortase enzymes used which can be compensated for by using 

longer reaction times.195

3.4. DECORATION PROTEINS

Decoration proteins typically incorporated into icosahedral capsids after procapsid shell 

formation can assemble in vitro to mature capsids of strains where the gene for the 

decoration protein has been knocked out (Figure 2C).196 This method allows for more 

purification and characterization of the modified proteins before incorporating them into the 

capsid to ensure they are in the correct form. It also allows for the displaying complex 

proteins that typically cannot be efficiently synthesized in the phage’s bacteria host due to 

the protein’s complexity or toxicity. Antigen constructs over twice the size of the decoration 

protein it is fused to have been successfully displayed on all capsid binding sites of T4 phage 

using this method.197 Multiple antigen fusions to the same T4 decoration protein have been 

synthesized separately then mixed in equal molar ratios before in vitro binding to allow for 

mixed display of antigens on a single phage capsid.198 In vitro assembly has been 

demonstrated in T4 phage with displayed antigens of swine fever virus,54 human 

immunodeficiency virus,53 foot and mouth disease virus,52 Bacillus anthracis,197 and 

Neisseria meningitidis199 for initial vaccine development. Decoration protein homologs with 

conserved capsid binding domains have been bound to closely related phages to offer 

improved solubility or quantification capability compared to the native decoration proteins.
200–202

4. CHEMICAL MODIFICATIONS

Another method for manipulating phages’ structure and function is through chemical 

modification. Amino acids in the proteinaceou6s phage capsids offer a variety of reactive 

functional groups available for bioconjugation including carboxylic acids, amines, phenols, 

and thiols (Figure 3). The maximum degree of modification is determined by the number of 

reactive groups present that are sterically accessible for modification, their pKa, and solution 

conditions. The plethora of nucleophilic functional groups present creates potential for 

several amino acids to participate in chemical reactions. However, this can result in mixed 

reaction products from undesired side reactions even when conditions are optimized to favor 

a particular group.203,204 Unintentional modification of residues that are crucial for proper 

structural feature function can decrease phage infectivity.40 Low abundance amino acids 

such as cysteine or unnatural amino acids can be targeted for improved control over the site 

of modification.205 Phospholipids in lipid enveloped phages provide another target for 

modification. Human enveloped viruses have been modified through propagating in a host 

engineered to metabolically incorporate chemically functionalized components into their cell 
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membranes.206–208 This hybrid method provides a potential pathway for enveloped phage 

modification in the future.

4.1. AMINE GROUPS

Amine groups present at the N-terminus of all proteins and on lysine side chains are 

common targets for chemical modification. Reaction pH can be used to drive the reaction 

towards the α-amino group at the N-terminus (pKa ~8) or ε-amino group of lysine (pKa 

~10) but still usually results in mixed modification.209,210 Models have been created to help 

predict the molar ratio of NHS (N-hydroxysuccinimide) ester reagent to target protein to 

achieve the desired degree of modification.211,212 NHS ester reagents are frequently used to 

form stable amide linkages with amines in one-step reactions. Several NHS ester conjugates 

are commercially available and stable under dry conditions. NHS esters in homo- and 

hetero-bifunctional reagents have been used to crosslink T4 phages to gold sensors and MS2 

capsids to cell penetrating peptides.168,213 NHS esters modified with a negatively charged 

sulfonate group can be used to increase the reagents solubility in water and reduce the need 

for organic solvents in reactions.214 NHS215–220 and Sulfo-NHS168,221,222 esters have been 

used to modify phages from a variety of families including T7, M13, T4, A511, Felix-O1, 

SJ2, and MS2. Nonionic polyethylene glycol (PEG) linker arms have also been incorporated 

into NHS ester conjugates used for M13, fd, and G1 phage modifications to improve 

solubility and biocompatibilty.223–225 Basic conditions required for amine deprotonation can 

be problematic with these reactions, because NHS esters are highly susceptible to base 

hydrolysis.226–228 Tetrafluorophenyl (TFP) esters are another water soluble reagent able to 

form amide bonds with amines but are more stable in basic pH conditions and more 

hydrophobic.229 Isocyanates and isothiocyanates can react with amines to form ureas and 

thioureas. Isothiocyanates are used more frequently for bioconjugations than isocyanates, 

because they are more stable in storage.230,231 TFP esters232,233 and isothiocyanates216,234 

have been used to modify T7, MS2, and M13 phages with fluorophores. For increased 

specificity, a two-step reaction can be used to modify only α-amino groups at the N-

terminus of proteins under mild conditions. First the phage is incubated with pyridoxal 5’-

phosphate (PLP) to undergo a transamination reaction that swaps the N-terminal amine for a 

ketone.235 This ketone can undergo an oxime reaction with an aminooxy-functionalized 

substituent, which has been used for generation of fd phage biosensors.236,237 N-terminal 

alanine residues with proximal lysine residues have shown to increase the efficiency of this 

bioconjugation reaction.238 This method has been used for high density attachment of 

imaging agents and polymers to fd phage capsids.51

4.2. CARBOXYLATE GROUPS

Carboxylate groups are found at the C-terminus of proteins and on aspartate and glutamate 

side chains. Carboxylates have a low reactivity in water so they are commonly activated with 

a carbodiimide crosslinker like the water soluble 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) or water insoluble 

Dicyclohexylcarbodiimide (DCC) to form a reactive O-acylisourea intermediate.239 

Activated carboxylates can then be reacted with primary amines in mildly acidic pH 

conditions to form stable amide bonds that leave no trace of the carbodiimide used to 

facilitate the bond formation.240 EDC coupling reactions have been used to conjugate 
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reactive moieties and chloramphenicol to filamentous phages as shown in Table 1.241–243 

NHS esters can be added to these reactions to generate a more stable NHS ester intermediate 

that can undergo reaction with primary amines under physiological pH.244 This method has 

been used to attach fluorphores222, magnetic beads,225 folic acid,245 and drugs49,246 to M13 

phage capsids. Glutaric anhydride has been conjugated to primary amines on M13 phages to 

increase the number of carboxylate groups accessible for polymer immobilization in 

downstream reactions.247

4.3. THIOL GROUPS

Thiol groups in cysteine side chains are the most reactive nucleophiles present in proteins.
248 Under oxidizing conditions, thiols from two cystines can form a disulfide bond. Thiols in 

cystine disulfide bonds can be liberated using reducing agents to increase the number of 

thiols accessible for modification, but this can cause protein destabilization or reversion back 

to disulfides.249,250 Maleimides react with thiols under mild pH and temperature conditions 

to form stable thioether bonds.251 Maleimides can also react with amines but their reaction 

with sulfhydryl groups occurs 1000-fold faster at pH 7 therefore is highly favored.252 

Maleimide conjugates functionalized for fluorescence,167,241,253 water solubility,166 

neomycin242 and improved stability168,170 have been used to modify P22, MS2, M13, and fd 

phages. Thiol groups can also readily form dipolar bonds with metal ions and materials.
254–256 These bonds are not as strong as traditional covalent bonds, but allow even disulfide 

bonds to form bonds with metals.252 Based on this principle, cysteine residues have been 

incorporated into fd phage capsids to improve binding to gold materials.257 N-succinimidyl-

S-acetylthiopropionate (SATP) has been chemically conjugated to M13 phages to increase 

the number of thiol groups capable of bonding with gold nanorods.220

4.4. PHENOL GROUPS

Phenol groups present on tyrosine and histidine residues can be modified using diazonium 

compounds to form diazo linked conjugates. Adjusting the reaction pH to 7 favors reaction 

with the histidine imidazole group, where higher pH’s favor reaction with the tyrosine 

phenol group.258 This strategy has been utilized to facilitate conjugation of imaging agents 

to M13 and MS2 phage capsids via tyrosine residues74,222

4.5. ALDEHYDE CROSS LINKERS

Glutaraldehyde is a dialdehyde that is frequently used as a crosslinking agent to form 

chemically and thermally stable crosslinks of biological materials.259,260 Glutaraldehyde is 

present in many forms in solution leading to the precise mechanism and primary reactive 

species not being fully understood or agreed upon in the literature.261 Glutaraldehyde can 

react with several nucleophilic functional groups present in proteins including amines, 

thiols, phenols, and imidazole, but the ε-amino group of lysine was found to be the most 

reactive.262,263 This method has been used to facilitate crosslinking phages to amine 

functionalized magnetic microspheres and gold surfaces.110,264 N-terminal serine and 

threonine residues contain a β-amino alcohol motif that can specifically undergo oxidative 

cleavage by sodium periodate to generate an aldehyde handle.265 This handle can be 

subjected to a second reaction to add the desired conjugate. Oxime reactions have been used 

in aldehyde displaying phages to attach aminooxy conjugates. Oxime reactions can take 
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several hours at neutral pH but can be accelerated using acidic conditions (pH 4.5) and an 

aniline catalyst.266 This two-step method was used in a one-pot reaction to add an 

aminooxy-functionalized glycan to M13 phages through an oxime condensation reaction in 

less than 1.5 hours.267 In another study, an aldehyde conjugated to a NHS ester was used to 

attach aldehydes to amines on the exterior of MS2 phage capsids, followed by an 8 hour 

oxime condensation reaction at pH 6.5 to attach the desired contrast agent.74 In a similar 

reaction, phage displayed aldehydes with 2-amino benzamidoxime derivatives have been 

used to conjugate materials to M13 phages in one hour resulting in bonds more resilient to 

hydrolysis than oximes.268

4.6. UNNATURAL AMINO ACIDS

Amino acids that are not encoded for in the natural genetic code of organisms can be 

incorporated into phage capsid protein constructs to display unique functional groups to 

generate sites on the capsid for selective chemical modification. Selenocysteine is an 

unnatural amino acid cysteine analog containing selenium in place of sulfur that has been 

incorporated into M13 phages for biotin conjugation.269,270 This strong nucleophile reacts 

fast and at a low pH which can help prevent undesired side reactions that occur at a higher 

pH.271 Multiple uncommon or unnatural amino acids have been synthesized to contain azide 

or alkyne groups capable of undergoing a copper catalyzed azide-alkyne cycloaddition click 

chemistry reaction.272–274 This fast, highly specific reaction occurs among functional groups 

that are not common in biological substances, making it a good candidate for site specific 

modification with limited potential for unwanted side reactions.275 Azide containing 

unnatural amino acid displaying M13 phages have facilitated conjugation to alkyne 

functionalized fluorophores and gold particles.172,175 A tyrosine unnatural amino derivative, 

p-aminophenylalanine, can undergo sodium periodate mediated oxidative coupling for phage 

capsid bioconjugation. This method has been used to modify MS2 phage like particles and 

shown selective even in the presence of tyrosine.76,276,277

5. OPPORTUNITIES AND CHALLENGES

The modification approaches described in this review highlight advances made to 

functionalize phages for a diverse array of applications. These strategies can be used alone 

or in combination depending on the phage’s characteristics and desired end modification. 

Adsorption to materials through electrostatic interactions offers the simplest method for 

functionalizing phages but lacks specificity and permanence. Genetic engineering can be 

used to fuse DNA sequences encoding for amino acids, peptides, or proteins to phage capsid 

genes through the well-established “Phage Display” method. These recombinant capsid 

proteins create additional sites for capsid modification by enzymes or chemicals. To 

accommodate large complex foreign protein fusions, recombinant capsid decoration proteins 

can be assembled in vitro to phages with accessible binding sites. Chemical modifications 

can also be used to target functional groups on amino acids of phage capsids for 

modification. Chemical reactions have potential for undesired side reactions to occur, but pH 

and temperature conditions can be adjusted to drive the reaction towards a particular 

functional group to mitigate side reactions. Protective groups can also be utilized during 

multistep reactions to improve selectivity of the reaction.
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The plethora of genetic and chemical phage modification strategies have expanded the 

possibilities of phage-based biotechnologies. Hybrid methods utilizing genetic engineering 

to incorporate a low abundance or unnatural amino acid residue that can undergo a specific 

chemical reaction downstream appear to be the most promising for specific capsid 

modification. Current site-specific chemical methods are time-intensive and require multiple 

steps leaving much room for improvement to streamline the phage engineering process. To 

date, icosahedral and filamentous phage capsids have been the most frequently modified 

with no reported lipid modification of enveloped phages. Future studies adapting human 

enveloped virus modification methods to enveloped phages could tap into an underutilized 

capsid feature. Decoration proteins have been substituted from closely related phages to 

improve recombinant phage solubility. Investigating substitutions of other closely related 

phage capsid proteins could be a promising approach to alter phage capsid properties. 

Methods described in this review for capsid protein modification can be adapted to modify 

other phage proteins. For example, phage tail fibers that act as receptors for binding to 

bacteria hosts can be modified to alter a phage’s bacteria host range. Overall, increased 

characterization of different phage capsids at the genomic and structural level will help 

expand the already promising opportunities of phage capsid engineering highlighted in this 

review.
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ABBREVIATIONS

BCCP biotin carboxyl carrier protein

BRED bacteriophage recombineering of electroporated DNA

CRISPR clustered regularly interspaced palindromic repeats

Cas CRISPR-associated proteins

DCC Dicyclohexylcarbodiimide

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

HIV human immunodeficiency virus

NHS N-hydroxysuccinimide

PCR polymerase chain reaction

PEG polyethylene glycol

PLP pyridoxal 5’-phosphate

SARS severe acute respiratory syndrome

SATP N-succinimidyl-S-acetylthiopropionate
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Figure 1. 
Genetic approaches for modified phage capsid engineering, display, and screening. (A) The 

main approaches for engineering phage genes are highlighted. In homologous 

recombination, a plasmid containing a donor DNA insert flanked by regions of homology to 

the desired insert site can be used to facilitate donor DNA insertion into a wild type phage 

genome to generate a recombinant phage. For in vitro assembly, phage genome fragments 

synthesized with overlapping ends can be stitched together with the aid of enzymes to 

construct a recombinant phage genome outside of the bacteria cell. In CRISPR/Cas9 

systems, an enzyme-RNA complex can be used to specifically cleave a target sequence in 

the phage genome to increase the rate of recombination with donor DNA or select out wild 

type phages. (B) In phage display, genetic engineering is used to fuse an amino acid, 

peptide, or protein sequence to phage capsid gene resulting in display of the foreign gene 

product on the phage capsid. In affinity screening, repeated rounds of selection can be used 

to identify recombinant capsid sequences with strong affinity to the desired target from 

phage display libraries.
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Figure 2. 
Genetic modifications to phage capsids. (A) Single amino acids in phage capsids can be 

substituted to alter the number and type of functional groups accessible for downstream 

chemical modification. (B) Peptide motifs recognized by specific enzymes can be 

incorporated into phage capsids for downstream enzymatic modification or controlled 

release of contents. (C) Recombinant capsid decoration proteins can be synthesized 

separately from the phage and assembled to the capsid in vitro, allowing for large complex 

proteins to be displayed.
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Figure 3. 
Chemical modifications of filamentous phage capsids. Functional groups present on amino 

acids or unnatural amino acids can be utilized to add desired conjugates to phage capsids in 

a semi-selective manner. Though depicted on a filamentous phage capsid, these modification 

chemistries can be applied to other phage capsid architectures.
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Table 1.

Modified Phage Capsids Summary

GENETIC

Protease Cleavage Site Addition AcTEV protease mediated affinity tag removal180

Cathepsin B mediated release of chemotherapeutic49

Thrombin mediated release of fluorescent protein181

Biotin Carboxyl Carrier Protein Addition Horseradish peroxidase conjugation57

Immobilization on gold surfaces185

Antibody conjugation188

Quantum dot conjugation186

Immobilization on magnetic beads187

Sortase Recognition Motif Addition Green fluorescent protein conjugation189,193

Influenza antigen conjugation189

Biotin conjugation193

In Vitro Display Anthrax protective antigen conjugation197

Anthrax protective antigen, lethal factor, and edema factor conjugation198

Neisseria meningitidis PorA peptide conjugation199

Foot and mouth disease virus capsid precursor polyprotein or
proteinase peptide conjugation52

Human immunodeficiency virus antigens gp24, Nef, and gp41 conjugation53

Classical swine fever virus primary antigen and major antigenic determinant cluster 
conjugation54

CHEMICAL

NHS Ester PEG conjugation40

Fluorescent dye conjugation199,201

Biotin or PEG-Biotin conjugation200,203,206,207

NHS Ester; Oxime Formation Magnetic resonance contrast agent conjugation74

NHS Ester; Metal Binding Gold nanorod conjugation220

Sulfo-NHS Ester Biotin conjugation221

TFP Ester Fluorescent dye conjugation232,233

Isothiocyanate Fluorescent dye conjugation216,234

EDC + NHS Ester Coupling Immobilization to superparamagnetic particles225

DCC + NHS Ester Coupling Chloramphenicol conjugation246

EDC + Sulfo-NHS Ester Coupling Doxorubicin conjugation49

Fluorophore conjugation222

Folic acid conjugation245

EDC Coupling Cysteamine conjugation241

Chloramphenicol conjugation242,243

Diazonium; Copper Catalyzed Azide-Alkyne 
Cycloaddition

Biotin or folate conjugation222

Diazonium; Oxime Formation Magnetic resonance contrast agent conjugation74

PLP Transamination; Oxime Formation PEG conjugation51

Fluorescent dye conjugation51

Xe binding molecule conjugation237

Glutaric Anhydride Addition Polymer conjugation247

Metal Bonding Gold nanoparticle conjugation241,257

Glutaraldehyde Crosslinking Immobilization on amino acid functionalized gold surfaces110

Immobilization on amine functionalized magnetic microspheres264
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Sodium Periodate Oxidation; Oxime Formation Biotin conjugation267

Mannose conjugation267

2-Amino Benzamidoxime Biotin conjugation268

HYBRID*

Amino Acid Substitution; Maleimide Biotin or PEG-Biotin conjugation166,170

Fluorescent dye conjugation76,167,169,253

Amino Acid Substitution; Sulfo-NHS Ester; 
Maleimide

Crosslinking cell penetrating peptides to phage capsids168

Amino Acid Substitution; Isothiocyanate Fluorescent dye conjugation169

Sortase Recognition Motif Addition; Maleimide Fluorescent dye conjugation194

DNA conjugation194

Unnatural Amino Acid Addition; Selenide-Sulfide 
Crosslinking

Biotin conjugation269,270

Unnatural Amino Acid Addition; Copper 
Catalyzed Azide- Alkyne Cycloaddition

Gold nanoparticle conjugation175

Fluorescent dye conjugation172

Magnetic bead conjugation171

Unnatural Amino Acid Addition; Sodium Periodate 
Oxidation

Cell penetrating peptide conjugation276

Antibody conjugation277

Left column is the modification method used. Right column is the application.

*
Hybrid includes genetic and chemical modification methods.
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